1
|
Haas AN, Furlaneto F, Gaio EJ, Gomes SC, Palioto DB, Castilho RM, Sanz M, Messora MR. New tendencies in non-surgical periodontal therapy. Braz Oral Res 2021; 35:e095. [PMID: 34586209 DOI: 10.1590/1807-3107bor-2021.vol35.0095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review was to update the evidence of new approaches to non-surgical therapy (NSPT) in the treatment of periodontitis. Preclinical and clinical studies addressing the benefits of adjunctive antimicrobial photodynamic therapy, probiotics, prebiotics/synbiotics, statins, pro-resolving mediators, omega-6 and -3, ozone, and epigenetic therapy were scrutinized and discussed. Currently, the outcomes of these nine new approaches, when compared with subgingival debridement alone, did not demonstrate a significant added clinical benefit. However, some of these new alternative interventions may have the potential to improve the outcomes of NSPT alone. Future evidence based on randomized controlled clinical trials would help clinicians and patients in the selection of different adjunctive therapies.
Collapse
Affiliation(s)
- Alex Nogueira Haas
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Flavia Furlaneto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Eduardo José Gaio
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Sabrina Carvalho Gomes
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Daniela Bazan Palioto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Rogerio Moraes Castilho
- Michigan University, School of Dentistry, Department of Periodontics and Oral Medicine, Ann Arbor, MI, USA
| | - Mariano Sanz
- Complutense University of Madrid, Etiology and Therapy of Periodontal and Peri-implant Diseases Research Group, Madrid, Spain
| | - Michel Reis Messora
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Kamarajan P, Ateia I, Shin JM, Fenno JC, Le C, Zhan L, Chang A, Darveau R, Kapila YL. Periodontal pathogens promote cancer aggressivity via TLR/MyD88 triggered activation of Integrin/FAK signaling that is therapeutically reversible by a probiotic bacteriocin. PLoS Pathog 2020; 16:e1008881. [PMID: 33002094 PMCID: PMC7529280 DOI: 10.1371/journal.ppat.1008881] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies reveal significant associations between periodontitis and oral cancer. However, knowledge about the contribution of periodontal pathogens to oral cancer and potential regulatory mechanisms involved is limited. Previously, we showed that nisin, a bacteriocin and commonly used food preservative, reduced oral cancer tumorigenesis and extended the life expectancy in tumor-bearing mice. In addition, nisin has antimicrobial effects on key periodontal pathogens. Thus, the purpose of this study was to test the hypothesis that key periodontal pathogens (Porphyromonas gingivalis, Treponema denticola, and Fusobacterium nucleatum) promote oral cancer via specific host-bacterial interactions, and that bacteriocin/nisin therapy may modulate these responses. All three periodontal pathogens enhanced oral squamous cell carcinoma (OSCC) cell migration, invasion, tumorsphere formation, and tumorigenesis in vivo, without significantly affecting cell proliferation or apoptosis. In contrast, oral commensal bacteria did not affect OSCC cell migration. Pathogen-enhanced OSCC cell migration was mediated via integrin alpha V and FAK activation, since stably blocking alpha V or FAK expression abrogated these effects. Nisin inhibited these pathogen-mediated processes. Further, Treponema denticola induced TLR2 and 4 and MyD88 expression. Stable suppression of MyD88 significantly inhibited Treponema denticola-induced FAK activation and abrogated pathogen-induced migration. Together, these data demonstrate that periodontal pathogens contribute to a highly aggressive cancer phenotype via crosstalk between TLR/MyD88 and integrin/FAK signaling. Nisin can modulate these pathogen-mediated effects, and thus has therapeutic potential as an antimicrobial and anti-tumorigenic agent.
Collapse
Affiliation(s)
- Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| | - Islam Ateia
- Department of Oral Medicine and Periodontology, Mansoura University, Mansoura, Egypt
| | - Jae M. Shin
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - J. Christopher Fenno
- Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann arbor, MI, United States of America
| | - Charles Le
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
| | - Ling Zhan
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
| | - Ana Chang
- Department of Periodontics, Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States of America
| | - Richard Darveau
- Department of Periodontics, Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States of America
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
3
|
Abstract
The three main oral diseases of humans, that is, caries, periodontal diseases, and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review, we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise, but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis.
Collapse
|
4
|
Liu G, Luan Q, Chen F, Chen Z, Zhang Q, Yu X. Shift in the subgingival microbiome following scaling and root planing in generalized aggressive periodontitis. J Clin Periodontol 2018; 45:440-452. [PMID: 29266363 DOI: 10.1111/jcpe.12862] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Guojing Liu
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Qingxian Luan
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Feng Chen
- Central Laboratory; Peking University School and Hospital of Stomatology; Beijing China
| | - Zhibin Chen
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Qian Zhang
- Central Laboratory; Peking University School and Hospital of Stomatology; Beijing China
| | - Xiaoqian Yu
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| |
Collapse
|
5
|
Tanaka-Kumazawa K, Kikuchi Y, Sano-Kokubun Y, Shintani S, Yakushiji M, Kuramitsu HK, Ishihara K. Characterization of a potential ABC-type bacteriocin exporter protein from Treponema denticola. BMC Oral Health 2016; 17:18. [PMID: 27422166 PMCID: PMC4947327 DOI: 10.1186/s12903-016-0243-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Treponema denticola is strongly associated with the development of periodontal disease. Both synergistic and antagonistic effects are observed among bacterial species in the process of biofilm formation. Bacteriocin-related genes have not yet been fully characterized in periodontopathic bacteria. The aim of this study was to detect and characterize bacteriocin-associated proteins in T. denticola. METHODS The whole genome sequence of T. denticola ATCC 35405 was screened with a Streptococcus mutans bacteriocin immunity protein (ImmA/Bip) sequence. The prevalence of homologous genes in T. denticola strains was then investigated by Southern blotting. Expression of the genes was evaluated by qRT-PCR. RESULTS In the genome sequence of T. denticola, an amino acid sequence coded by the open reading frame TDE_0719 showed 26 % identity with the S. mutans ImmA. Furthermore, two protein sequences encoded by TDE_0425 and TDE_2431 in T. denticola ATCC 35405 showed ~40 % identity with that coded by TDE_0719. Therefore, TDE_0425, TDE_0719, and TDE_2431 were designated as tepA1, A2, and A3, respectively. Open reading frames showing similarity to the HlyD family of secretion proteins were detected downstream of tepA1, A2, and A3. They were designated as tepB1, B2, and B3, respectively. A gene harboring a bacteriocin-like signal sequence was detected upstream of tepA1. The prevalence of tepA1 and A2 differed among Treponema species. Susceptibility to chloramphenicol and ofloxacin was slightly decreased in a tepA2 mutant while that to kanamycin was increased. Expression of tepA3-B3 was increased in the tepA2 mutant. CONCLUSION These results indicate that T. denticola ATCC 35405 has three potential bacteriocin export proteins and that the presence of these genes differs among the Treponema strains. TepA3-B3 of the corresponding proteins may be involved in resistance to chloramphenicol.
Collapse
Affiliation(s)
- Kimiko Tanaka-Kumazawa
- Department of Pediatric Dentistry, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.,Oral Health Science Center, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Yumiko Sano-Kokubun
- Department of Pediatric Dentistry, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Seikou Shintani
- Department of Pediatric Dentistry, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Masashi Yakushiji
- Department of Pediatric Dentistry, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Howard K Kuramitsu
- Department of Oral Biology, State University of New York, Buffalo, NY, USA
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan. .,Oral Health Science Center, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| |
Collapse
|
6
|
Dynamic changes in the subgingival microbiome and their potential for diagnosis and prognosis of periodontitis. mBio 2015; 6:e01926-14. [PMID: 25691586 PMCID: PMC4337560 DOI: 10.1128/mbio.01926-14] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human microbiome influences and reflects the health or disease state of the host. Periodontitis, a disease affecting about half of American adults, is associated with alterations in the subgingival microbiome of individual tooth sites. Although it can be treated, the disease can reoccur and may progress without symptoms. Without prognostic markers, follow-up examinations are required to assess reoccurrence and disease progression and to determine the need for additional treatments. To better identify and predict the disease progression, we aim to determine whether the subgingival microbiome can serve as a diagnosis and prognosis indicator. Using metagenomic shotgun sequencing, we characterized the dynamic changes in the subgingival microbiome in periodontitis patients before and after treatment at the same tooth sites. At the taxonomic composition level, the periodontitis-associated microorganisms were significantly shifted from highly correlated in the diseased state to poorly correlated after treatment, suggesting that coordinated interactions among the pathogenic microorganisms are essential to disease pathogenesis. At the functional level, we identified disease-associated pathways that were significantly altered in relative abundance in the two states. Furthermore, using the subgingival microbiome profile, we were able to classify the samples to their clinical states with an accuracy of 81.1%. Follow-up clinical examination of the sampled sites supported the predictive power of the microbiome profile on disease progression. Our study revealed the dynamic changes in the subgingival microbiome contributing to periodontitis and suggested potential clinical applications of monitoring the subgingival microbiome as an indicator in disease diagnosis and prognosis. Periodontitis is a common oral disease. Although it can be treated, the disease may reoccur without obvious symptoms. Current clinical examination parameters are useful in disease diagnosis but cannot adequately predict the outcome of individual tooth sites after treatment. A link between the subgingival microbiota and periodontitis was identified previously; however, it remains to be investigated whether the microbiome can serve as a diagnostic and prognostic indicator. In this study, for the first time, we characterized the subgingival microbiome of individual tooth sites before and after treatment using a large-scale metagenomic analysis. Our longitudinal study revealed changes in the microbiota in taxonomic composition, cooccurrence of subgingival microorganisms, and functional composition. Using the microbiome profiles, we were able to classify the clinical states of subgingival plaque samples with a high accuracy. Follow-up clinical examination of sampled sites indicates that the subgingival microbiome profile shows promise for the development of diagnostic and prognostic tools.
Collapse
|
7
|
Suzuki N, Yoneda M, Hirofuji T. Mixed red-complex bacterial infection in periodontitis. Int J Dent 2013; 2013:587279. [PMID: 23533413 PMCID: PMC3606728 DOI: 10.1155/2013/587279] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/11/2013] [Indexed: 12/31/2022] Open
Abstract
The red complex, which includes Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia (formerly Bacteroides forsythus), are recognized as the most important pathogens in adult periodontal disease. These bacteria are usually found together in periodontal pockets, suggesting that they may cause destruction of the periodontal tissue in a cooperative manner. This article discusses the interspecies pathogenic interactions within the red complex.
Collapse
Affiliation(s)
- N. Suzuki
- Section of General Dentistry, Department of General Dentistry, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - M. Yoneda
- Center for Oral Diseases, 3-2-1 Hakataekimae, Hakata-ku, Fukuoka 812-0011, Japan
| | - T. Hirofuji
- Section of General Dentistry, Department of General Dentistry, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| |
Collapse
|
8
|
Tenorio EL, Klein BA, Cheung WS, Hu LT. Identification of interspecies interactions affecting Porphyromonas gingivalis virulence phenotypes. J Oral Microbiol 2011; 3:JOM-3-8396. [PMID: 22022641 PMCID: PMC3198504 DOI: 10.3402/jom.v3i0.8396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 11/14/2022] Open
Abstract
Background Periodontitis is recognized as a complex polymicrobial disease, however, the impact of the bacterial interactions among the 700–1,000 different species of the oral microbiota remains poorly understood. We conducted an in vitro screen for oral bacteria that mitigate selected virulence phenotypes of the important periodontal pathogen, Porphyromonas gingivalis. Method We isolated and identified oral anaerobic bacteria from subgingival plaque of dental patients. When cocultured with P. gingivalis W83, specific isolates reduced the cytopathogenic effects of P. gingivalis on oral epithelial cells. Result In an initial screen of 103 subgingival isolates, we identified 19 distinct strains from nine species of bacteria (including Actinomyces naeslundii, Streptococcus oralis, Streptococcus mitis, and Veilonella dispar) that protect oral epithelial cells from P. gingivalis-induced cytotoxicity. We found that some of these strains inhibited P. gingivalis growth in plate assays through the production of organic acids, whereas some decreased the gingipain activity of P. gingivalis in coculture or mixing experiments. Conclusion In summary, we identified 19 strains isolated from human subgingival plaque that interacted with P. gingivalis, resulting in mitigation of its cytotoxicity to oral epithelial cells, inhibition of growth, and/or reduction of gingipain activity. Understanding the mechanisms of interaction between bacteria in the oral microbial community may lead to the development of new probiotic agents and new strategies for interrupting the development of periodontal disease.
Collapse
Affiliation(s)
- Elizabeth L Tenorio
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | | | | | | |
Collapse
|
9
|
Iwano Y, Sugano N, Matsumoto K, Nishihara R, Iizuka T, Yoshinuma N, Ito K. Salivary microbial levels in relation to periodontal status and caries development. J Periodontal Res 2010; 45:165-9. [PMID: 20470257 DOI: 10.1111/j.1600-0765.2009.01213.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Although an inverse relationship between caries and periodontal disease has been suggested, some studies have reported a positive correlation between periodontal disease and the decayed, missing and filled teeth (DMF) index. The aim of the present study was to examine the relationship between caries and periodontal disease. MATERIAL AND METHODS We assessed the clinical parameters and salivary levels of Porphyromonas gingivalis and Streptococcus mutans using real-time polymerase chain reaction in 40 subjects with varying degrees of caries and periodontal disease. RESULTS The salivary levels of S. mutans were significantly higher in the periodontally healthy group than in the periodontitis group. The salivary levels of P. gingivalis were significantly higher in the caries-free group than in the periodontally healthy group with caries. The salivary levels of S. mutans were significantly increased after the initial periodontal treatment. CONCLUSIONS This study showed that an inverse relationship exists between periodontitis and caries in terms of the clinical and bacteriological findings.
Collapse
Affiliation(s)
- Y Iwano
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Langendijk-Genevaux PS, Grimm WD, Van Der Hoeven JS. Sulfate-reducing bacteria in relation with other potential periodontal pathogens. J Clin Periodontol 2008. [DOI: 10.1111/j.1600-051x.2001.281210.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Van Hoogmoed CG, Geertsema-Doornbusch GI, Teughels W, Quirynen M, Busscher HJ, Van der Mei HC. Reduction of periodontal pathogens adhesion by antagonistic strains. ACTA ACUST UNITED AC 2008; 23:43-8. [PMID: 18173797 DOI: 10.1111/j.1399-302x.2007.00388.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Periodontitis results from a shift in the subgingival microflora into a more pathogenic direction with Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans considered as periodontopathogens. In many cases, treatment procures only a temporary shift towards a less pathogenic microflora. An alternative treatment could be the deliberate colonization of pockets with antagonistic microorganisms to control the adhesion of periodontopathogens. The aim of this study was to identify bacterial strains that reduce adhesion of periodontopathogens to surfaces. METHODS Streptococcus sanguinis, Streptococcus crista, Streptococcus salivarius, Streptococcus mitis, Actinomyces naeslundii, and Haemophilus parainfluenzae were evaluated as potential antagonists against P. gingivalis ATCC 33277, P. intermedia ATCC 49046, and A. actinomycetemcomitans ATCC 43718 as periodontopathogens. Adhesion of periodontopathogens to the bottom plate of a parallel plate flow chamber was studied in the absence (control) and the presence of pre-adhering antagonistic strains up to a surface coverage of 5%. RESULTS The largest reduction caused by antagonistic strains was observed for P. gingivalis. All antagonistic strains except S. crista ATCC 49999 inhibited the adhesion of P. gingivalis by at least 1.6 cells per adhering antagonist, with the largest significant reduction observed for A. naeslundii ATCC 51655 (3.8 cells per adhering antagonist). Adhering antagonists had a minimal effect on the adhesion of A. actinomycetemcomitans ATCC 43718. Intermediate but significant reductions were perceived for P. intermedia, most notably caused by S. mitis BMS. CONCLUSION The adhesion of P. gingivalis was inhibited best by antagonistic strains, while S. mitis BMS appeared to be the most successful antagonist.
Collapse
Affiliation(s)
- C G Van Hoogmoed
- Department of Biomedical Engineering, University Medical Center Groningen, and University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
Saito Y, Fujii R, Nakagawa KI, Kuramitsu HK, Okuda K, Ishihara K. Stimulation of Fusobacterium nucleatum biofilm formation by Porphyromonas gingivalis. ACTA ACUST UNITED AC 2008; 23:1-6. [PMID: 18173791 DOI: 10.1111/j.1399-302x.2007.00380.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND/AIMS Bacterial infection is a major cause of periapical periodontitis. Eradication of these microorganisms from apical lesions is essential to the success of endodontic treatment. The aim of this study was to clarify the molecular interaction between Fusobacterium nucleatum, Porphyromonas gingivalis and other microorganisms associated with periapical periodontitis. METHODS Microorganisms isolated from periapical lesions were inoculated into type-I collagen-coated polystyrene microtiter plates and maintained at 37 degrees C under anaerobic conditions for 2 days, after which, the quantity of organized biofilm on the plates was evaluated by crystal violet staining. Growth enhancement via soluble factor was evaluated by separated coculture using a 0.4-mum membrane filter. RESULTS F. nucleatum exhibited strong adherence to type-I collagen-coated polystyrene microplates. Biofilm formation by F. nucleatum was significantly enhanced by P. gingivalis. It was complemented by compartmentalized coculture with P. gingivalis. Enhancement of biofilm formation by P. gingivalis was only slightly reduced by inactivation of its autoinducer-2-producing gene luxS. CONCLUSION The results suggest that P. gingivalis enhances biofilm formation by F. nucleatum by releasing diffusible signaling molecules other than autoinducer-2.
Collapse
Affiliation(s)
- Y Saito
- Department of Endodontics, Pulp and Periapical Biology, Tokyo Dental College, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 2007; 71:653-70. [PMID: 18063722 PMCID: PMC2168648 DOI: 10.1128/mmbr.00024-07] [Citation(s) in RCA: 386] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
While reductionism has greatly advanced microbiology in the past 400 years, assembly of smaller pieces just could not explain the whole! Modern microbiologists are learning "system thinking" and "holism." Such an approach is changing our understanding of microbial physiology and our ability to diagnose/treat microbial infections. This review uses oral microbial communities as a focal point to describe this new trend. With the common name "dental plaque," oral microbial communities are some of the most complex microbial floras in the human body, consisting of more than 700 different bacterial species. For a very long time, oral microbiologists endeavored to use reductionism to identify the key genes or key pathogens responsible for oral microbial pathogenesis. The limitations of reductionism forced scientists to begin adopting new strategies using emerging concepts such as interspecies interaction, microbial community, biofilms, polymicrobial disease, etc. These new research directions indicate that the whole is much more than the simple sum of its parts, since the interactions between different parts resulted in many new physiological functions which cannot be observed with individual components. This review describes some of these interesting interspecies-interaction scenarios.
Collapse
Affiliation(s)
- Howard K Kuramitsu
- Department of Oral Boiology, School of Dental Medicine, State University of New York, Buffalo, New York, USA
| | | | | | | | | |
Collapse
|
14
|
Senpuku H, Tada A, Nakao R, Yonezawa H, Yoneda S, Yoshihara A, Miyazaki H. Relationships of anti-PAc (361-386) peptide salivary IgA antibody, eosinophils and basophils with periodontal status in the elderly. ACTA ACUST UNITED AC 2007; 49:84-90. [PMID: 17266714 DOI: 10.1111/j.1574-695x.2006.00193.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The amino acid residues 361-386 of Streptococcus mutans PAc includes an important region associated with the interaction between S. mutans and salivary components. We investigated the relationships between levels of the anti-PAc (361-386) peptide antibody (PPA) in saliva and periodontal status in 281 elderly subjects (mean age 77 years; 118 females, 163 males) by assessing dental calculus (CA), attachment loss (AL), pocket depth (PD), bleeding on probing (BOP) and various blood parameters. Enzyme-linked immunosorbent assay results revealed that subjects with a PPA level of greater than 0.1 (PPA detected group) showed a lower average value for number of sites with more than 6 mm of AL/6 points x 100/tooth (rAL6) than those with a PPA level of less than 0.1 (PPA not detected group). Furthermore, average values for rAL6 were significantly lower in the PPA detected group, and BOP, AL and rAL6 correlated positively and significantly with the percentage of eosinophils present in leukocytes in female subjects in both groups. PPA level had a negative correlation with percentages of basophils and eosinophils. The results indicate that systemic increases in numbers of eosinophils and basophils are associated with the development of periodontal diseases, while PPA level may be a useful indicator of periodontal status.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Nobbs AH, Zhang Y, Khammanivong A, Herzberg MC. Streptococcus gordonii Hsa environmentally constrains competitive binding by Streptococcus sanguinis to saliva-coated hydroxyapatite. J Bacteriol 2007; 189:3106-14. [PMID: 17277052 PMCID: PMC1855861 DOI: 10.1128/jb.01535-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Competition between pioneer colonizing bacteria may determine polymicrobial succession during dental plaque development, but the ecological constraints are poorly understood. For example, more Streptococcus sanguinis than Streptococcus gordonii organisms are consistently isolated from the same intraoral sites, yet S. gordonii fails to be excluded and survives as a species over time. To explain this observation, we hypothesized that S. gordonii could compete with S. sanguinis to adhere to saliva-coated hydroxyapatite (sHA), an in vitro model of the tooth surface. Both species bound similarly to sHA, yet 10- to 50-fold excess S. gordonii DL1 reduced binding of S. sanguinis SK36 by 85 to >95%. S. sanguinis, by contrast, did not significantly compete with S. gordonii to adhere. S. gordonii competed with S. sanguinis more effectively than other species of oral streptococci and depended upon the salivary film on HA. Next, putative S. gordonii adhesins were analyzed for contributions to interspecies competitive binding. Like wild-type S. gordonii, isogenic mutants with mutations in antigen I/II polypeptides (sspAB), amylase-binding proteins (abpAB), and Csh adhesins (cshAB) competed effectively against S. sanguinis. By contrast, an hsa-deficient mutant of S. gordonii showed significantly reduced binding and competitive capabilities, while these properties were restored in an hsa-complemented strain. Thus, Hsa confers a selective advantage to S. gordonii over S. sanguinis in competitive binding to sHA. Hsa expression may, therefore, serve as an environmental constraint against S. sanguinis, enabling S. gordonii to persist within the oral cavity, despite the greater natural prevalence of S. sanguinis in plaque and saliva.
Collapse
Affiliation(s)
- Angela H Nobbs
- Department of Diagnostic and Biological Sciences, University of Minnesota, 17-164 Moos Tower, 515 Delaware Street, S.E., Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
16
|
Pangsomboon K, Kaewnopparat S, Pitakpornpreecha T, Srichana T. Antibacterial activity of a bacteriocin from Lactobacillus paracasei HL32 against Porphyromonas gingivalis. Arch Oral Biol 2006; 51:784-93. [PMID: 16870131 DOI: 10.1016/j.archoralbio.2006.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/29/2005] [Accepted: 03/08/2006] [Indexed: 11/20/2022]
Abstract
Porphyromonas gingivalis infections cause problems in periodontal diseases and in certain systemic diseases. There is evidence that Lactobacillus spp. can control populations of P. gingivalis, but there are few data on the effects of purified bacteriocins from Lactobacillus paracasei HL32 on P. gingivalis. The objective of this study was to examine the antibacterial activity of a bacteriocin from L. paracasei HL32 and to relate this activity to its composition. A bacteriocin was purified from culture supernatants of Lactobacillus spp. using a dialysis technique followed by gel-permeation chromatography. Composition of the bacteriocin was characterised by ninhydrin tests, ultraviolet spectrophotometry, thin-layer chromatography, sodium-dodecyl sulphate-polyacrylamide gel electrophoresis, electrospray ionisation mass spectrometry and amino acid analysis. The amino acid sequence from the N-terminal of the bacteriocin was determined. Antibacterial activity was examined by the cylinder plate method, microtitre assay and scanning electron microscopy as compared with standard antibiotics. The bacteriocin had a molecular weight of approximately 56kDa, was comprised of 68% carbohydrate and 32% protein, and showed maximum peak absorbance at 214 and 254nm. The bacteriocin was found to be effective against P. gingivalis; it caused swelling and pore formation on the cell envelope at a minimum bactericidal concentration of 0.14mM, and caused death within 2h. Metronidazole killed P. gingivalis but did not affect the envelope, whereas tetracycline affected P. gingivalis with cell deformation. In conclusion, the bacteriocin from L. paracasei HL32 had the ability to kill P. gingivalis, suggesting that it could be a promising alternative chemotherapeutic agent for P. gingivalis infections.
Collapse
|
17
|
Matsuoka T, Sugano N, Takigawa S, Takane M, Yoshinuma N, Ito K, Koga Y. Effect of Oral Lactobacillus salivarius TI2711 (LS1)Administration on Periodontopathic Bacteria in Subgingival Plaque. ACTA ACUST UNITED AC 2006. [DOI: 10.2329/perio.48.315] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Takashi Matsuoka
- Frente International Co., Ltd
- Laboratory for Infectious Diseases, Tokai University School of Medicine
| | - Naoyuki Sugano
- Department of Periodontology, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | | | - Masatoshi Takane
- Department of Periodontology, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Naoto Yoshinuma
- Department of Periodontology, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Koichi Ito
- Department of Periodontology, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Yasuhiro Koga
- Laboratory for Infectious Diseases, Tokai University School of Medicine
| |
Collapse
|
18
|
Quirynen M, Teughels W, De Soete M, van Steenberghe D. Topical antiseptics and antibiotics in the initial therapy of chronic adult periodontitis: microbiological aspects. Periodontol 2000 2002; 28:72-90. [PMID: 12013349 DOI: 10.1034/j.1600-0757.2002.280104.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marc Quirynen
- Department of Periodontology, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Catholic University Leuven, Belgium
| | | | | | | |
Collapse
|
19
|
Sela MN. Role of Treponema denticola in periodontal diseases. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:399-413. [PMID: 12002822 DOI: 10.1177/10454411010120050301] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Among periodontal anaerobic pathogens, the oral spirochetes, and especially Treponema denticola, have been associated with periodontal diseases such as early-onset periodontitis, necrotizing ulcerative gingivitis, and acute pericoronitis. Basic research as well as clinical evidence suggest that the prevalence of T denticola, together with other proteolytic gram-negative bacteria in high numbers in periodontal pockets, may play an important role in the progression of periodontal disease. The accumulation of these bacteria and their products in the pocket may render the surface lining periodontal cells highly susceptible to lysis and damage. T. denticola has been shown to adhere to fibroblasts and epithelial cells, as well as to extracellular matrix components present in periodontal tissues, and to produce several deleterious factors that may contribute to the virulence of the bacteria. These bacterial components include outer-sheath-associated peptidases, chymotrypsin-like and trypsin-like proteinases, hemolytic and hemagglutinating activities, adhesins that bind to matrix proteins and cells, and an outer-sheath protein with pore-forming properties. The effects of T. denticola whole cells and their products on a variety of host mucosal and immunological cells has been studied extensively (Fig. 1). The clinical data regarding the presence of T. denticola in periodontal health and disease, together with the basic research results involving the role of T. denticola factors and products in relation to periodontal diseases, are reviewed and discussed in this article.
Collapse
Affiliation(s)
- M N Sela
- Deportment of Oral Biology, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
20
|
Quirynen M, De Soete M, Dierickx K, van Steenberghe D. The intra-oral translocation of periodontopathogens jeopardises the outcome of periodontal therapy. J Clin Periodontol 2002; 28:499-507. [PMID: 11350516 DOI: 10.1034/j.1600-051x.2001.028006499.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Although periodontitis has a multi-factorial aetiology, the success of its therapy mainly focuses on the eradication/reduction of the exogenous/endogenous periodontopathogens. Most of the species colonise several niches within the oral cavity (e.g. the mucosae, the tongue, the saliva, the periodontal pockets and all intra-oral hard surfaces) and even in the oro-pharyngeal area (e.g., the sinus and the tonsils). METHODS This review article discusses the intra-oral transmission of periodontopathogens between these niches and analyses clinical studies that support the idea and importance of such an intra-oral translocation. RESULTS AND CONCLUSIONS Based on the literature, the oro-pharyngeal area should indeed be considered as a microbiological entity. Because untreated pockets jeopardise the healing of recently instrumented sites, the treatment of periodontitis should involve "a one stage approach" of all pathologic pockets (1-stage full-mouth disinfection) or should at least consider the use of antiseptics during the intervals between consecutive instrumentations, in order to prevent a microbial translocation of periodontopathogens during the healing period. For the same reason, regeneration procedures or the local application of antibiotics should be postponed until a maximal improvement has been obtained in the remaining dentition. This more global approach offers significant additional clinical and microbiological benefits.
Collapse
Affiliation(s)
- M Quirynen
- Catholic University of Leuven, Faculty of Medicine, Department of Periodontology, School of Dentistry, Oral Pathology & Maxillofacial Surgery, Belgium.
| | | | | | | |
Collapse
|
21
|
Langendijk-Genevaux PS, Grimm WD, van der Hoeven JS. Sulfate-reducing bacteria in relation with other potential periodontal pathogens. J Clin Periodontol 2001; 28:1151-7. [PMID: 11737513 DOI: 10.1034/j.1600-051x.2001.281210.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND, AIMS Oral sulfate-reducing bacteria are involved in several clinical categories of periodontitis. The aim of this cross-sectional study was to compare the presence of sulfate-reducing bacteria (SRB) with other putative pathogens including spirochetes, Actinobacillus actinomycetemcomitans, Bacteroides forsythus, Porphyromonas gingivalis, and Treponema denticola in periodontal lesions. METHOD Periodontal SRB were detected by enrichment culture and compared with a microscopic spirochete count (n=168). Species-specific oligonucleotide probes directed against the 16S rRNA were employed to determine the presence of A. actinomycetemcomitans, P. gingivalis, B. forsythus, and T. denticola (n=55). RESULTS A significant positive correlation was observed between the presence of SRB and the proportions of spirochetes in subgingival plaque, although the 2 bacterial groups also occurred separately. SRB tended to be negatively correlated with the presence of A. actinomycetemcomitans. In contrast, all pockets with SRB harbored either T. denticola, or both T. denticola and B. forsythus (12/14) before therapy. Interestingly, the combination of SRB with P. gingivalis occurred in 32% of the periodontal pockets before treatment. After initial periodontal therapy, the prevalence of this combination was reduced to 2% of the sites, and to 25% of the sites in recall patients. CONCLUSION The presence of SRB was positively correlated with T. denticola, B. forsythus, and P. gingivalis in periodontal lesions. These suspected pathogens form a complex strongly associated with destructive periodontitis.
Collapse
|
22
|
|
23
|
Labbé S, Leke N, Marcotte C, Vayssier C, Duchesne P, Mayrand D, Grenier D. Interactions bactériennes: rôle déterminant lors des maladies parodontales. Med Mal Infect 1998. [DOI: 10.1016/s0399-077x(98)80002-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Abstract
It has been recognized for some time that bacterial species exist in complexes in subgingival plaque. The purpose of the present investigation was to attempt to define such communities using data from large numbers of plaque samples and different clustering and ordination techniques. Subgingival plaque samples were taken from the mesial aspect of each tooth in 185 subjects (mean age 51 +/- 16 years) with (n = 160) or without (n = 25) periodontitis. The presence and levels of 40 subgingival taxa were determined in 13,261 plaque samples using whole genomic DNA probes and checkerboard DNA-DNA hybridization. Clinical assessments were made at 6 sites per tooth at each visit. Similarities between pairs of species were computed using phi coefficients and species clustered using an averaged unweighted linkage sort. Community ordination was performed using principal components analysis and correspondence analysis. 5 major complexes were consistently observed using any of the analytical methods. One complex consisted of the tightly related group: Bacteroides forsythus, Porphyromonas gingivalis and Treponema denticola. The 2nd complex consisted of a tightly related core group including members of the Fusobacterium nucleatum/periodonticum subspecies, Prevotella intermedia, Prevotella nigrescens and Peptostreptococcus micros. Species associated with this group included: Eubacterium nodatum, Campylobacter rectus, Campylobacter showae, Streptococcus constellatus and Campylobacter gracilis. The 3rd complex consisted of Streptococcus sanguis, S. oralis, S. mitis, S. gordonii and S. intermedius. The 4th complex was comprised of 3 Capnocytophaga species, Campylobacter concisus, Eikenella corrodens and Actinobacillus actinomycetemcomitans serotype a. The 5th complex consisted of Veillonella parvula and Actinomyces odontolyticus. A. actinomycetemcomitans serotype b, Selenomonas noxia and Actinomyces naeslundii genospecies 2 (A. viscosus) were outliers with little relation to each other and the 5 major complexes. The 1st complex related strikingly to clinical measures of periodontal disease particularly pocket depth and bleeding on probing.
Collapse
Affiliation(s)
- S S Socransky
- Department of Periodontology, Forsyth Dental Center, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
25
|
Ishihara K, Miura T, Kimizuka R, Ebihara Y, Mizuno Y, Okuda K. Oral bacteria inhibit Helicobacter pylori growth. FEMS Microbiol Lett 1997; 152:355-61. [PMID: 9231428 DOI: 10.1111/j.1574-6968.1997.tb10452.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Various oral bacterial species were found to inhibit the growth of Helicobacter pylori strains. The growth inhibitory activities of most of these oral bacteria were adversely affected by heating at 80 degrees C for 60 min or by protease treatment, indicating that these bacteria produce bacteriocin-like inhibitory proteins against H. pylori strains. The antagonistic effects of oral bacteria against H. pylori may restrain colonization by this organism in the oral cavity.
Collapse
Affiliation(s)
- K Ishihara
- Department of Microbiology, Tokyo Dental College, Chiba, Japan
| | | | | | | | | | | |
Collapse
|