1
|
de Hoog S, Walsh TJ, Ahmed SA, Alastruey-Izquierdo A, Arendrup MC, Borman A, Chen S, Chowdhary A, Colgrove RC, Cornely OA, Denning DW, Dufresne PJ, Filkins L, Gangneux JP, Gené J, Groll AH, Guillot J, Haase G, Halliday C, Hawksworth DL, Hay R, Hoenigl M, Hubka V, Jagielski T, Kandemir H, Kidd SE, Kus JV, Kwon-Chung J, Lockhart SR, Meis JF, Mendoza L, Meyer W, Nguyen MH, Song Y, Sorrell TC, Stielow JB, Vilela R, Vitale RG, Wengenack NL, White PL, Ostrosky-Zeichner L, Zhang SX. Nomenclature for human and animal fungal pathogens and diseases: a proposal for standardized terminology. J Clin Microbiol 2024; 62:e0093724. [PMID: 39526838 PMCID: PMC11633119 DOI: 10.1128/jcm.00937-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Medically important pathogenic fungi invade vertebrate tissue and are considered primary when part of their nature life cycle is associated with an animal host and are usually able to infect immunocompetent hosts. Opportunistic fungal pathogens complete their life cycle in environmental habitats or occur as commensals within or on the vertebrate body, but under certain conditions can thrive upon infecting humans. The extent of host damage in opportunistic infections largely depends on the portal and modality of entry as well as on the host's immune and metabolic status. Diseases caused by primary pathogens and common opportunists, causing the top approximately 80% of fungal diseases [D. W. Denning, Lancet Infect Dis, 24:e428-e438, 2024, https://doi.org/10.1016/S1473-3099(23)00692-8], tend to follow a predictive pattern, while those by occasional opportunists are more variable. For this reason, it is recommended that diseases caused by primary pathogens and the common opportunists are named after the etiologic agent, for example, histoplasmosis and aspergillosis, while this should not be done for occasional opportunists that should be named as [causative fungus] [clinical syndrome], for example, Alternaria alternata cutaneous infection. The addition of a descriptor that identifies the location or clinical type of infection is required, as the general name alone may cover widely different clinical syndromes, for example, "rhinocerebral mucormycosis." A list of major recommended human and animal disease entities (nomenclature) is provided in alignment with their causative agents. Fungal disease names may encompass several genera of etiologic agents, consequently being less susceptible to taxonomic changes of the causative species, for example, mucormycosis covers numerous mucormycetous molds.
Collapse
Affiliation(s)
- Sybren de Hoog
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Foundation Atlas of Clinical Fungi, Hilversum, the Netherlands
| | - Thomas J. Walsh
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sarah A. Ahmed
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Foundation Atlas of Clinical Fungi, Hilversum, the Netherlands
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, Spanish National Centre for Microbiology, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Maiken Cavling Arendrup
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Andrew Borman
- National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead, Australia
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Robert C. Colgrove
- Division of Infectious Diseases, Mount Auburn Hospital, and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Oliver A. Cornely
- University of Cologne, Faculty of Medicine, Institute of Translational Research, Cologne, Germany
- Excellence Center for Medical Mycology, Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - David W. Denning
- Manchester Fungal Infection Group, Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Philippe J. Dufresne
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Laura Filkins
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jean-Pierre Gangneux
- Department of Mycology, Centre Hospitalier Universitaire de Rennes, Centre National de Référence Aspergilloses chroniques, ECMM Excellence Center in Mycology, Rennes, France
| | - Josepa Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciènces de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Andreas H. Groll
- Infectious Disease Research Program, Department of Pediatric Hematology and Oncology, University Children‘s Hospital Münster, Münster, Germany
| | - Jaques Guillot
- Oniris, VetAgroBio Nantes, IRF, SFR ICAT, Université d'Angers, Angers, France
| | - Gerhard Haase
- Laboratory Diagnostic Center, RWTH Aachen University Hospital, Aachen, Germany
| | - Catriona Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead, Australia
| | - David L. Hawksworth
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Natural History Museum, London, United Kingdom
- University of Southampton, Southampton, United Kingdom
- Jilin Agricultural University, Chanchung, China
| | - Roderick Hay
- St. John’s Institute of Dermatology, King’s College London, London, United Kingdom
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Unit, Medical University of Graz, Graz, Austria
| | - Vit Hubka
- Department of Botany, Charles University, Prague, Czechia
| | - Tomasz Jagielski
- Department of Medical Microbiology, University of Warsaw, Warsaw, Poland
| | - Hazal Kandemir
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Sarah E. Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences Engineering and Technology, University of Adelaide, Adelaide, Australia
| | - Julianne V. Kus
- Public Health Ontario Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - June Kwon-Chung
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Jacques F. Meis
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- University of Cologne, Faculty of Medicine, Institute of Translational Research, Cologne, Germany
- Excellence Center for Medical Mycology, Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Leonel Mendoza
- Microbiology and Molecular Genetics, Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan, USA
| | - Wieland Meyer
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - M. Hong Nguyen
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Tania C. Sorrell
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | | - Rachel Vilela
- Microbiology and Molecular Genetics, Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan, USA
| | - Roxana G. Vitale
- CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), Hospital JM Ramos Mejía, Buenos Aires, Argentina
| | - Nancy L. Wengenack
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - P. Lewis White
- Public Health Wales Microbiology, Cardiff, United Kingdom
| | - Luis Ostrosky-Zeichner
- McGovern Medical School, Division of Infectious Diseases, University of Texas Health Science Center, Houston, Texas, USA
| | - Sean X. Zhang
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - on behalf of the ISHAM/ECMM/FDLC Working Group Nomenclature of Clinical Fungi
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Foundation Atlas of Clinical Fungi, Hilversum, the Netherlands
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
- Mycology Reference Laboratory, Spanish National Centre for Microbiology, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
- National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
- Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead, Australia
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Division of Infectious Diseases, Mount Auburn Hospital, and Harvard Medical School, Cambridge, Massachusetts, USA
- University of Cologne, Faculty of Medicine, Institute of Translational Research, Cologne, Germany
- Excellence Center for Medical Mycology, Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Manchester Fungal Infection Group, Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Mycology, Centre Hospitalier Universitaire de Rennes, Centre National de Référence Aspergilloses chroniques, ECMM Excellence Center in Mycology, Rennes, France
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciènces de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Infectious Disease Research Program, Department of Pediatric Hematology and Oncology, University Children‘s Hospital Münster, Münster, Germany
- Oniris, VetAgroBio Nantes, IRF, SFR ICAT, Université d'Angers, Angers, France
- Laboratory Diagnostic Center, RWTH Aachen University Hospital, Aachen, Germany
- Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead, Australia
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Natural History Museum, London, United Kingdom
- University of Southampton, Southampton, United Kingdom
- Jilin Agricultural University, Chanchung, China
- St. John’s Institute of Dermatology, King’s College London, London, United Kingdom
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Unit, Medical University of Graz, Graz, Austria
- Department of Botany, Charles University, Prague, Czechia
- Department of Medical Microbiology, University of Warsaw, Warsaw, Poland
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences Engineering and Technology, University of Adelaide, Adelaide, Australia
- Public Health Ontario Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics, Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan, USA
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Bioinformatics, Helmholtz Institute for One Health, Greifswald, Germany
- CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), Hospital JM Ramos Mejía, Buenos Aires, Argentina
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
- Public Health Wales Microbiology, Cardiff, United Kingdom
- McGovern Medical School, Division of Infectious Diseases, University of Texas Health Science Center, Houston, Texas, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Weissenbacher-Lang C, Grenl A, Blasi B. Meta-Analysis and Systematic Literature Review of the Genus Pneumocystis in Pet, Farm, Zoo, and Wild Mammal Species. J Fungi (Basel) 2023; 9:1081. [PMID: 37998885 PMCID: PMC10672670 DOI: 10.3390/jof9111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
A systematic literature search on Pneumocystis in 276 pet, farm, zoo, and wild mammal species resulted in 124 publications originating from 38 countries that were analyzed descriptively and statistically, for which inclusion and exclusion criteria were exactly defined. The range of recorded Pneumocystis prevalence was broad, yet in half of the citations a prevalence of ≤25% was documented. Prevalence was significantly dependent on the method used for Pneumocystis detection, with PCR revealing the highest percentages. Pet animals showed the lowest median Pneumocystis prevalence, followed by farm, wild, and zoo animals. In contrast, pet and farm animals showed higher proportions of high-grade infection levels compared to zoo and wild mammals. Only in individual cases, all of them associated with severe Pneumocystis pneumonia, was an underlying immunosuppression confirmed. Acquired immunosuppression caused by other diseases was frequently discussed, but its significance, especially in highly immunosuppressive cases, needs to be clarified. This meta-analysis supported a potential influence of the social and environmental factors of the host on Pneumocystis transmission in wildlife, which must be further elucidated, as well as the genetic diversity of the fungus.
Collapse
Affiliation(s)
- Christiane Weissenbacher-Lang
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (A.G.); (B.B.)
| | | | | |
Collapse
|
3
|
Riebold D, Mahnkopf M, Wicht K, Zubiria-Barrera C, Heise J, Frank M, Misch D, Bauer T, Stocker H, Slevogt H. Axenic Long-Term Cultivation of Pneumocystis jirovecii. J Fungi (Basel) 2023; 9:903. [PMID: 37755011 PMCID: PMC10533121 DOI: 10.3390/jof9090903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Pneumocystis jirovecii, a fungus causing severe Pneumocystis pneumonia (PCP) in humans, has long been described as non-culturable. Only isolated short-term experiments with P. jirovecii and a small number of experiments involving animal-derived Pneumocystis species have been published to date. However, P. jirovecii culture conditions may differ significantly from those of animal-derived Pneumocystis, as there are major genotypic and phenotypic differences between them. Establishing a well-performing P. jirovecii cultivation is crucial to understanding PCP and its pathophysiological processes. The aim of this study, therefore, was to develop an axenic culture for Pneumocystis jirovecii. To identify promising approaches for cultivation, a literature survey encompassing animal-derived Pneumocystis cultures was carried out. The variables identified, such as incubation time, pH value, vitamins, amino acids, and other components, were trialed and adjusted to find the optimum conditions for P. jirovecii culture. This allowed us to develop a medium that produced a 42.6-fold increase in P. jirovecii qPCR copy numbers after a 48-day culture. Growth was confirmed microscopically by the increasing number and size of actively growing Pneumocystis clusters in the final medium, DMEM-O3. P. jirovecii doubling time was 8.9 days (range 6.9 to 13.6 days). In conclusion, we successfully cultivated P. jirovecii under optimized cell-free conditions in a 70-day long-term culture for the first time. However, further optimization of the culture conditions for this slow grower is indispensable.
Collapse
Affiliation(s)
- Diana Riebold
- Research Centre of Medical Technology and Biotechnology (FZMB), 99947 Bad Langensalza, Germany; (M.M.); (J.H.)
| | - Marie Mahnkopf
- Research Centre of Medical Technology and Biotechnology (FZMB), 99947 Bad Langensalza, Germany; (M.M.); (J.H.)
| | - Kristina Wicht
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Gent, Belgium;
| | - Cristina Zubiria-Barrera
- Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (C.Z.-B.); (H.S.)
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, 30625 Hannover, Germany
| | - Jan Heise
- Research Centre of Medical Technology and Biotechnology (FZMB), 99947 Bad Langensalza, Germany; (M.M.); (J.H.)
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre (EMZ), University Medicine Rostock, 18057 Rostock, Germany;
| | - Daniel Misch
- Lungenklinik Heckeshorn, Helios Klinikum Emil-von-Behring, 14165 Berlin, Germany; (D.M.); (T.B.)
| | - Torsten Bauer
- Lungenklinik Heckeshorn, Helios Klinikum Emil-von-Behring, 14165 Berlin, Germany; (D.M.); (T.B.)
| | - Hartmut Stocker
- Clinic for Infectiology, St. Joseph’s Hospital Berlin, 12101 Berlin, Germany;
| | - Hortense Slevogt
- Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (C.Z.-B.); (H.S.)
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, 30625 Hannover, Germany
| |
Collapse
|
4
|
Detection of Pneumocystis and Morphological Description of Fungal Distribution and Severity of Infection in Thirty-Six Mammal Species. J Fungi (Basel) 2023; 9:jof9020220. [PMID: 36836334 PMCID: PMC9960768 DOI: 10.3390/jof9020220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Pneumocystis spp. are thought to adapt to the lungs of potentially all mammals. However, the full host range, fungal burden and severity of infection are unknown for many species. In this study, lung tissue samples originating from 845 animals of 31 different families of eight mammal orders were screened by in situ hybridization (ISH) using a universal 18S rRNA probe for Pneumocystis, followed by hematoxylin and eosin (H&E) staining for determining histopathological lesions. A total of 216 (26%) samples were positive for Pneumocystis spp., encompassing 36 of 98 investigated mammal species, with 17 of them being described for the first time for the presence of Pneumocystis spp. The prevalence of Pneumocystis spp. as assessed by ISH varied greatly among different mammal species while the organism load was overall low, suggesting a status of colonization or subclinical infection. Severe Pneumocystis pneumonia seemed to be very rare. For most of the Pneumocystis-positive samples, comparative microscopic examination of H&E- and ISH-stained serial sections revealed an association of the fungus with minor lesions, consistent with an interstitial pneumonia. Colonization or subclinical infection of Pneumocystis in the lung might be important in many mammal species because the animals may serve as a reservoir.
Collapse
|
5
|
Salazar-Hamm PS, Montoya KN, Montoya L, Cook K, Liphardt S, Taylor JW, Cook JA, Natvig DO. Breathing can be dangerous: Opportunistic fungal pathogens and the diverse community of the small mammal lung mycobiome. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:996574. [PMID: 37746221 PMCID: PMC10512277 DOI: 10.3389/ffunb.2022.996574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/24/2022] [Indexed: 09/26/2023]
Abstract
Human lung mycobiome studies typically sample bronchoalveolar lavage or sputum, potentially overlooking fungi embedded in tissues. Employing ultra-frozen lung tissues from biorepositories, we obtained fungal ribosomal RNA ITS2 sequences from 199 small mammals across 39 species. We documented diverse fungi, including common environmental fungi such as Penicillium and Aspergillus, associates of the human mycobiome such as Malassezia and Candida, and others specifically adapted for lungs (Coccidioides, Blastomyces, and Pneumocystis). Pneumocystis sequences were detected in 83% of the samples and generally exhibited phylogenetic congruence with hosts. Among sequences from diverse opportunistic pathogens in the Onygenales, species of Coccidioides occurred in 12% of samples and species of Blastomyces in 85% of samples. Coccidioides sequences occurred in 14 mammalian species. The presence of neither Coccidioides nor Aspergillus fumigatus correlated with substantial shifts in the overall mycobiome, although there was some indication that fungal communities might be influenced by high levels of A. fumigatus. Although members of the Onygenales were common in lung samples (92%), they are not common in environmental surveys. Our results indicate that Pneumocystis and certain Onygenales are common commensal members of the lung mycobiome. These results provide new insights into the biology of lung-inhabiting fungi and flag small mammals as potential reservoirs for emerging fungal pathogens.
Collapse
Affiliation(s)
| | - Kyana N. Montoya
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Liliam Montoya
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Kel Cook
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Schuyler Liphardt
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Joseph A. Cook
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, United States
| | - Donald O. Natvig
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
6
|
Babb-Biernacki SJ, Esselstyn JA, Doyle VP. Predicting Species Boundaries and Assessing Undescribed Diversity in Pneumocystis, an Obligate Lung Symbiont. J Fungi (Basel) 2022; 8:jof8080799. [PMID: 36012788 PMCID: PMC9409666 DOI: 10.3390/jof8080799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Far more biodiversity exists in Fungi than has been described, or could be described in several lifetimes, given current rates of species discovery. Although this problem is widespread taxonomically, our knowledge of animal-associated fungi is especially lacking. Fungi in the genus Pneumocystis are obligate inhabitants of mammal lungs, and they have been detected in a phylogenetically diverse array of species representing many major mammal lineages. The hypothesis that Pneumocystis cospeciate with their mammalian hosts suggests that thousands of Pneumocystis species may exist, potentially equal to the number of mammal species. However, only six species have been described, and the true correspondence of Pneumocystis diversity to host species boundaries is unclear. Here, we use molecular species delimitation to estimate the boundaries of Pneumocystis species sampled from 55 mammal species representing eight orders. Our results suggest that Pneumocystis species often colonize several closely related mammals, especially those in the same genus. Using the newly estimated ratio of fungal to host diversity, we estimate ≈4600 to 6250 Pneumocystis species inhabit the 6495 currently recognized extant mammal species. Additionally, we review the literature and find that only 240 (~3.7%) mammal species have been screened for Pneumocystis, and many detected Pneumocystis lineages are not represented by any genetic data. Although crude, our findings challenge the dominant perspective of strict specificity of Pneumocystis to their mammal hosts and highlight an abundance of undescribed diversity.
Collapse
Affiliation(s)
- Spenser J. Babb-Biernacki
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
- Correspondence:
| | - Jacob A. Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Vinson P. Doyle
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, LA 70809, USA;
| |
Collapse
|
7
|
Solórzano-García B, Vázquez-Domínguez E, Pérez-Ponce de León G, Piñero D. Co-structure analysis and genetic associations reveal insights into pinworms (Trypanoxyuris) and primates (Alouatta palliata) microevolutionary dynamics. BMC Ecol Evol 2021; 21:190. [PMID: 34670486 PMCID: PMC8527708 DOI: 10.1186/s12862-021-01924-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND In parasitism arm race processes and red queen dynamics between host and parasites reciprocally mold many aspects of their genetics and evolution. We performed a parallel assessment of population genetics and demography of two species of pinworms with different degrees of host specificity (Trypanoxyuris multilabiatus, species-specific; and T. minutus, genus-specific) and their host, the mantled howler monkey (Alouatta palliata), based on mitochondrial DNA sequences and microsatellite loci (these only for the host). Given that pinworms and primates have a close co-evolutionary history, covariation in several genetic aspects of their populations is expected. RESULTS Mitochondrial DNA revealed two genetic clusters (West and East) in both pinworm species and howler monkeys, although population structure and genetic differentiation were stronger in the host, while genetic diversity was higher in pinworms than howler populations. Co-divergence tests showed no congruence between host and parasite phylogenies; nonetheless, a significant correlation was found between both pinworms and A. palliata genetic pairwise distances suggesting that the parasites' gene flow is mediated by the host dispersal. Moreover, the parasite most infective and the host most susceptible haplotypes were also the most frequent, whereas the less divergent haplotypes tended to be either more infective (for pinworms) or more susceptible (for howlers). Finally, a positive correlation was found between pairwise p-distance of host haplotypes and that of their associated pinworm haplotypes. CONCLUSION The genetic configuration of pinworm populations appears to be molded by their own demography and life history traits in conjunction with the biology and evolutionary history of their hosts, including host genetic variation, social interactions, dispersal and biogeography. Similarity in patterns of genetic structure, differentiation and diversity is higher between howler monkeys and T. multilabiatus in comparison with T. minutus, highlighting the role of host-specificity in coevolving processes. Trypanoxyuris minutus exhibits genetic specificity towards the most frequent host haplotype as well as geographic specificity. Results suggest signals of potential local adaptation in pinworms and further support the notion of correlated evolution between pinworms and their primate hosts.
Collapse
Affiliation(s)
- Brenda Solórzano-García
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Departamento de Sistemas y Procesos Naturales, Escuela Nacional de Estudios Superiores - Merida, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Ella Vázquez-Domínguez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| | - Gerardo Pérez-Ponce de León
- Instituto de Biología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Departamento de Sistemas y Procesos Naturales, Escuela Nacional de Estudios Superiores - Merida, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| |
Collapse
|
8
|
Latinne A, Chen HW, Kuo CC, Lorica R, Singleton G, Stuart A, Malbas FF, Demanche C, Chabé M, Michaux J, Morand S. Revisiting the Pneumocystis host specificity paradigm and transmission ecology in wild Southeast Asian rodents. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104978. [PMID: 34175480 DOI: 10.1016/j.meegid.2021.104978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023]
Abstract
Pneumocystis fungi are opportunistic parasites of mammalian lungs whose evolution, ecology and host specificity in natural host populations remain poorly understood and controversial. Using an extensive collection of 731 lung samples from 27 rodent species sampled in five Southeast Asian countries, and nested PCR amplification of mitochondrial and nuclear genes, we investigated the host specificity and genetic structure of Pneumocystis lineages infecting wild rodents. We also identified the rodent species playing a central role in the transmission of these parasites using network analysis and centrality measurement and we characterized the environmental conditions allowing Pneumocystis infection in Southeast Asia using generalized linear mixed models. Building upon an unprecedented Pneumocystis sampling from numerous rodent species belonging to closely related genera, our findings provide compelling evidence that the host specificity of Pneumocystis lineages infecting rodents is not restricted to a single host species or genus as often presented in the literature but it encompasses much higher taxonomic levels and more distantly related rodent host species. The phylogenetic species status at both mitochondrial and nuclear genetic markers of at least three new Pneumocystis lineages, highly divergent from Pneumocystis species currently described, is also suggested by our data. Our models show that the probability of Pneumocystis infection in rodent hosts is positively correlated to environmental variables reflecting habitat fragmentation and landscape patchiness. Synanthropic and habitat-generalist rodents belonging to the Rattus, Sundamys and Bandicota genera played a role of bridge host species for Pneumocystis spreading in these heterogeneous habitats, where they can reach high population densities. These are critical findings improving our understanding of the ecology of these enigmatic parasites and the role played by cospeciation and host switches in their evolution. Our results also confirmed the role of land-use change and habitat fragmentation in parasite amplification and spillover in rodents.
Collapse
Affiliation(s)
- Alice Latinne
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Viet Nam; Wildlife Conservation Society, Health Program, Bronx, NY, USA; Université de Liège, Laboratoire de Génétique de la Conservation, GeCoLAB, 4000 Liège, Belgium.
| | - Hsuan-Wien Chen
- Department of Biological Resources, National Chiayi University, Chiayi, Taiwan
| | - Chi-Chien Kuo
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Renee Lorica
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Grant Singleton
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines; Natural Resource Institute, University of Greenwich, Chatham Maritime, Kent, UK
| | - Alex Stuart
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Fedelino F Malbas
- Research Institute for Tropical Medicine, Department of Health, Muntinlupa, Metro Manila, Philippines
| | - Christine Demanche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Magali Chabé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Johan Michaux
- Université de Liège, Laboratoire de Génétique de la Conservation, GeCoLAB, 4000 Liège, Belgium; Animal Santé Territoire Risque Environnement- Unité Mixe de Recherche 117 (ASTRE) Univ. Montpellier, Centre International de Recherche Agronomique pour le Développement (CIRAD), Institut National de la Recherche Agronomique, 34398 Montpellier, France
| | - Serge Morand
- University of Montpellier, Institut des Sciences de l'Evolution, CNRS-IRD, Montpellier, France; University of Kasetsart, Faculty of Veterinary Technology, ASTRE-CIRAD, Bangkok, Thailand
| |
Collapse
|
9
|
Affiliation(s)
- Spenser J Babb-Biernacki
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jacob A Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Vinson P Doyle
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
10
|
Hamm PS, Taylor JW, Cook JA, Natvig DO. Decades-old studies of fungi associated with mammalian lungs and modern DNA sequencing approaches help define the nature of the lung mycobiome. PLoS Pathog 2020; 16:e1008684. [PMID: 32730326 PMCID: PMC7392203 DOI: 10.1371/journal.ppat.1008684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Paris S. Hamm
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Joseph A. Cook
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Donald O. Natvig
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
11
|
Danesi P, Corrò M, Falcaro C, Carminato A, Furlanello T, Cocchi M, Krockenberger MB, Meyer W, Capelli G, Malik R. Molecular detection of Pneumocystis in the lungs of cats. Med Mycol 2020; 57:813-824. [PMID: 30566653 PMCID: PMC7107658 DOI: 10.1093/mmy/myy139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
The genus Pneumocystis comprises potential pathogens that reside normally in the lungs of a wide range of mammals. Although they generally behave as transient or permanent commensals, they can occasionally cause life-threatening pneumonia (Pneumocystis pneumonia; PCP) in immunosuppressed individuals. Several decades ago, the presence of Pneumocystis morphotypes (trophic forms and cysts) was described in the lungs of normal cats and cats with experimentally induced symptomatic PCP (after immunosuppression by corticosteroids); yet to date spontaneous or drug-induced PCP has not been described in the clinical feline literature, despite immunosuppression of cats by long-standing retrovirus infections or after kidney transplantation. In this study, we describe the presence of Pneumocystis DNA in the lungs of normal cats (that died of various unrelated causes; n = 84) using polymerase chain reactions (PCRs) targeting the mitochondrial small and large subunit ribosomal RNA gene (mtSSU rRNA and mtLSU rRNA). The presence of Pneumocystis DNA was confirmed by sequencing in 24/84 (29%) cats, with evidence of two different sequence types (or lineages). Phylogenetically, lineage1 (L1; 19 cats) and lineage 2 (L2; 5 cats) formed separate clades, clustering with Pneumocystis from domestic pigs (L1) and carnivores (L2), respectively. Results of the present study support the notion that cats can be colonized or subclinically infected by Pneumocystis, without histological evidence of damage to the pulmonary parenchyma referable to pneumocystosis. Pneumocystis seems most likely an innocuous pathogen of cats’ lungs, but its possible role in the exacerbation of chronic pulmonary disorders or viral/bacterial coinfections should be considered further in a clinical setting.
Collapse
Affiliation(s)
- Patrizia Danesi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Michela Corrò
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Christian Falcaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Antonio Carminato
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | | | - Monia Cocchi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Mark B Krockenberger
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Sydney, Australia
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Richard Malik
- Centre for Veterinary Education, B22, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Delaye L, Ruiz-Ruiz S, Calderon E, Tarazona S, Conesa A, Moya A. Evidence of the Red-Queen Hypothesis from Accelerated Rates of Evolution of Genes Involved in Biotic Interactions in Pneumocystis. Genome Biol Evol 2018; 10:1596-1606. [PMID: 29893833 PMCID: PMC6012782 DOI: 10.1093/gbe/evy116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Pneumocystis species are ascomycete fungi adapted to live inside the lungs of mammals. These ascomycetes show extensive stenoxenism, meaning that each species of Pneumocystis infects a single species of host. Here, we study the effect exerted by natural selection on gene evolution in the genomes of three Pneumocystis species. We show that genes involved in host interaction evolve under positive selection. In the first place, we found strong evidence of episodic diversifying selection in Major surface glycoproteins (Msg). These proteins are located on the surface of Pneumocystis and are used for host attachment and probably for immune system evasion. Consistent with their function as antigens, most sites under diversifying selection in Msg code for residues with large relative surface accessibility areas. We also found evidence of positive selection in part of the cell machinery used to export Msg to the cell surface. Specifically, we found that genes participating in glycosylphosphatidylinositol (GPI) biosynthesis show an increased rate of nonsynonymous substitutions (dN) versus synonymous substitutions (dS). GPI is a molecule synthesized in the endoplasmic reticulum that is used to anchor proteins to membranes. We interpret the aforementioned findings as evidence of selective pressure exerted by the host immune system on Pneumocystis species, shaping the evolution of Msg and several proteins involved in GPI biosynthesis. We suggest that genome evolution in Pneumocystis is well described by the Red-Queen hypothesis whereby genes relevant for biotic interactions show accelerated rates of evolution.
Collapse
Affiliation(s)
- Luis Delaye
- Departamento de Ingeniería Genética, CINVESTAV Irapuato, Guanajuato, México
| | - Susana Ruiz-Ruiz
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública, València, Spain
| | - Enrique Calderon
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla.,Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sonia Tarazona
- Centro de Investigacion Principe Felipe, València, Spain.,Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Spain
| | - Ana Conesa
- Centro de Investigacion Principe Felipe, València, Spain.,Microbiology and Cell Science, University of Florida
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública, València, Spain.,Institute for Integrative Systems Biology, Universitat de València, Spain
| |
Collapse
|
13
|
Danesi P, Falcaro C, Ravagnan S, Da Rold G, Porcellato E, Corrò M, Iatta R, Cafarchia C, Frangipane di Regalbono A, Meyer W, Capelli G. Real-time PCR assay for screening Pneumocystis in free-living wild squirrels and river rats in Italy. J Vet Diagn Invest 2018; 30:862-867. [PMID: 30204066 DOI: 10.1177/1040638718797379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We used a real-time PCR (rtPCR) targeting a 150-bp amplicon of the mitochondrial small subunit of ribosomal RNA (mtSSU rRNA) to screen for Pneumocystis DNA in lungs of wild squirrels ( Callosciurus finlaysonii, n = 85) and river rats ( Myocastor coypus, n = 43) in Italy. The rtPCR revealed Pneumocystis DNA in 20 of 85 (24%) squirrels and in 35 of 43 (81%) river rats, and was more sensitive than a nested PCR that targets a portion of the mtSSU rRNA and the mitochondrial large subunit of rRNA (mtLSU rRNA). Phylogenetic analysis based on mtSSU rRNA and mtLSU rRNA sequences showed distinct Pneumocystis sequence types in these rodents. The rtPCR assay should be reliable for screening large populations for this potential pathogen, thereby allowing cost-effective monitoring of the disease in wild animals.
Collapse
Affiliation(s)
- Patrizia Danesi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy (Danesi, Falcaro, Ravagnan, Da Rold, Porcellato, Corrò, Capelli).,Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy (Iatta, Cafarchia).,Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, Padova, Italy (Frangipane di Regalbono).,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School-Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia (Meyer)
| | - Christian Falcaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy (Danesi, Falcaro, Ravagnan, Da Rold, Porcellato, Corrò, Capelli).,Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy (Iatta, Cafarchia).,Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, Padova, Italy (Frangipane di Regalbono).,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School-Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia (Meyer)
| | - Silvia Ravagnan
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy (Danesi, Falcaro, Ravagnan, Da Rold, Porcellato, Corrò, Capelli).,Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy (Iatta, Cafarchia).,Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, Padova, Italy (Frangipane di Regalbono).,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School-Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia (Meyer)
| | - Graziana Da Rold
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy (Danesi, Falcaro, Ravagnan, Da Rold, Porcellato, Corrò, Capelli).,Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy (Iatta, Cafarchia).,Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, Padova, Italy (Frangipane di Regalbono).,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School-Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia (Meyer)
| | - Elena Porcellato
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy (Danesi, Falcaro, Ravagnan, Da Rold, Porcellato, Corrò, Capelli).,Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy (Iatta, Cafarchia).,Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, Padova, Italy (Frangipane di Regalbono).,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School-Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia (Meyer)
| | - Michela Corrò
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy (Danesi, Falcaro, Ravagnan, Da Rold, Porcellato, Corrò, Capelli).,Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy (Iatta, Cafarchia).,Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, Padova, Italy (Frangipane di Regalbono).,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School-Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia (Meyer)
| | - Roberta Iatta
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy (Danesi, Falcaro, Ravagnan, Da Rold, Porcellato, Corrò, Capelli).,Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy (Iatta, Cafarchia).,Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, Padova, Italy (Frangipane di Regalbono).,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School-Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia (Meyer)
| | - Claudia Cafarchia
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy (Danesi, Falcaro, Ravagnan, Da Rold, Porcellato, Corrò, Capelli).,Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy (Iatta, Cafarchia).,Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, Padova, Italy (Frangipane di Regalbono).,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School-Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia (Meyer)
| | - Antonio Frangipane di Regalbono
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy (Danesi, Falcaro, Ravagnan, Da Rold, Porcellato, Corrò, Capelli).,Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy (Iatta, Cafarchia).,Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, Padova, Italy (Frangipane di Regalbono).,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School-Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia (Meyer)
| | - Wieland Meyer
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy (Danesi, Falcaro, Ravagnan, Da Rold, Porcellato, Corrò, Capelli).,Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy (Iatta, Cafarchia).,Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, Padova, Italy (Frangipane di Regalbono).,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School-Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia (Meyer)
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy (Danesi, Falcaro, Ravagnan, Da Rold, Porcellato, Corrò, Capelli).,Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy (Iatta, Cafarchia).,Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, Padova, Italy (Frangipane di Regalbono).,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School-Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia (Meyer)
| |
Collapse
|
14
|
Cissé OH, Hauser PM. Genomics and evolution of Pneumocystis species. INFECTION GENETICS AND EVOLUTION 2018; 65:308-320. [PMID: 30138710 DOI: 10.1016/j.meegid.2018.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/20/2023]
Abstract
The genus Pneumocystis comprises highly diversified fungal species that cause severe pneumonia in individuals with a deficient immune system. These fungi infect exclusively mammals and present a strict host species specificity. These species have co-diverged with their hosts for long periods of time (> 100 MYA). Details of their biology and evolution are fragmentary mainly because of a lack of an established long-term culture system. Recent genomic advances have unlocked new areas of research and allow new hypotheses to be tested. We review here new findings of the genomic studies in relation with the evolutionary trajectory of these fungi and discuss the impact of genomic data analysis in the context of the population genetics. The combination of slow genome decay and limited expansion of specific gene families and introns reflect intimate interactions of these species with their hosts. The evolutionary adaptation of these organisms is profoundly influenced by their population structure, which in turn is determined by intrinsic features such as their self-fertilizing mating system, high host specificity, long generation times, and transmission mode. Essential key questions concerning their adaptation and speciation remain to be answered. The next cornerstone will consist in the establishment of a long-term culture system and genetic manipulation that should allow unravelling the driving forces of Pneumocystis species evolution.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
15
|
Ma L, Cissé OH, Kovacs JA. A Molecular Window into the Biology and Epidemiology of Pneumocystis spp. Clin Microbiol Rev 2018; 31:e00009-18. [PMID: 29899010 PMCID: PMC6056843 DOI: 10.1128/cmr.00009-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pneumocystis, a unique atypical fungus with an elusive lifestyle, has had an important medical history. It came to prominence as an opportunistic pathogen that not only can cause life-threatening pneumonia in patients with HIV infection and other immunodeficiencies but also can colonize the lungs of healthy individuals from a very early age. The genus Pneumocystis includes a group of closely related but heterogeneous organisms that have a worldwide distribution, have been detected in multiple mammalian species, are highly host species specific, inhabit the lungs almost exclusively, and have never convincingly been cultured in vitro, making Pneumocystis a fascinating but difficult-to-study organism. Improved molecular biologic methodologies have opened a new window into the biology and epidemiology of Pneumocystis. Advances include an improved taxonomic classification, identification of an extremely reduced genome and concomitant inability to metabolize and grow independent of the host lungs, insights into its transmission mode, recognition of its widespread colonization in both immunocompetent and immunodeficient hosts, and utilization of strain variation to study drug resistance, epidemiology, and outbreaks of infection among transplant patients. This review summarizes these advances and also identifies some major questions and challenges that need to be addressed to better understand Pneumocystis biology and its relevance to clinical care.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Mysteries of host switching: Diversification and host specificity in rodent-coccidia associations. Mol Phylogenet Evol 2018; 127:179-189. [PMID: 29753710 DOI: 10.1016/j.ympev.2018.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022]
Abstract
Recent studies show that host switching is much more frequent than originally believed and constitutes an important driver in evolution of host-parasite associations. However, its frequency and ecological mechanisms at the population level have been rarely investigated. We address this issue by analyzing phylogeny and population genetics of an extensive sample, from a broad geographic area, for commonly occurring parasites of the genus Eimeria within the abundant rodent genera Apodemus, Microtus and Myodes, using two molecular markers. At the most basal level, we demonstrate polyphyletic arrangement, i.e. multiple origin, of the rodent-specific clusters within the Eimeria phylogeny, and strong genetic/phylogenetic structure within these lineages determined at least partially by specificities to different host groups. However, a novel and the most important observation is a repeated occurrence of host switches among closely related genetic lineages which may become rapidly fixed. Within the studied model, this phenomenon applies particularly to the switches between the eimerians from Apodemus flavicollis/Apodemus sylvaticus and Apodemus agrarius groups. We show that genetic differentiation and isolation between A. flavicollis/A. sylvaticus and A. agrarius faunas is a secondary recent event and does not reflect host-parasite coevolutionary history. Rather, it provides an example of rapid ecology-based differentiation in the parasite population.
Collapse
|
17
|
Genetic diversity and evolution of Pneumocystis fungi infecting wild Southeast Asian murid rodents. Parasitology 2017; 145:885-900. [PMID: 29117878 DOI: 10.1017/s0031182017001883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pneumocystis organisms are airborne-transmitted fungal parasites that infect the lungs of numerous mammalian species with strong host specificity. In this study, we investigated the genetic diversity and host specificity of Pneumocystis organisms infecting Southeast Asian murid rodents through PCR amplification of two mitochondrial genes and tested the co-phylogeny hypothesis among these fungi and their rodent hosts. Pneumocystis DNA was detected in 215 of 445 wild rodents belonging to 18 Southeast Asian murid species. Three of the Pneumocystis lineages retrieved in our phylogenetic trees correspond to known Pneumocystis species, but some of the remaining lineages may correspond to new undescribed species. Most of these Pneumocystis species infect several rodent species or genera and some sequence types are shared among several host species and genera. These results indicated a weaker host specificity of Pneumocystis species infecting rodents than previously thought. Our co-phylogenetic analyses revealed a complex evolutionary history among Pneumocystis and their rodent hosts. Even if a significant global signal of co-speciation has been detected, co-speciation alone is not sufficient to explain the observed co-phylogenetic pattern and several host switches are inferred. These findings conflict with the traditional view of a prolonged process of co-evolution and co-speciation of Pneumocystis and their hosts.
Collapse
|
18
|
Köhler JR, Hube B, Puccia R, Casadevall A, Perfect JR. Fungi that Infect Humans. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0014-2016. [PMID: 28597822 PMCID: PMC11687496 DOI: 10.1128/microbiolspec.funk-0014-2016] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients-Candida, Pneumocystis, and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.
Collapse
Affiliation(s)
- Julia R Köhler
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Rosana Puccia
- Disciplina de Biologia Celular, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - John R Perfect
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
19
|
Carreto-Binaghi LE, Aliouat EM, Taylor ML. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response. Respir Res 2016; 17:66. [PMID: 27250970 PMCID: PMC4888672 DOI: 10.1186/s12931-016-0385-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/25/2016] [Indexed: 12/20/2022] Open
Abstract
Pulmonary surfactant is a complex fluid that comprises phospholipids and four proteins (SP-A, SP-B, SP-C, and SP-D) with different biological functions. SP-B, SP-C, and SP-D are essential for the lungs’ surface tension function and for the organization, stability and metabolism of lung parenchyma. SP-A and SP-D, which are also known as pulmonary collectins, have an important function in the host’s lung immune response; they act as opsonins for different pathogens via a C-terminal carbohydrate recognition domain and enhance the attachment to phagocytic cells or show their own microbicidal activity by increasing the cellular membrane permeability. Interactions between the pulmonary collectins and bacteria or viruses have been extensively studied, but this is not the same for fungal pathogens. SP-A and SP-D bind glucan and mannose residues from fungal cell wall, but there is still a lack of information on their binding to other fungal carbohydrate residues. In addition, both their relation with immune cells for the clearance of these pathogens and the role of surfactant proteins’ regulation during respiratory fungal infections remain unknown. Here we highlight the relevant findings associated with SP-A and SP-D in those respiratory mycoses where the fungal infective propagules reach the lungs by the airways.
Collapse
Affiliation(s)
- Laura Elena Carreto-Binaghi
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM); Circuito Interior, Ciudad Universitaria, Av. Universidad 3000, México, D.F., 04510, Mexico
| | - El Moukhtar Aliouat
- Laboratoire Biologie et Diversité des Pathogènes Eucaryotes Emergents, CIIL Institut Pasteur de Lille, Bâtiment Guérin, 1 rue du Professeur Calmette, Lille, France
| | - Maria Lucia Taylor
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM); Circuito Interior, Ciudad Universitaria, Av. Universidad 3000, México, D.F., 04510, Mexico.
| |
Collapse
|
20
|
Barcoding markers for Pneumocystis species in wildlife. Fungal Biol 2016; 120:191-206. [DOI: 10.1016/j.funbio.2015.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 11/24/2022]
|
21
|
Skalski JH, Kottom TJ, Limper AH. Pathobiology of Pneumocystis pneumonia: life cycle, cell wall and cell signal transduction. FEMS Yeast Res 2015; 15:fov046. [PMID: 26071598 DOI: 10.1093/femsyr/fov046] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/28/2022] Open
Abstract
Pneumocystis is a genus of ascomycetous fungi that are highly morbid pathogens in immunosuppressed humans and other mammals. Pneumocystis cannot easily be propagated in culture, which has greatly hindered understanding of its pathobiology. The Pneumocystis life cycle is intimately associated with its mammalian host lung environment, and life cycle progression is dependent on complex interactions with host alveolar epithelial cells and the extracellular matrix. The Pneumocystis cell wall is a varied and dynamic structure containing a dominant major surface glycoprotein, β-glucans and chitins that are important for evasion of host defenses and stimulation of the host immune system. Understanding of Pneumocystis cell signaling pathways is incomplete, but much has been deduced by comparison of the Pneumocystis genome with homologous genes and proteins in related fungi. In this mini-review, the pathobiology of Pneumocystis is reviewed, with particular focus on the life cycle, cell wall components and cell signal transduction.
Collapse
Affiliation(s)
- Joseph H Skalski
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Theodore J Kottom
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Demanche C, Deville M, Michaux J, Barriel V, Pinçon C, Aliouat-Denis CM, Pottier M, Noël C, Viscogliosi E, Aliouat EM, Dei-Cas E, Morand S, Guillot J. What do Pneumocystis organisms tell us about the phylogeography of their hosts? The case of the woodmouse Apodemus sylvaticus in continental Europe and western Mediterranean islands. PLoS One 2015; 10:e0120839. [PMID: 25830289 PMCID: PMC4382281 DOI: 10.1371/journal.pone.0120839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/11/2015] [Indexed: 12/02/2022] Open
Abstract
Pneumocystis fungi represent a highly diversified biological group with numerous species, which display a strong host-specificity suggesting a long co-speciation process. In the present study, the presence and genetic diversity of Pneumocystis organisms was investigated in 203 lung samples from woodmice (Apodemus sylvaticus) collected on western continental Europe and Mediterranean islands. The presence of Pneumocystis DNA was assessed by nested PCR at both large and small mitochondrial subunit (mtLSU and mtSSU) rRNA loci. Direct sequencing of nested PCR products demonstrated a very high variability among woodmouse-derived Pneumocystis organisms with a total number of 30 distinct combined mtLSU and mtSSU sequence types. However, the genetic divergence among these sequence types was very low (up to 3.87%) and the presence of several Pneumocystis species within Apodemus sylvaticus was considered unlikely. The analysis of the genetic structure of woodmouse-derived Pneumocystis revealed two distinct groups. The first one comprised Pneumocystis from woodmice collected in continental Spain, France and Balearic islands. The second one included Pneumocystis from woodmice collected in continental Italy, Corsica and Sicily. These two genetic groups were in accordance with the two lineages currently described within the host species Apodemus sylvaticus. Pneumocystis organisms are emerging as powerful tools for phylogeographic studies in mammals.
Collapse
Affiliation(s)
- Christine Demanche
- Laboratoire de Parasitologie (EA4547), Faculté de Pharmacie, Université de Lille, Lille, France; Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Inserm U1019, UMR CNRS 8204, Université de Lille, BioPôle d'Alfort, Biologie et Diversité des Pathogènes Eucaryotes Emergents, Lille, France
| | - Manjula Deville
- ENVA, UPEC, Research group Dynamyc, Ecole Nationale Vétérinaire d'Alfort, 94704, Maisons-Alfort Cedex, France
| | - Johan Michaux
- CBGP (Centre de Biologie et de Gestion des Populations), UMR INRA/IRD/Cirad/Montpellier SupAgro, Campus international de Baillarguet, CS 30016, 34988, Montferrier-sur-Lez cedex, France; Institut de Botanique (B22), University of Liège, 4000, Liège, (Sart Tilman), Belgium
| | - Véronique Barriel
- Muséum national d'histoire naturelle, CR2P-UMR 7207 CNRS, MNHN, Univ Paris06, Paris, France
| | - Claire Pinçon
- Departement of Biostatistics (EA2694), Université de Lille, Lille, France
| | - Cécile Marie Aliouat-Denis
- Laboratoire de Parasitologie (EA4547), Faculté de Pharmacie, Université de Lille, Lille, France; Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Inserm U1019, UMR CNRS 8204, Université de Lille, BioPôle d'Alfort, Biologie et Diversité des Pathogènes Eucaryotes Emergents, Lille, France
| | - Muriel Pottier
- Laboratoire de Parasitologie (EA4547), Faculté de Pharmacie, Université de Lille, Lille, France; Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Inserm U1019, UMR CNRS 8204, Université de Lille, BioPôle d'Alfort, Biologie et Diversité des Pathogènes Eucaryotes Emergents, Lille, France
| | - Christophe Noël
- Geneius Laboratories Ltd, INEX Business Centre, Newcastle upon Tyne, United Kingdom
| | - Eric Viscogliosi
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Inserm U1019, UMR CNRS 8204, Université de Lille, BioPôle d'Alfort, Biologie et Diversité des Pathogènes Eucaryotes Emergents, Lille, France
| | - El Moukhtar Aliouat
- Laboratoire de Parasitologie (EA4547), Faculté de Pharmacie, Université de Lille, Lille, France; Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Inserm U1019, UMR CNRS 8204, Université de Lille, BioPôle d'Alfort, Biologie et Diversité des Pathogènes Eucaryotes Emergents, Lille, France
| | - Eduardo Dei-Cas
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Inserm U1019, UMR CNRS 8204, Université de Lille, BioPôle d'Alfort, Biologie et Diversité des Pathogènes Eucaryotes Emergents, Lille, France; Parasitologie-Mycologie (EA4547) Faculté de Médecine, Université de Lille, CHRU, Lille, France
| | - Serge Morand
- Institut des Sciences de l'Evolution, UMR CNRS-IRD-UM2, Université de Montpellier 2, F-34093, Montpellier, France; CIRAD-CNRS, Centre d'Infectiologie Christophe Mérieux du Laos, Vientiane, Lao PDR
| | - Jacques Guillot
- ENVA, UPEC, Research group Dynamyc, Ecole Nationale Vétérinaire d'Alfort, 94704, Maisons-Alfort Cedex, France
| |
Collapse
|
23
|
Sheikholeslami MF, Sadraei J, Farnia P, Forozandeh Moghadam M, Emadikochak H. Dihydropteroate synthase gene mutation rates in Pneumocystis jirovecii strains obtained from Iranian HIV-positive and non-HIV-positive patients. Med Mycol 2015; 53:361-8. [PMID: 25631478 DOI: 10.1093/mmy/myu095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/15/2014] [Indexed: 12/17/2022] Open
Abstract
The dihydropteroate sulfate (DHPS) gene is associated with resistance to sulfa/sulfone drugs in Pneumocystis jirovecii. We investigated the DHPS mutation rate in three groups of Iranian HIV-positive and HIV-negative patients by polymerase chain reaction-restricted fragment length polymorphism analysis. Furthermore, an association between P. jirovecii DHPS mutations and strain typing was investigated based on direct sequencing of internal transcribed spacer region 1 (ITS1) and ITS2. The overall P. jirovecii DHPS mutation rate was (5/34; 14.7%), the lowest rate identified was in HIV-positive patients (1/16; 6.25%) and the highest rate was in malignancies patients (3/11; 27.3%). A moderate rate of mutation was detected in chronic obstructive pulmonary disease (COPD) patients (1/7; 14.3%). Most of the isolates were wild type (29/34; 85.3%). Double mutations in DHPS were detected in patients with malignancies, whereas single mutations at codons 55 and 57 were identified in the HIV-positive and COPD patients, respectively. In this study, two new and rare haplotypes were identified with DHPS mutations. Additionally, a positive relationship between P. jirovecii strain genotypes and DHPS mutations was identified. In contrast, no DHPS mutations were detected in the predominant (Eg) haplotype. This should be regarded as a warning of an increasing incidence of drug-resistant P. jirovecii strains.
Collapse
Affiliation(s)
- Maryam-Fatemeh Sheikholeslami
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran Tarbiat Modares University, Medical Faculty, Parasitology Department, Tehran, Iran
| | - Javid Sadraei
- Tarbiat Modares University, Medical Faculty, Parasitology Department, Tehran, Iran
| | - Parisa Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamid Emadikochak
- Iranian HIV/AIDS Research Center, Imam Khomini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Magden ER, Mansfield KG, Simmons JH, Abee CR. Nonhuman Primates. LABORATORY ANIMAL MEDICINE 2015:771-930. [DOI: 10.1016/b978-0-12-409527-4.00017-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
25
|
Martinů J, Sychra O, Literák I, Čapek M, Gustafsson DL, Štefka J. Host generalists and specialists emerging side by side: an analysis of evolutionary patterns in the cosmopolitan chewing louse genus Menacanthus. Int J Parasitol 2014; 45:63-73. [PMID: 25311782 DOI: 10.1016/j.ijpara.2014.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/26/2014] [Accepted: 09/04/2014] [Indexed: 11/26/2022]
Abstract
Parasites with wide host spectra provide opportunities to study the ecological parameters of speciation, as well as the process of the evolution of host specificity. The speciose and cosmopolitan louse genus Menacanthus comprises both multi-host and specialised species, allowing exploration of the ecological and historical factors affecting the evolution of parasites using a comparative approach. We used phylogenetic analysis to reconstruct evolutionary relationships in 14 species of Menacanthus based on the sequences of one mitochondrial and one nuclear gene. The results allowed us to validate species identification based on morphology, as well as to explore host distribution by assumed generalist and specialist species. Our analyses confirmed a narrow host use for several species, however in some cases, the supposed host specialists had a wider host spectrum than anticipated. In one case a host generalist (Menacanthus eurysternus) was clustered terminally on a clade almost exclusively containing host specialists. Such a clade topology indicates that the process of host specialisation may not be irreversible in parasite evolution. Finally, we compared patterns of population genetic structure, geographic distribution and host spectra between two selected species, M. eurysternus and Menacanthus camelinus, using haplotype networks. Menacanthus camelinus showed limited geographical distribution in combination with monoxenous host use, whereas M. eurysternus showed a global distribution and lack of host specificity. It is suggested that frequent host switching maintains gene flow between M. eurysternus populations on unrelated hosts in local populations. However, gene flow between geographically distant localities was restricted, suggesting that geography rather than host-specificity is the main factor defining the global genetic diversity of M. eurysternus.
Collapse
Affiliation(s)
- Jana Martinů
- Faculty of Science, University of South Bohemia and Biology Centre ASCR, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic.
| | - Oldřich Sychra
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1/3, 61242 Brno, Czech Republic
| | - Ivan Literák
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1/3, 61242 Brno, Czech Republic
| | - Miroslav Čapek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Kvetna 8, 60365 Brno, Czech Republic
| | | | - Jan Štefka
- Faculty of Science, University of South Bohemia and Biology Centre ASCR, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
26
|
Weissenbacher-Lang C, Nedorost N, Weissenböck H. Finding your way through Pneumocystis sequences in the NCBI gene database. J Eukaryot Microbiol 2014; 61:537-55. [PMID: 24966006 DOI: 10.1111/jeu.12132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/16/2014] [Accepted: 04/02/2014] [Indexed: 11/30/2022]
Abstract
Pneumocystis sequences can be downloaded from GenBank for purposes as primer/probe design or phylogenetic studies. Due to changes in nomenclature and assignment, available sequences are presented with a variety of inhomogeneous information, which renders practical utilization difficult. The aim of this study was the descriptive evaluation of different parameters of 532 Pneumocystis sequences of mitochondrial and ribosomal origin downloaded from GenBank with regard to completeness and information content. Pneumocystis sequences were characterized by up to four different names. Official changes in nomenclature have only been partly implemented and the usage of the "forma specialis", a special feature of Pneumocystis, has only been established fragmentary in the database. Hints for a mitochondrial or ribosomal genomic origin could be found, but can easily be overlooked, which renders the download of wrong reference material possible. The specification of the host was either not available or variable regarding the used language and the localization of this information in the title or several subtitles, which limits their applicability in phylogenetic studies. Declaration of products and geographic origin was incomplete. The print version of this manuscript is completed by an online database which contains detailed information to every accession number included in the meta-analysis.
Collapse
Affiliation(s)
- Christiane Weissenbacher-Lang
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | | | | |
Collapse
|
27
|
González-González AE, Aliouat-Denis CM, Ramírez-Bárcenas JA, Demanche C, Pottier M, Carreto-Binaghi LE, Akbar H, Derouiche S, Chabé M, Aliouat EM, Dei-Cas E, Taylor ML. Histoplasma capsulatum and Pneumocystis spp. co-infection in wild bats from Argentina, French Guyana, and Mexico. BMC Microbiol 2014; 14:23. [PMID: 24495513 PMCID: PMC3916801 DOI: 10.1186/1471-2180-14-23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 01/27/2014] [Indexed: 12/11/2022] Open
Abstract
Background Histoplasma capsulatum and Pneumocystis organisms cause host infections primarily affecting the lung tissue. H. capsulatum is endemic in the United States of America and Latin American countries. In special environments, H. capsulatum is commonly associated with bat and bird droppings. Pneumocystis-host specificity has been primarily studied in laboratory animals, and its ability to be harboured by wild animals remains as an important issue for understanding the spread of this pathogen in nature. Bats infected with H. capsulatum or Pneumocystis spp. have been found, with this mammal serving as a probable reservoir and disperser; however, the co-infection of bats with both of these microorganisms has never been explored. To evaluate the impact of H. capsulatum and Pneumocystis spp. infections in this flying mammal, 21 bat lungs from Argentina (AR), 13 from French Guyana (FG), and 88 from Mexico (MX) were screened using nested-PCR of the fragments, employing the Hcp100 locus for H. capsulatum and the mtLSUrRNA and mtSSUrRNA loci for Pneumocystis organisms. Results Of the 122 bats studied, 98 revealed H. capsulatum infections in which 55 of these bats exhibited this infection alone. In addition, 51 bats revealed Pneumocystis spp. infection of which eight bats exhibited a Pneumocystis infection alone. A total of 43 bats (eight from AR, one from FG, and 34 from MX) were found co-infected with both fungi, representing a co-infection rate of 35.2% (95% CI = 26.8-43.6%). Conclusion The data highlights the H. capsulatum and Pneumocystis spp.co-infection in bat population’s suggesting interplay with this wild host.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Maria Lucia Taylor
- Department of Microbiology and Parasitology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| |
Collapse
|
28
|
|
29
|
SAKAKIBARA M, SHIMIZU C, KADOTA K, HATAMA S. Pneumocystis carinii Infection in a Domestic Goat ( Capra hircus domesticus) with Multibacillary Paratuberculosis. J Vet Med Sci 2013; 75:671-4. [DOI: 10.1292/jvms.12-0465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Michiko SAKAKIBARA
- Ishikari Livestock Hygiene Service Center, 3 Hitsujigaoka, Toyohira, Sapporo 062–0045, Japan
| | - Chie SHIMIZU
- Ishikari Livestock Hygiene Service Center, 3 Hitsujigaoka, Toyohira, Sapporo 062–0045, Japan
| | - Koichi KADOTA
- Hokkaido Research Station, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo 062–0045, Japan
| | - Shinichi HATAMA
- Hokkaido Research Station, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo 062–0045, Japan
| |
Collapse
|
30
|
De novo assembly of the Pneumocystis jirovecii genome from a single bronchoalveolar lavage fluid specimen from a patient. mBio 2012; 4:e00428-12. [PMID: 23269827 PMCID: PMC3531804 DOI: 10.1128/mbio.00428-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Pneumocystis jirovecii is a fungus that causes severe pneumonia in immunocompromised patients. However, its study is hindered by the lack of an in vitro culture method. We report here the genome of P. jirovecii that was obtained from a single bronchoalveolar lavage fluid specimen from a patient. The major challenge was the in silico sorting of the reads from a mixture representing the different organisms of the lung microbiome. This genome lacks virulence factors and most amino acid biosynthesis enzymes and presents reduced GC content and size. Together with epidemiological observations, these features suggest that P. jirovecii is an obligate parasite specialized in the colonization of human lungs, which causes disease only in immune-deficient individuals. This genome sequence will boost research on this deadly pathogen. IMPORTANCE Pneumocystis pneumonia is a major cause of mortality in patients with impaired immune systems. The availability of the P. jirovecii genome sequence allows new analyses to be performed which open avenues to solve critical issues for this deadly human disease. The most important ones are (i) identification of nutritional supplements for development of culture in vitro, which is still lacking 100 years after discovery of the pathogen; (ii) identification of new targets for development of new drugs, given the paucity of present treatments and emerging resistance; and (iii) identification of targets for development of vaccines.
Collapse
|
31
|
Jarboui MA, Mseddi F, Sellami H, Sellami A, Makni F, Ayadi A. Genetic diversity of Pneumocystis jirovecii strains based on sequence variation of different DNA region. Med Mycol 2012; 51:561-7. [PMID: 23210680 DOI: 10.3109/13693786.2012.744879] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pneumocystis jirovecii is an important opportunistic pathogen that causes severe pneumonia in immunocompromised patients. The aim of the present study was to investigate the genetic diversity of P. jirovecii strains by direct sequencing and analysis of the Upstream Conserved Sequence (UCS) region, mitochondrial large-subunit (mtLSU) rRNA and dihydrofolate reductase (DHFR) genes. We identified the polymorphisms in P. jirovecii strains of 15 immunocompromised patients, as well as detecting a new tandem repeat of 5 nucleotides in UCS region. The following three different types of repeat unit were found: type a GCCCA; type b GCCCT; and type c GCCTT. In addition, we identified the repeat unit which consisted of 10 nucleotides and three different patterns of UCS repeats with 3 and 4 repeats, i.e., 1, 2, 3 (86.7%), 1, 2, 3, 3 (6.6%) and a new genotype 2, 2, 3, 3 (6.6%). The polymorphism in the mtLSUrRNA gene was seen primarily at position 85 where we detected three different genotypes. Genotype 3 and genotype 2 were the most abundant with frequencies of 53.3% and 40%, respectively. With regard to the DHFR gene, only two (20%) patients had nucleotide substitution in position 312. In conclusion, the multilocus analysis facilitated the typing of P. jirovecii strains and proved the important genetic biodiversity of this fungus.
Collapse
Affiliation(s)
- Mohamed Ali Jarboui
- Fungal and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia.
| | | | | | | | | | | |
Collapse
|
32
|
Characterizing Pneumocystis in the lungs of bats: understanding Pneumocystis evolution and the spread of Pneumocystis organisms in mammal populations. Appl Environ Microbiol 2012; 78:8122-36. [PMID: 23001662 DOI: 10.1128/aem.01791-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bats belong to a wide variety of species and occupy diversified habitats, from cities to the countryside. Their different diets (i.e., nectarivore, frugivore, insectivore, hematophage) lead Chiroptera to colonize a range of ecological niches. These flying mammals exert an undisputable impact on both ecosystems and circulation of pathogens that they harbor. Pneumocystis species are recognized as major opportunistic fungal pathogens which cause life-threatening pneumonia in severely immunocompromised or weakened mammals. Pneumocystis consists of a heterogeneous group of highly adapted host-specific fungal parasites that colonize a wide range of mammalian hosts. In the present study, 216 lungs of 19 bat species, sampled from diverse biotopes in the New and Old Worlds, were examined. Each bat species may be harboring a specific Pneumocystis species. We report 32.9% of Pneumocystis carriage in wild bats (41.9% in Microchiroptera). Ecological and behavioral factors (elevation, crowding, migration) seemed to influence the Pneumocystis carriage. This study suggests that Pneumocystis-host association may yield much information on Pneumocystis transmission, phylogeny, and biology in mammals. Moreover, the link between genetic variability of Pneumocystis isolated from populations of the same bat species and their geographic area could be exploited in terms of phylogeography.
Collapse
|
33
|
Esgalhado R, Esteves F, Antunes F, Matos O. Study of the epidemiology of Pneumocystis carinii f. sp. suis in abattoir swine in Portugal. Med Mycol 2012; 51:66-71. [PMID: 22852751 DOI: 10.3109/13693786.2012.700123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pneumocystis has been identified in various mammalian species, including domestic, wild and zoo animals. This study's main objectives were: (1) to estimate the prevalence of the Pneumocystis carinii f. sp. suis infection in slaughtered pigs in Portugal, (2) assess the prevalence differences within distinct age groups of animals, (3) determine the possible associations between pulmonary lesions and the infection, and (4) genetically characterize the P. carinii f. sp. suis isolates recovered from infected animals using PCR with DNA sequencing. An epidemiological cross-sectional study was conducted using 215 pig lung tissue samples which demonstrated a global prevalence of 7% (14 positive samples). This value was later validated by statistical analysis as being representative of the national population prevalence. Regarding the assessment of relations between the different variables investigated during the study (age, gender, geographical region, type of farming, weight and pulmonary lesion) and the P. carinii f. sp. suis infection, no significant statistical differences were found, and apparently, no predisposing factors could be defined. Nevertheless, infection by Pneumocystis in pigs is ubiquitous and it can be detected in healthy animals. Thus, the colonization of P. carinii f. sp. suis among healthy individuals suggests that asymptomatic carriers can be an effective reservoir for susceptible animals and participate in the transmission of infection. The present data confirmed that porcine Pneumocystis is genetically distinct from Pneumocystis DNA detected in other mammalian hosts.
Collapse
Affiliation(s)
- Rita Esgalhado
- Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários - CMDT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa
| | | | | | | |
Collapse
|
34
|
Riebold D, Mohr E, Sombetzki M, Fritzsche C, Loebermann M, Reisinger E. Pneumocystis species in Brown Leghorn laying hens—A hint for an extra-mammalian reservoir. Poult Sci 2012; 91:1813-8. [DOI: 10.3382/ps.2011-01930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Abstract
Although the incidence of Pneumocystis pneumonia (PCP) has decreased since the introduction of combination antiretroviral therapy, it remains an important cause of disease in both HIV-infected and non-HIV-infected immunosuppressed populations. The epidemiology of PCP has shifted over the course of the HIV epidemic both from changes in HIV and PCP treatment and prevention and from changes in critical care medicine. Although less common in non-HIV-infected immunosuppressed patients, PCP is now more frequently seen due to the increasing numbers of organ transplants and development of novel immunotherapies. New diagnostic and treatment modalities are under investigation. The immune response is critical in preventing this disease but also results in lung damage, and future work may offer potential areas for vaccine development or immunomodulatory therapy. Colonization with Pneumocystis is an area of increasing clinical and research interest and may be important in development of lung diseases such as chronic obstructive pulmonary disease. In this review, we discuss current clinical and research topics in the study of Pneumocystis and highlight areas for future research.
Collapse
|
36
|
Chabé M, Durand-Joly I, Dei-Cas E. [Transmission of Pneumocystis infection in humans]. Med Sci (Paris) 2012; 28:599-604. [PMID: 22805135 DOI: 10.1051/medsci/2012286012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Is Pneumocystis pneumonia (PcP) a transmissible fungal disease? Does nosocomial PcP occur? Is there Pneumocystis transmission in the community? These questions, which could not be tackled before the 2000s, may at present be approached using either noninvasive detection methods or experimental transmission models. Represented by a unique entity (P. carinii) for almost one century, the Pneumocystis genus was shown to contain several species, being P. jirovecii the sole species identified in humans hitherto. Molecular methods combined with cross infection experiments revealed strong host specificity that precludes Pneumocystis inter-species transmission. In contrast, respiratory transmission between mammals of a same species is usually highly active, even between immunocompetent hosts. Other transmission ways could also exist. New data show that human being is the unique P. jirovecii reservoir; it would constitute the sole infection source in both hospital and community.
Collapse
Affiliation(s)
- Magali Chabé
- Laboratoire de parasitologie-mycologie, faculté des sciences pharmaceutiques, université Lille-Nord-de-France, Lille, France
| | | | | |
Collapse
|
37
|
Circulation of Pneumocystis dihydropteroate synthase mutants in France. Diagn Microbiol Infect Dis 2012; 74:119-24. [PMID: 22795965 DOI: 10.1016/j.diagmicrobio.2012.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 11/21/2022]
Abstract
Data on the prevalence of Pneumocystis jirovecii (P. jirovecii) dihydropteroate synthase (DHPS) mutants in France are still limited. In this study, mutant prevalence in the Brest region (western France) was determined. Archival pulmonary specimens from 85 patients infected with P. jirovecii and admitted to our institution (University Hospital, Brest) from October 2007 to February 2010 were retrospectively typed at the DHPS locus using a polymerase chain reaction-restriction fragment length polymorphism assay. Type identification was successful in 66 of 85 patients. Sixty-four patients were infected with a wild type, whereas mutants were found in 2 patients (2/66, 3%). Medical chart analysis revealed that these 2 patients usually lived in Paris. Another patient usually lived on the French Riviera, whereas 63 patients were from the city of Brest. Thus, the corrected prevalence of mutants in patients who effectively lived in our geographic area was 0% (0/63). Taking into account that i) Paris is characterized by a high prevalence of mutants from 18.5% to 40%, ii) infection diagnoses were performed in the 2 Parisians during their vacation <30 days, iii) infection incubation is assumed to last about 2 months, the results provide evidence of mutant circulation from Paris to Brest through infected vacationers. The study shows that the usual city of patient residence, rather than the city of infection diagnosis, is a predictor of mutants and that P. jirovecii infections involving mutants do not represent a public health issue in western France.
Collapse
|
38
|
Lowenstine LJ, Osborn KG. Respiratory System Diseases of Nonhuman Primates. NONHUMAN PRIMATES IN BIOMEDICAL RESEARCH 2012. [PMCID: PMC7158299 DOI: 10.1016/b978-0-12-381366-4.00009-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Sanches E, Ferreiro L, Borba M, Spanamberg A, Ravazzolo A, Santurio J, Driemeir D, Barcellos D, Berthelemy M, Guillot J. Phylogenetic analysis of Pneumocystis from pig lungs obtained from slaughterhouses in southern and midwestern regions of Brazil. ARQ BRAS MED VET ZOO 2011. [DOI: 10.1590/s0102-09352011000500016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Pneumocystis genus is comprised of pathogens dwelling in the lungs of terrestrial, aerial, and aquatic mammals. Occasionally they induce severe pneumonitis, particularly in hosts with severe impairment of the immune system and progressively may fill pulmonary alveolar cavities causing respiratory failure. Molecular genetic studies revealed that Pneumocystis gene sequences present a marked divergence with the host species concerned. In the present study, the genetic diversity of Pneumocystis obtained from lungs of swines was examined by analyzing mitochondrial large subunit (mtLSU) and small subunit (mtSSU) rRNA sequences. The samples were obtained from two slaughterhouses located in two Brazilian states. Phylogenetic analysis demonstrated that genetic groupings within Pneumocystis organisms were in accordance with those of the corresponding hosts and that two clusters were formed. In conclusion, these data show that there are genetically distinct porcine Pneumocystis genotypes with at least two separate clusters in Brazil.
Collapse
Affiliation(s)
- E.M.C Sanches
- Universidade Federal do Rio Grande do Sul; Universidade Federal de Mato Grosso; Secretaria de Estado de Saúde
| | - L Ferreiro
- Universidade Federal do Rio Grande do Sul
| | - M.R Borba
- Universidade Federal do Rio Grande do Sul
| | | | | | | | - D Driemeir
- Universidade Federal do Rio Grande do Sul
| | | | | | - J Guillot
- UMR; INRA; AFSSA; ENVA; UPVM; BIPAR, France
| |
Collapse
|
40
|
Döşkaya M, Caner A, Değirmenci A, Wengenack NL, Yolasığmaz A, Turgay N, Özensoy Töz S, Gürüz Y. Degree and frequency of inhibition in a routine real-time PCR detecting Pneumocystis jirovecii for the diagnosis of Pneumocystis pneumonia in Turkey. J Med Microbiol 2011; 60:937-944. [PMID: 21459903 DOI: 10.1099/jmm.0.030775-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Routine laboratory diagnosis of Pneumocystis jirovecii is currently achieved by PCR in almost all laboratories with sufficient equipment due to its high sensitivity and specificity compared to staining methods. A current issue that limits the reliability and sensitivity of PCR is the degree of inhibition caused by inhibitory substances in respiratory samples. The present study aimed to analyse the degree and frequency of inhibition in real-time PCR detecting P. jirovecii in respiratory specimens submitted to a Pneumocystis pneumonia (PcP) diagnosis laboratory in Ege University Medical School, Turkey. Between July 2009 and December 2010, 76 respiratory specimens [63 bronchoalveolar lavage (BAL) fluid, 10 sputum samples, two tracheal aspiration fluid and one thoracentesis fluid] obtained from 69 PcP-suspected patients were investigated for the presence of P. jirovecii using real-time PCR targeting the cdc2 gene. Of these samples, 42 of the specimens were stained and examined by microscopy according to the request of the clinicians. PCR was positive in 15 specimens in the initial run. Of the remaining 61 samples, 41 of them were negative with positive internal inhibition controls (i.e. true-negative group). The frequency of inhibition in the initial run was 26.31 % (20/76) as determined by spiked negative controls. All of the inhibited samples were resolved after 1 : 2, 1 : 5, 1 : 10 and 1 : 20 dilutions. P. jirovecii was detected by PCR in two inhibited specimens after retesting with diluted samples which were also positive by microscopy. The incidence of P. jirovecii in respiratory specimens was 22.36 % (17/76) as determined by real-time PCR and 7.14 % (3/42) by microscopy. Overall, the incidence of P. jirovecii in respiratory samples was 23.68 % (18/76) as detected by both methods. In conclusion, inclusion of spiked positive controls in each sample and retesting with diluted samples to resolve inhibition increased the reliability of the real-time PCR assay in terms of determining false-negative results and influencing the treatment of the patient. Furthermore, results of the present study determined for the first time the frequency and degree of inhibition in a real-time PCR detecting P. jirovecii in respiratory specimens during routine diagnosis of PcP.
Collapse
Affiliation(s)
- Mert Döşkaya
- Department of Parasitology, Ege University Medical School, Bornova/Izmir 35100, Turkey
| | - Ayşe Caner
- Department of Parasitology, Ege University Medical School, Bornova/Izmir 35100, Turkey
| | - Aysu Değirmenci
- Department of Parasitology, Ege University Medical School, Bornova/Izmir 35100, Turkey
| | - Nancy L Wengenack
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic and Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Ayşegül Yolasığmaz
- Department of Parasitology, Ege University Medical School, Bornova/Izmir 35100, Turkey
| | - Nevin Turgay
- Department of Parasitology, Ege University Medical School, Bornova/Izmir 35100, Turkey
| | - Seray Özensoy Töz
- Department of Parasitology, Ege University Medical School, Bornova/Izmir 35100, Turkey
| | - Yüksel Gürüz
- Department of Parasitology, Ege University Medical School, Bornova/Izmir 35100, Turkey
| |
Collapse
|
41
|
Hauser PM, Burdet FX, Cissé OH, Keller L, Taffé P, Sanglard D, Pagni M. Comparative genomics suggests that the fungal pathogen pneumocystis is an obligate parasite scavenging amino acids from its host's lungs. PLoS One 2010; 5:e15152. [PMID: 21188143 PMCID: PMC3004796 DOI: 10.1371/journal.pone.0015152] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/26/2010] [Indexed: 01/04/2023] Open
Abstract
Pneumocystis jirovecii is a fungus causing severe pneumonia in immuno-compromised patients. Progress in understanding its pathogenicity and epidemiology has been hampered by the lack of a long-term in vitro culture method. Obligate parasitism of this pathogen has been suggested on the basis of various features but remains controversial. We analysed the 7.0 Mb draft genome sequence of the closely related species Pneumocystis carinii infecting rats, which is a well established experimental model of the disease. We predicted 8’085 (redundant) peptides and 14.9% of them were mapped onto the KEGG biochemical pathways. The proteome of the closely related yeast Schizosaccharomyces pombe was used as a control for the annotation procedure (4’974 genes, 14.1% mapped). About two thirds of the mapped peptides of each organism (65.7% and 73.2%, respectively) corresponded to crucial enzymes for the basal metabolism and standard cellular processes. However, the proportion of P. carinii genes relative to those of S. pombe was significantly smaller for the “amino acid metabolism” category of pathways than for all other categories taken together (40 versus 114 against 278 versus 427, P<0.002). Importantly, we identified in P. carinii only 2 enzymes specifically dedicated to the synthesis of the 20 standard amino acids. By contrast all the 54 enzymes dedicated to this synthesis reported in the KEGG atlas for S. pombe were detected upon reannotation of S. pombe proteome (2 versus 54 against 278 versus 427, P<0.0001). This finding strongly suggests that species of the genus Pneumocystis are scavenging amino acids from their host's lung environment. Consequently, they would have no form able to live independently from another organism, and these parasites would be obligate in addition to being opportunistic. These findings have implications for the management of patients susceptible to P. jirovecii infection given that the only source of infection would be other humans.
Collapse
Affiliation(s)
- Philippe M Hauser
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
42
|
Chabé M, Aliouat-Denis CM, Delhaes L, Aliouat EM, Viscogliosi E, Dei-Cas E. Pneumocystis: from a doubtful unique entity to a group of highly diversified fungal species. FEMS Yeast Res 2010; 11:2-17. [PMID: 21114625 DOI: 10.1111/j.1567-1364.2010.00698.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
At the end of the 20th century the unique taxonomically enigmatic entity called Pneumocystis carinii was identified as a heterogeneous group of microscopic Fungi, constituted of multiple stenoxenic biological entities largely spread across ecosystems, closely adapted to, and coevolving in parallel with, mammal species. The discoveries and reasoning that led to the current conceptions about the taxonomy of Pneumocystis at the species level are examined here. The present review also focuses on the biological, morphological and phylogenetical features of Pneumocystis jirovecii, Pneumocystis oryctolagi, Pneumocystis murina, P. carinii and Pneumocystis wakefieldiae, the five Pneumocystis species described until now, mainly on the basis of the phylogenetic species concept. Interestingly, Pneumocystis organisms exhibit a successful adaptation enabling them to dwell and replicate in the lungs of both immunocompromised and healthy mammals, which can act as infection reservoirs. The role of healthy carriers in aerial disease transmission is nowadays recognized as a major contribution to Pneumocystis circulation, and Pneumocystis infection of nonimmunosuppressed hosts has emerged as a public health issue. More studies need to be undertaken both on the clinical consequences of the presence of Pneumocystis in healthy carriers and on the intricate Pneumocystis life cycle to better define its epidemiology, to adapt existing therapies to each clinical context and to discover new drug targets.
Collapse
Affiliation(s)
- Magali Chabé
- Biology and Diversity of Emergent Eukaryotic Pathogens (BDEEP)-Center for Infection and Immunity of Lille, Pasteur Institute of Lille, Inserm U1019, CNRS UMR 8204, University Lille-Nord-de-France, Lille, France.
| | | | | | | | | | | |
Collapse
|
43
|
Feng X, Wei C, Adam RD, Li Z, Lu S. Phylogenetic status of Pneumocystis from corticosteroid-treated gerbils. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1239-46. [PMID: 20953947 DOI: 10.1007/s11427-010-4074-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/29/2010] [Indexed: 11/25/2022]
Abstract
Pneumocystis spp. infect the lungs of multiple mammalian species and cause disease in immunosuppressed individuals. The Pneumocystis isolates that have been studied to date fall into two major clades, those from primates and those from rodents. Within each of these clades, different species have been described on the basis of host specificity and differences in sequence and morphology. Here, we demonstrate that dexamethasone immunosuppression consistently results in histologically apparent lung infection in gerbils (28/35 animals). Sequence analysis of the 18S, 5.8S and internal transcribed spacer regions of the rDNA and a portion of the mitochondrial large subunit rDNA demonstrated that this gerbil Pneumocystis is grouped with other rodent Pneumocystis spp., but is distinct from them. Our results suggest that gerbil Pneumocystis differs sufficiently from Pneumocystis species found in other rodents to be considered a separate species.
Collapse
Affiliation(s)
- XianMin Feng
- Department of Parasitology, Jilin Medical College, Jilin, China
| | | | | | | | | |
Collapse
|
44
|
Wissmann G, Morilla R, Friaza V, Calderón E, Varela JM. El ser humano como reservorio de Pneumocystis. Enferm Infecc Microbiol Clin 2010; 28:38-43. [DOI: 10.1016/j.eimc.2008.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/22/2008] [Accepted: 07/25/2008] [Indexed: 10/20/2022]
|
45
|
Chabé M, Nevez G, Totet A, Fréalle E, Delhaes L, Aliouat E, Dei-Cas E. Transmission de Pneumocystis. J Mycol Med 2009. [DOI: 10.1016/j.mycmed.2009.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Linke MJ, Ashbaugh AA, Koch JV, Levin L, Tanaka R, Walzer PD. Effects of surfactant protein-A on the interaction of Pneumocystis murina with its host at different stages of the infection in mice. J Eukaryot Microbiol 2009; 56:58-65. [PMID: 19335775 DOI: 10.1111/j.1550-7408.2008.00363.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined the effects of surfactant protein A (SP-A), a collectin, on the interaction of Pneumocystis murina with its host at the beginning, early to middle, and late stages of infection. Pneumocystis murina from SP-A wild-type (WT) mice inoculated intractracheally into WT mice (WT(S)-WT(R)) adhered well to alveolar macrophages, whereas organisms from SP-A knockout (KO) mice inoculated into KO mice (KO(S)-KO(R)) did not. Substitution of WT mice as the source of organisms (WT(S)-KO(R)) or recipient host macrophages (KO(S)-WT(R)) restored adherence to that found with WT(S)-WT(R) mice. In contrast, when immunosuppressed KO and WT mice were inoculated with P. murina from a homologous source (KO(S)-KO(R), WT(S)-WT(R)) or heterologous source (WT(S)-KO(R), KO(S)-WT(R)) and followed sequentially, WT(S)-KO(R) mice had the highest levels of infection at weeks 3 and 4; these mice also had the highest levels of the chemokine macrophage inflammatory protein-2 and neutrophils in lavage fluid at week 3. Surfactant protein-A administered to immunosuppressed KO(S)-KO(R) mice with Pneumocystis pneumonia for 8 wk as a therapeutic agent failed to lower the organism burden. We conclude that SP-A can correct the host immune defect in the beginning of P. murina infection, but not in the middle or late stages of the infection.
Collapse
Affiliation(s)
- Michael J Linke
- Research Service, Department of Veterans Affairs Medical Center, Cincinnati, Ohio 45220, USA
| | | | | | | | | | | |
Collapse
|
47
|
Derouiche S, Deville M, Taylor ML, Akbar H, Guillot J, Carreto-Binaghi LE, Pottier M, Aliouat EM, Aliouat-Denis CM, Dei-Cas E, Demanche C. Pneumocystis diversity as a phylogeographic tool. Mem Inst Oswaldo Cruz 2009; 104:112-7. [DOI: 10.1590/s0074-02762009000100017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 01/09/2009] [Indexed: 11/22/2022] Open
Affiliation(s)
- S Derouiche
- Faculty of Biological and Pharmaceutical Sciences; Pasteur Institute of Lille, France
| | - M Deville
- National School Veterinary of Alfort, France
| | - ML Taylor
- Universidad Nacional Autónoma de México, México
| | - H Akbar
- Faculty of Biological and Pharmaceutical Sciences; Pasteur Institute of Lille, France
| | - J Guillot
- National School Veterinary of Alfort, France
| | | | - M Pottier
- Faculty of Biological and Pharmaceutical Sciences
| | - EM Aliouat
- Faculty of Biological and Pharmaceutical Sciences; Pasteur Institute of Lille, France
| | - CM Aliouat-Denis
- Faculty of Biological and Pharmaceutical Sciences; Pasteur Institute of Lille, France
| | - E Dei-Cas
- Pasteur Institute of Lille, France; University Hospital Center, France
| | - C Demanche
- Faculty of Biological and Pharmaceutical Sciences; Pasteur Institute of Lille, France
| |
Collapse
|
48
|
Li Z, Feng X, Lu S, Zhang F, Wang F, Huang S. Molecular phylogeny of pneumocystis based on 5.8S rRNA gene and the internal transcribed spacers of rRNA gene sequences. ACTA ACUST UNITED AC 2008; 51:445-52. [PMID: 18785590 DOI: 10.1007/s11427-008-0057-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To clarify the phylogenetic relationships and species status of Pneumocystis, the 5.8S rRNA gene and the internal transcribed spacers (ITS, 1 and 2) of Pneumocystis rRNA derived from rat, gerbil and human were amplified, cloned and sequenced. The genetic distance matrix of six Pneumocystis species compared with other fungi like Taphrina and Saccharomyces indicated that the Pneumocystis genus contained multiple species including Pneumocystis from gerbil. The phylogenetic tree also showed that Pneumocystis from human and monkey formed one group and four rodent Pneumocystis formed another group. Among the four members, Pneumocystis wakefieldiae was most closely related to Pneumocystis murina and Pneumocystis carinii, and was least related to gerbil Pneumocystis.
Collapse
Affiliation(s)
- ZiHui Li
- Department of Pathogenic Biology, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | |
Collapse
|
49
|
Aliouat-Denis CM, Chabé M, Demanche C, Aliouat EM, Viscogliosi E, Guillot J, Delhaes L, Dei-Cas E. Pneumocystis species, co-evolution and pathogenic power. INFECTION GENETICS AND EVOLUTION 2008; 8:708-26. [DOI: 10.1016/j.meegid.2008.05.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/02/2008] [Accepted: 05/03/2008] [Indexed: 01/13/2023]
|
50
|
Intraspecific comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola. Fungal Genet Biol 2008; 45:628-37. [DOI: 10.1016/j.fgb.2007.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/10/2007] [Accepted: 12/10/2007] [Indexed: 11/18/2022]
|