1
|
Almeida SMD, Malaspina AC, Leite CQF, Saad MHF. Usefulness of 3'- 5' IS6110-RFLP genotyping and spoligotyping of Mycobacterium tuberculosis isolated in a tertiary hospital: a retrospective study detecting unsuspected epidemiological events. Rev Inst Med Trop Sao Paulo 2019; 61:e51. [PMID: 31531629 PMCID: PMC6746203 DOI: 10.1590/s1678-9946201961051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/18/2019] [Indexed: 11/22/2022] Open
Abstract
A drug resistance survey involving Mycobacterium tuberculosis isolated from patients of a tertiary Hospital in the Rio de Janeiro city (RJ), Brazil, between the years 1996 and 1998 revealed a high frequency of isoniazid (HR) resistance. These isolates were revisited and genotyped. Patients came from different RJ neighborhoods and municipalities, and 70% were outpatients. Applying the 3’ and 5’ IS 6110 -RFLP and the Spoligotype genotyping methods, the clonal structure of this population was investigated obtaining a snapshot of past epidemiological events. The 3’ clusters were subsequently 5’ IS 6110 -RFLP typed. Spoligotyping was analyzed in the SITVIT2 database. Epidemiological relationships were investigated. The major lineage was T (54.4%), and SIT 53/T1 and SIT 535/T1 were the most frequent. The T1 sublineage comprises 12.8% of resistant strains and SIT 535 were assigned for 31.8% of them. Orphan patterns corresponded to 12% and 73.3% and belonged to the T lineage. One pattern was unlisted in the SITVIT2. The 5’ IS 6110 -RFLP did not confirm 3/12 of the 3’ IS 6110 -RFLP clusters. A combination of all methods decreased the number of clusters to three. Nosocomial transmission was associated with one cluster involving a hospital cupbearer. This event was suspected in a multidrug resistant-TB inpatient caregiver who harbored a mixed infection. The 3’ IS 6110 clusters were associated with HR (p=0.046). These genotypic retrospective data may reflect a fraction of more extensive recent transmission in different communities that may be corroborated by the concentration of HR patients, and may serve as a database for further evolutionary and characterization evaluation of circulating strains and together with epidemiological data favors a more effective transmission control.
Collapse
Affiliation(s)
- Silvia Maria de Almeida
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Microbiologia Celular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Malaspina
- Universidade Federal de São Paulo, Instituto de Ciências Farmacêuticas, São Paulo, São Paulo, Brazil
| | | | - Maria Helena Féres Saad
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Microbiologia Celular, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Dekhil N, Skhairia MA, Mhenni B, Ben Fradj S, Warren R, Mardassi H. Automated IS6110-based fingerprinting of Mycobacterium tuberculosis: Reaching unprecedented discriminatory power and versatility. PLoS One 2018; 13:e0197913. [PMID: 29856789 PMCID: PMC5983439 DOI: 10.1371/journal.pone.0197913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/10/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several technical hurdles and limitations have restricted the use of IS6110 restriction fragment length polymorphism (IS6110 RFLP), the most effective typing method for detecting recent tuberculosis (TB) transmission events. This has prompted us to conceive an alternative modality, IS6110-5'3'FP, a plasmid-based cloning approach coupled to a single PCR amplification of differentially labeled 5' and 3' IS6110 polymorphic ends and their automated fractionation on a capillary sequencer. The potential of IS6110-5'3'FP to be used as an alternative to IS6110 RFLP has been previously demonstrated, yet further technical improvements are still required for optimal discriminatory power and versatility. OBJECTIVES Here we introduced critical amendments to the original IS6110-5'3'FP protocol and compared its performance to that of 24-loci multiple interspersed repetitive unit-variable number tandem repeats (MIRU-VNTR), the current standard method for TB transmission analyses. METHODS IS6110-5'3'FP protocol modifications involved: (i) the generation of smaller-sized polymorphic fragments for efficient cloning and PCR amplification, (ii) omission of the plasmid amplification step in E. coli for shorter turnaround times, (iii) the use of more stable fluorophores for increased sensitivity, (iv) automated subtraction of background fluorescent signals, and (v) the automated conversion of fluorescent peaks into binary data. RESULTS In doing so, the overall turnaround time of IS6110-5'3'FP was reduced to 4 hours. The new protocol allowed detecting almost all 5' and 3' IS6110 polymorphic fragments of any given strain, including IS6110 high-copy number Beijing strains. IS6110-5'3'FP proved much more discriminative than 24-loci MIRU-VNTR, particularly with strains of the M. tuberculosis lineage 4. CONCLUSIONS The IS6110-5'3'FP protocol described herein reached the optimal discriminatory potential of IS6110 fingerprinting and proved more accurate than 24-loci MIRU-VNTR in estimating recent TB transmission. The method, which is highly cost-effective, was rendered versatile enough to prompt its evaluation as an automatized solution for a TB integrated molecular surveillance.
Collapse
Affiliation(s)
- Naira Dekhil
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mohamed Amine Skhairia
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Besma Mhenni
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Saloua Ben Fradj
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Rob Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helmi Mardassi
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
3
|
Feyisa SG, Haeili M, Zahednamazi F, Mosavari N, Taheri MM, Hamzehloo G, Zamani S, Feizabadi MM. Molecular characterization of Mycobacterium tuberculosis isolates from Tehran, Iran by restriction fragment length polymorphism analysis and spoligotyping. Rev Soc Bras Med Trop 2016; 49:204-10. [PMID: 27192590 DOI: 10.1590/0037-8682-0405-2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/14/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Characterization of Mycobacterium tuberculosis (MTB) isolates by DNA fingerprinting has contributed to tuberculosis (TB) control. The aim of this study was to determine the genetic diversity of MTB isolates from Tehran province in Iran. METHODS MTB isolates from 60 Iranian and 10 Afghan TB patients were fingerprinted by standard IS6110-restriction fragment length polymorphism (RFLP) analysis and spoligotyping. RESULTS The copy number of IS6110 ranged from 10-24 per isolate. The isolates were classified into 22 clusters showing ≥ 80% similarity by RFLP analysis. Fourteen multidrug-resistant (MDR) isolates were grouped into 4 IS6110-RFLP clusters, with 10 isolates [71% (95% CI: 45-89%)] in 1 cluster, suggesting a possible epidemiological linkage. Eighteen Iranian isolates showed ≥ 80% similarity with Afghan isolates. There were no strains with identical fingerprints. Spoligotyping of 70 isolates produced 23 distinct patterns. Sixty (85.7%) isolates were grouped into 13 clusters, while the remaining 10 isolates (14.2%) were not clustered. Ural (formerly Haarlem4) (n = 22, 31.4%) was the most common family followed by Central Asian strain (CAS) (n = 18, 25.7%) and T (n = 9, 12.8%) families. Only 1strain was characterized as having the Beijing genotype. Among 60 Iranian and 10 Afghan MTB isolates, 25% (95% CI: 16-37) and 70% (95% CI: 39-89) were categorized as Ural lineage, respectively. CONCLUSIONS A higher prevalence of Ural family MTB isolates among Afghan patients than among Iranian patients suggests the possible transmission of this lineage following the immigration of Afghans to Iran.
Collapse
Affiliation(s)
- Seifu Gizaw Feyisa
- International Campus (TUMS-IC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Haeili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Fatemeh Zahednamazi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Mosavari
- Department of Tuberculosis, Razi Vaccine & Serum Research Institute, Hessarak, Karaj, Iran
| | | | | | - Samin Zamani
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Transposition mechanism, molecular characterization and evolution of IS6110, the specific evolutionary marker of Mycobacterium tuberculosis complex. Mol Biol Rep 2016; 44:25-34. [DOI: 10.1007/s11033-016-4084-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022]
|
5
|
Thabet S, Karboul A, Dekhil N, Mardassi H. IS6110-5'3'FP: an automated typing approach for Mycobacterium tuberculosis complex strains simultaneously targeting and resolving IS6110 5' and 3' polymorphisms. Int J Infect Dis 2014; 29:211-8. [PMID: 25447727 DOI: 10.1016/j.ijid.2014.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/18/2014] [Accepted: 10/18/2014] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Fingerprinting of Mycobacterium tuberculosis complex strains based on the IS6110 insertion sequence would considerably gain in terms of discriminatory power and versatility if both 5' and 3' polymorphisms were simultaneously targeted, and if it benefited from automated capillary electrophoresis. In response to these requirements, we developed IS6110-5'3'FP (IS6110 5' and 3' fluorescent polymorphisms). METHODS IS6110-5'3'FP involves the construction of an M. tuberculosis genomic library in a plasmid vector using HincII endonuclease, which cuts within the IS6110 sequence. After amplification in Escherichia coli, the library is subjected to selective and simultaneous PCR amplification of IS6110 5' and 3' polymorphic fragments, using differentially labeled fluorescent primers. The resulting amplicons are then fractionated on a capillary sequencer and the signal peaks analyzed as digital data. RESULTS IS6110-5'3'FP consistently detected and resolved both 5' and 3' IS6110 polymorphic fragments (35% and 65%, respectively) with a high level of reproducibility. The method differentiated all M. tuberculosis strains, as did IS6110 restriction fragment length polymorphism (RFLP), the gold standard of IS6110-based typing. Strikingly, the potential of IS6110-5'3'FP to resolve more polymorphic fragments than IS6110 RFLP was demonstrated. CONCLUSIONS IS6110-5'3'FP demonstrated sufficient potential to be a promising automated alternative to IS6110 RFLP, amenable to high throughput analysis and inter-laboratory comparison.
Collapse
Affiliation(s)
- Sara Thabet
- Unit of Typing and Genetics of Mycobacteria, LR11IPT01 Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP 74, 1002, Tunis-Belvédère, Tunis, Tunisia
| | - Anis Karboul
- Unit of Typing and Genetics of Mycobacteria, LR11IPT01 Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP 74, 1002, Tunis-Belvédère, Tunis, Tunisia
| | - Neira Dekhil
- Unit of Typing and Genetics of Mycobacteria, LR11IPT01 Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP 74, 1002, Tunis-Belvédère, Tunis, Tunisia
| | - Helmi Mardassi
- Unit of Typing and Genetics of Mycobacteria, LR11IPT01 Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP 74, 1002, Tunis-Belvédère, Tunis, Tunisia.
| |
Collapse
|
6
|
Kato-Maeda M, Metcalfe JZ, Flores L. Genotyping of Mycobacterium tuberculosis: application in epidemiologic studies. Future Microbiol 2011; 6:203-16. [PMID: 21366420 DOI: 10.2217/fmb.10.165] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genotyping is used to track specific isolates of Mycobacterium tuberculosis in a community. It has been successfully used in epidemiologic research (termed 'molecular epidemiology') to study the transmission dynamics of TB. In this article, we review the genetic markers used in molecular epidemiologic studies including the use of whole-genome sequencing technology. We also review the public health application of molecular epidemiologic tools.
Collapse
Affiliation(s)
- Midori Kato-Maeda
- University of California, San Francisco, Francis J Curry National Tuberculosis Center, Division of Pulmonary & Critical Care Medicine, San Francisco General Hospital, 1001 Potrero Avenue, Building 100, Room 109, Mail box 0841, San Francisco, CA 94110-0111, USA
| | | | | |
Collapse
|
7
|
Portugal I, Barreiro L, Vultos T, Macedo R, Furtado C, Antunes AF, Brum L. Epidemiologia molecular de Mycobacterium tuberculosis em Lisboa. REVISTA PORTUGUESA DE PNEUMOLOGIA 2008; 14:239-59. [DOI: 10.1016/s0873-2159(15)30233-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Oelemann MC, Fontes ANB, Pereira MADS, Bravin Y, Silva G, Degrave W, Carvalho ACC, Brito RC, Kritski AL, Suffys PN. Typing of Mycobacterium tuberculosis strains isolated in Community Health Centers of Rio de Janeiro City, Brazil. Mem Inst Oswaldo Cruz 2008; 102:455-62. [PMID: 17612765 DOI: 10.1590/s0074-02762007005000034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 03/12/2007] [Indexed: 11/21/2022] Open
Abstract
Fingerprinting of Mycobacterium tuberculosis strains from tuberculosis (TB) patients attended in Community Health Centers (CHCs) of Rio de Janeiro was performed to verify possible risk factors for TB transmission. A prospective community-based study was performed during the period of July 1996 to December 1996 by collecting sputum samples of 489 patients in 11 different CHCs in four different planning areas (APs) of the city. Bacteriological, clinical, and epidemiological information was collected and M. tuberculosis genotypes defined after restriction fragment length polymorphism (IS6110-RFLP) and double repetitive element (DRE) fingerprinting of RFLP-clustered cases. Risk factors for TB transmission were looked for using three levels of cluster stringency. Among 349 (71%) positive cultures obtained, IS6110-RFLP typing could be performed on strains from 153 different patients. When using identity of RFLP patterns as cluster definition, 49 (32%) of the strains belonged to a cluster and none of the clinical or epidemiologic characteristics was associated with higher clustering levels. However, higher clustering level was observed in the AP including the central region of the city when compared to others. This strongly suggests that more recent transmission occurs in that area and this may be related with higher incidence of TB and HIV in this region.
Collapse
Affiliation(s)
- Maraníbia C Oelemann
- Departamento de Micobacterioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, 21045-900, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN. Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev 2006; 19:658-85. [PMID: 17041139 PMCID: PMC1592690 DOI: 10.1128/cmr.00061-05] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular epidemiologic studies of tuberculosis (TB) have focused largely on utilizing molecular techniques to address short- and long-term epidemiologic questions, such as in outbreak investigations and in assessing the global dissemination of strains, respectively. This is done primarily by examining the extent of genetic diversity of clinical strains of Mycobacterium tuberculosis. When molecular methods are used in conjunction with classical epidemiology, their utility for TB control has been realized. For instance, molecular epidemiologic studies have added much-needed accuracy and precision in describing transmission dynamics, and they have facilitated investigation of previously unresolved issues, such as estimates of recent-versus-reactive disease and the extent of exogenous reinfection. In addition, there is mounting evidence to suggest that specific strains of M. tuberculosis belonging to discrete phylogenetic clusters (lineages) may differ in virulence, pathogenesis, and epidemiologic characteristics, all of which may significantly impact TB control and vaccine development strategies. Here, we review the current methods, concepts, and applications of molecular approaches used to better understand the epidemiology of TB.
Collapse
Affiliation(s)
- Barun Mathema
- Tuberculosis Center, Public Health Research Institute, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
10
|
Sun YJ, Lee ASG, Ng ST, Ravindran S, Kremer K, Bellamy R, Wong SY, van Soolingen D, Supply P, Paton NI. Characterization of ancestral Mycobacterium tuberculosis by multiple genetic markers and proposal of genotyping strategy. J Clin Microbiol 2005; 42:5058-64. [PMID: 15528696 PMCID: PMC525198 DOI: 10.1128/jcm.42.11.5058-5064.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sixty-eight ancestral Mycobacterium tuberculosis isolates were previously identified by using the tuberculosis-specific deletion 1 (TbD1) PCR and mycobacterial interspersed-repetitive-unit-variable-number tandem repeat (MIRU-VNTR) typing (Y. J. Sun, R. Bellamy, A. S. G. Lee, S. T. Ng, S. Ravindran, S.-Y. Wong, C. Locht, P. Supply, and N. I. Paton, J. Clin. Microbiol. 42:1986-1993, 2004). These TbD1(+) ancestral isolates were further characterized and typed in this study by IS6110 restriction fragment length polymorphism (RFLP) typing, VNTR typing using exact tandem repeats (VNTR-ETR), and spoligotyping of the direct-repeat region. To our knowledge, this is the first characterization of this genogroup by multiple genetic markers based on a fairly large sample size. In this genogroup, all spoligotypes were characterized by the absence of spacers 29 to 32 and 34. In addition, VNTR-ETR typing could add further resolution to the clustered isolates identified by MIRU-VNTR, and the combination of MIRU-VNTR and VNTR-ETR, called MIRU-ETR, showed the highest discriminatory power for these strains compared to IS6110 RFLP typing and spoligotyping alone. However, MIRU-ETR appeared to still cluster some probably epidemiologically unrelated strains, as judged by IS6110 RFLP divergence. Therefore, a typing strategy based on stepwise combination of MIRU-ETR and IS6110 RFLP is proposed to achieve maximal discrimination for unrelated TbD1(+) strains. This typing strategy may be useful in areas where TbD1(+) ancestral strains are prevalent.
Collapse
Affiliation(s)
- Yong-Jiang Sun
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore 308433.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nguyen D, Brassard P, Menzies D, Thibert L, Warren R, Mostowy S, Behr M. Genomic characterization of an endemic Mycobacterium tuberculosis strain: evolutionary and epidemiologic implications. J Clin Microbiol 2004; 42:2573-80. [PMID: 15184436 PMCID: PMC427889 DOI: 10.1128/jcm.42.6.2573-2580.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a study of 302 Mycobacterium tuberculosis clinical isolates from the low-incidence Canadian-born population of Quebec, we characterized a large endemic strain family by using genomic deletions. The DS6(Quebec) deleted region (11.4 kb) defined a strain family of 143 isolates encompassing two subgroups: one characterized by pyrazinamide (PZA) susceptibility and the other marked by a PZA-monoresistant phenotype. A second deletion (8 bp) in the pncA gene was shared by all 76 isolates with the PZA resistance phenotype, whereas a third DRv0961 deletion (970 bp) defined a further subset of 15 isolates. From their deletion profiles, we derived a most parsimonious evolutionary scenario and compared multiple standard genotyping modalities (using IS6110 restriction fragment length polymorphism [RFLP], spoligotyping, and mycobacterial interspersed repetitive units [MIRU]) across the deletion-based subgroups. The use of a single genotyping modality yielded an unexpectedly high proportion of clustered isolates for a high IS6110 copy strain (27% by IS6110 RFLP, 61% by MIRU, and 77% by spoligotyping). By combining all three modalities, only 14% were genotypically clustered overall, a result more congruent with the epidemiologic profile of reactivation tuberculosis, as suggested by the older age (mean age, 60 years), rural setting, and low proportion of epidemiologic links. These results provide insight into the evolution of genotypes in endemic strains and the potential for false clustering in molecular epidemiologic studies.
Collapse
Affiliation(s)
- Dao Nguyen
- Division of Infectious Diseases and Medical Microbiology, McGil University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Zolnir-Dovc M, Poljak M, Erzen D, Sorli J. Molecular epidemiology of tuberculosis in Slovenia: results of a one-year (2001) nation-wide study. ACTA ACUST UNITED AC 2004; 35:863-8. [PMID: 14723363 DOI: 10.1080/00365540310017221] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Slovenia is a small Central European country with a population of 1.99 million and an incidence of tuberculosis (TB) of 18.6 per 100,000 inhabitants in 2001. In a prospective nation-wide, 1-y DNA fingerprinting study, the genetic diversity of 99.7% of all Mycobacterium tuberculosis isolates obtained from Slovenian patients with culture-verified TB in 2001 were assessed using a standardized IS6110 restriction fragment length polymorphism (RFLP) method. Among 306 M. tuberculosis isolates, 228 different IS6110 RFLP patterns were found. The number of IS6110 copies varied from 2 to 16 (9.2 copies per isolate on average). Only 2 isolates (0.7%) with less than 5 IS6110 copies were identified. Clustered M. tuberculosis isolates were detected in 116 (37.9%) patients. The degree of recent transmission in the 1-y period was 25%. The clustering rate decreased with age from 46.4% (age group under 35 y) to 19.5% (age group above 65 y). A history of alcohol abuse and homelessness was found to be associated with clustering of TB cases. In conclusion, a high clustering frequency was identified among Slovenian TB patients. The study increased our understanding of important risk factors and routes of TB transmission in Slovenia.
Collapse
Affiliation(s)
- Manca Zolnir-Dovc
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | | | | | | |
Collapse
|