1
|
Sagini JPN, Ligabue-Braun R. Fungal heat shock proteins: molecular phylogenetic insights into the host takeover. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:16. [PMID: 38483597 DOI: 10.1007/s00114-024-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Heat shock proteins are constitutively expressed chaperones induced by cellular stress, such as changes in temperature, pH, and osmolarity. These proteins, present in all organisms, are highly conserved and are recruited for the assembly of protein complexes, transport, and compartmentalization of molecules. In fungi, these proteins are related to their adaptation to the environment, their evolutionary success in acquiring new hosts, and regulation of virulence and resistance factors. These characteristics are interesting for assessment of the host adaptability and ecological transitions, given the emergence of infections by these microorganisms. Based on phylogenetic inferences, we compared the sequences of HSP9, HSP12, HSP30, HSP40, HSP70, HSP90, and HSP110 to elucidate the evolutionary relationships of different fungal organisms to suggest evolutionary patterns employing the maximum likelihood method. By the different reconstructions, our inference supports the hypothesis that these classes of proteins are associated with pathogenic gains against endothermic hosts, as well as adaptations for phytopathogenic fungi.
Collapse
Affiliation(s)
- João Pedro Nunes Sagini
- Graduate Program in Biological Sciences (PPGBio), Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Biological Sciences (PPGBio), Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil
| |
Collapse
|
2
|
Silva LBR, Taira CL, Cleare LG, Martins M, Junqueira M, Nosanchuk JD, Taborda CP. Identification of Potentially Therapeutic Immunogenic Peptides From Paracoccidioides lutzii Species. Front Immunol 2021; 12:670992. [PMID: 34046037 PMCID: PMC8144467 DOI: 10.3389/fimmu.2021.670992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is an endemic mycosis in Latin America caused by the thermodimorphic fungi of the genus Paracoccidioides spp. Paracoccidioides lutzii (PL) is one of the 5 species that constitute the Paracoccidioides genus. PL expresses low amounts of glycoprotein (Gp) 43 (PLGp43) and PLGp43 displays few epitopes in common with the P. brasiliensis (PB) immunodominant antigen PBGp43, which is commonly used for serological diagnosis of PCM. This difference in structure between the glycoproteins markedly reduces the efficiency of serological diagnosis in patients infected with PL. We previously demonstrated that peptide 10 (P10) from the PBGp43 induces protective immune responses in in vitro and in vivo models of PB PCM. Since, P10 has proven to be a promising therapeutic to combat PB, we sought to identify peptides in PL that could similarly be applied for the treatment of PCM. PL yeast cell proteins were isolated from PL: dendritic cell co-cultures and subjected to immunoproteomics. This approach identified 18 PL peptides that demonstrated in silico predictions for immunogenicity. Eight of the most promising peptides were synthesized and applied to lymphocytes obtained from peptide-immunized or PL-infected mice as well as to in vitro cultures with peptides or dendritic cells pulsed the peptides. The peptides LBR5, LBR6 and LBR8 efficiently promoted CD4+ and CD8+ T cell proliferation and dendritic cells pulsed with LBR1, LBR3, LBR7 or LBR8 stimulated CD4+ T cell proliferation. We observed increases of IFN-γ in the supernatants from primed T cells for the conditions with peptides without or with dendritic cells, although IL-2 levels only increased in response to LBR8. These novel immunogenic peptides derived from PL will be employed to develop new peptide vaccine approaches and the proteins from which they are derived can be used to develop new diagnostic assays for PL and possibly other Paracoccidioides spp. These findings identify and characterize new peptides with a promising therapeutic profile for future against this important neglected systemic mycosis.
Collapse
Affiliation(s)
- Leandro B R Silva
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.,Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Cleison L Taira
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Levi G Cleare
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Michele Martins
- Proteomics Unit, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Magno Junqueira
- Proteomics Unit, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Carlos P Taborda
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratorio de Micologia Medica (LIM53), Departamento de Dermatologia, Faculdade de Medicina, Instituto de Medicina Tropical de Sao Paulo, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Updates in Paracoccidioides Biology and Genetic Advances in Fungus Manipulation. J Fungi (Basel) 2021; 7:jof7020116. [PMID: 33557381 PMCID: PMC7915485 DOI: 10.3390/jof7020116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM). This disease is endemic in Latin America and primarily affects workers in rural areas. PCM is considered a neglected disease, despite being a disabling disease that has a notable impact on the public health system. Paracoccidioides spp. are thermally dimorphic fungi that present infective mycelia at 25 °C and differentiate into pathogenic yeast forms at 37 °C. This transition involves a series of morphological, structural, and metabolic changes which are essential for their survival inside hosts. As a pathogen, the fungus is subjected to several varieties of stress conditions, including the host immune response, which involves the production of reactive nitrogen and oxygen species, thermal stress due to temperature changes during the transition, pH alterations within phagolysosomes, and hypoxia inside granulomas. Over the years, studies focusing on understanding the establishment and development of PCM have been conducted with several limitations due to the low effectiveness of strategies for the genetic manipulation of Paracoccidioides spp. This review describes the most relevant biological features of Paracoccidioides spp., including aspects of the phylogeny, ecology, stress response, infection, and evasion mechanisms of the fungus. We also discuss the genetic aspects and difficulties of fungal manipulation, and, finally, describe the advances in molecular biology that may be employed in molecular research on this fungus in the future.
Collapse
|
4
|
Characterization of a novel yeast phase-specific antigen expressed during in vitro thermal phase transition of Talaromyces marneffei. Sci Rep 2020; 10:21169. [PMID: 33273617 PMCID: PMC7713699 DOI: 10.1038/s41598-020-78178-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Talaromyces marneffei is a dimorphic fungus that has emerged as an opportunistic pathogen particularly in individuals with HIV/AIDS. Since its dimorphism has been associated with its virulence, the transition from mold to yeast-like cells might be important for fungal pathogenesis, including its survival inside of phagocytic host cells. We investigated the expression of yeast antigen of T.marneffei using a yeast-specific monoclonal antibody (MAb) 4D1 during phase transition. We found that MAb 4D1 recognizes and binds to antigenic epitopes on the surface of yeast cells. Antibody to antigenic determinant binding was associated with time of exposure, mold to yeast conversion, and mammalian temperature. We also demonstrated that MAb 4D1 binds to and recognizes conidia to yeast cells’ transition inside of a human monocyte-like THP-1 cells line. Our studies are important because we demonstrated that MAb 4D1 can be used as a tool to study T.marneffei virulence, furthering the understanding of the therapeutic potential of passive immunity in this fungal pathogenesis.
Collapse
|
5
|
Coitinho JB, Costa MAF, Melo EM, Morais EA, de Andrade LGA, da Rocha AM, de Magalhães MTQ, Favaro DC, Bleicher L, Pedroso ERP, Goes AM, Nagem RAP. Structural and immunological characterization of a new nucleotidyltransferase-like antigen from Paracoccidioides brasiliensis. Mol Immunol 2019; 112:151-162. [PMID: 31108423 DOI: 10.1016/j.molimm.2019.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Pb27 antigen is an interesting alternative to immunological diagnosis of Paracoccidioidomycosis (PCM) and has demonstrated to be protective in experimental PCM. Its tertiary structure and possible function remained unknown till now. To study Pb27 at the atomic level, the recombinant protein was expressed in Escherichia coli BL21(DE3), purified, and its three-dimensional structure was solved by X-ray crystallography. Based on this structure, we performed a residue correlation analysis and in silico ligand search assays to address a possible biological function to Pb27. We identified Pb27 as a member of the extensive nucleotidyltransferase superfamily. The protein has an αβαβαβ topology with two domains (N- and C-terminal domains) and adopts a monomeric form as its biological unit in solution. Structural comparisons with similar members of the superfamily clearly indicate Pb27 C-terminal domain is singular and may play an important role in its biological function. Bioinformatics analysis suggested that Pb27 might bind to ATP and CTP. This suggestion is corroborated by the fact that a magnesium cation is coordinated by two aspartic acid residues present at the active site (between N- and C-terminal domains), as evidenced by X-ray diffraction data. Besides, NMR assays (1H-15N HSQC spectra) confirmed the binding of CTP to Pb27, demonstrating for the first time an interaction between a nucleotide and this protein. Moreover, we evaluated the reactivity of sera from patients with Paracoccidioides brasiliensis infection against the recombinant form of Pb27 and showed that it was recognized by sera from infected and treated patients. Predicted B and T cell epitopes were synthesized and further evaluated against sera of PCM patients, providing information of the most reactive peptides in Pb27 primary structure which interact with specific Pb27 antibodies.
Collapse
Affiliation(s)
- Juliana B Coitinho
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil
| | - Mariana A F Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Eliza M Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Elis A Morais
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Lorena G A de Andrade
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Aline M da Rocha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Mariana T Q de Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Denize C Favaro
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil
| | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Enio R P Pedroso
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Alfredo M Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ronaldo A P Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
6
|
Heat Shock Proteins in Histoplasma and Paracoccidioides. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00221-17. [PMID: 28903987 DOI: 10.1128/cvi.00221-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heat shock proteins (Hsps) are highly conserved biomolecules that are constitutively expressed and generally upregulated in response to various stress conditions (biotic and abiotic). Hsps have diverse functions, categorizations, and classifications. Their adaptive expression in fungi indicates their significance in these diverse species, particularly in dimorphic pathogens. Histoplasma capsulatum and Paracoccidioides species are dimorphic fungi that are the causative agents of histoplasmosis and paracoccidioidomycosis, respectively. This minireview focuses on the pathobiology of Hsps, with particular emphasis on their roles in the morphogenesis and virulence of Histoplasma and Paracoccidioides and the potential roles of active and passive immunization against Hsps in protection against infection with these fungi.
Collapse
|
7
|
Silva Ferreira C, de Castro Ribeiro EM, Miranda Goes AD, Mello Silva BD. Current strategies for diagnosis of paracoccidioidomycosis and prospects of methods based on gold nanoparticles. Future Microbiol 2016; 11:973-85. [DOI: 10.2217/fmb-2016-0062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a human systemic granulomatous mycosis caused by thermodimorphic fungi from Paracoccidioides genus. The disease is prevalent in Latin America and triggers a serious clinical condition. Consequently, rapid diagnosis and treatment are crucial to prevent progression of the disease, which can result in death. Currently, there are several established methods for PCM diagnosis. However, many of these tests still present challenges in terms of cost, accessibility and efficiency. In this scenario, gold nanoparticles represent a promising alternative since they have particular optical and electronic properties, which allow its use for biomolecules detection. This review will briefly present techniques available for PCM diagnosis and the perspectives of implementation of gold nanoparticles for diagnosis of this mycosis.
Collapse
Affiliation(s)
- Cyntia Silva Ferreira
- Departamento de Ciências Biológicas/DECBI – Núcleo de Pesquisas em Ciências Biológicas/NUPEB – Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro – Ouro Preto, CEP 35400-000, Minas Gerais, Brasil
| | - Erica Milena de Castro Ribeiro
- Departamento de Ciências Biológicas/DECBI – Núcleo de Pesquisas em Ciências Biológicas/NUPEB – Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro – Ouro Preto, CEP 35400-000, Minas Gerais, Brasil
| | - Alfredo de Miranda Goes
- Departamento de Bioquímica e Imunologia/ICB – Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, Belo Horizonte, CEP 31270-901, Minas Gerais, Brasil
| | - Breno de Mello Silva
- Departamento de Ciências Biológicas/DECBI – Núcleo de Pesquisas em Ciências Biológicas/NUPEB – Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro – Ouro Preto, CEP 35400-000, Minas Gerais, Brasil
| |
Collapse
|
8
|
Tavares AH, Fernandes L, Bocca AL, Silva-Pereira I, Felipe MS. Transcriptomic reprogramming of genus Paracoccidioides in dimorphism and host niches. Fungal Genet Biol 2015; 81:98-109. [DOI: 10.1016/j.fgb.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 01/04/2023]
|
9
|
da Silva JDF, de Oliveira HC, Marcos CM, Assato PA, Fusco-Almeida AM, Mendes-Giannini MJS. Advances and challenges in paracoccidioidomycosis serology caused by Paracoccidioides species complex: an update. Diagn Microbiol Infect Dis 2015; 84:87-94. [PMID: 26494541 DOI: 10.1016/j.diagmicrobio.2015.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/01/2015] [Accepted: 06/07/2015] [Indexed: 10/23/2022]
Abstract
Understanding the possible methodologies for the rapid and inexpensive identification of fungal infections is essential for disease diagnosis, but there are some limitations. To help with this problem, serological methods that detect antigens or antibodies are widely used and are useful for the diagnosis of paracoccidioidomycosis (PCM) through the detection of gp43, which is the main antigen employed for the immunodiagnosis of this disease caused by Paracoccidioides brasiliensis. However, the use of gp43 has become restricted because it was recently found that this marker is not identified in the infections caused by Paracoccidioides lutzii. Therefore, it is necessary to identify new antigens in both species or antigens specific for P. lutzii to decrease the morbidity and/or mortality associated with PCM. This review provides a discussion of new diagnostic challenges after the recent discoveries regarding the taxonomy of the Paracoccidioides genus.
Collapse
Affiliation(s)
- Julhiany de Fátima da Silva
- Faculdade de Ciências Farmacêuticas de Araraquara, FCFAr, UNESP - Univ Estadual Paulista, Araraquara, Departamento de Análises Clínicas, SP, Brazil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas de Araraquara, FCFAr, UNESP - Univ Estadual Paulista, Araraquara, Departamento de Análises Clínicas, SP, Brazil
| | - Caroline Maria Marcos
- Faculdade de Ciências Farmacêuticas de Araraquara, FCFAr, UNESP - Univ Estadual Paulista, Araraquara, Departamento de Análises Clínicas, SP, Brazil
| | - Patricia Akemi Assato
- Faculdade de Ciências Farmacêuticas de Araraquara, FCFAr, UNESP - Univ Estadual Paulista, Araraquara, Departamento de Análises Clínicas, SP, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas de Araraquara, FCFAr, UNESP - Univ Estadual Paulista, Araraquara, Departamento de Análises Clínicas, SP, Brazil
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas de Araraquara, FCFAr, UNESP - Univ Estadual Paulista, Araraquara, Departamento de Análises Clínicas, SP, Brazil.
| |
Collapse
|
10
|
|
11
|
|
12
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
13
|
Teles F, Martins M. Laboratorial diagnosis of paracoccidioidomycosis and new insights for the future of fungal diagnosis. Talanta 2011; 85:2254-64. [DOI: 10.1016/j.talanta.2011.07.099] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/21/2011] [Accepted: 07/29/2011] [Indexed: 11/30/2022]
|
14
|
|
15
|
Fernandes V, Coitinho J, Veloso J, Araújo S, Pedroso E, Goes A. Combined use of Paracoccidioides brasiliensis recombinant rPb27 and rPb40 antigens in an enzyme-linked immunosorbent assay for immunodiagnosis of paracoccidioidomycosis. J Immunol Methods 2011; 367:78-84. [DOI: 10.1016/j.jim.2011.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 11/28/2022]
|
16
|
Trejo-Chávez A, Ramírez-Romero R, Ancer-Rodríguez J, Nevárez-Garza AM, Rodríguez-Tovar LE. Disseminated paracoccidioidomycosis in a Southern two-toed sloth (Choloepus didactylus). J Comp Pathol 2010; 144:231-4. [PMID: 20961559 DOI: 10.1016/j.jcpa.2010.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/01/2010] [Accepted: 08/30/2010] [Indexed: 11/26/2022]
Abstract
A Southern two-toed sloth (Choloepus didactylus), originally acquired from French Guiana, died while maintained in quarantine in a pet store in Monterrey, Mexico. Large yeast cells with multiple buds compatible with Paracoccidioides brasiliensis were observed in disseminated granulomatous lesions in the lungs, liver, spleen and kidney. Transmission electron microscopical examination supported the diagnosis. This is the first report of paracoccidioidomycosis in a two-toed sloth.
Collapse
Affiliation(s)
- A Trejo-Chávez
- Laboratorio Central Regional de Monterrey, Comité para el Fomento y Protección Pecuaria del Estado de Nuevo León, A.C., Terrenos de la Exposición Ganadera, Ciudad Guadalupe, Nuevo León, Mexico
| | | | | | | | | |
Collapse
|
17
|
Nicola AM, Andrade RV, Dantas AS, Andrade PA, Arraes FBM, Fernandes L, Silva-Pereira I, Felipe MSS. The stress responsive and morphologically regulated hsp90 gene from Paracoccidioides brasiliensis is essential to cell viability. BMC Microbiol 2008; 8:158. [PMID: 18808717 PMCID: PMC2556680 DOI: 10.1186/1471-2180-8-158] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 09/22/2008] [Indexed: 12/02/2022] Open
Abstract
Background Paracoccidioides brasiliensis is a dimorphic fungus that causes the most prevalent systemic mycosis in Latin America. The response to heat shock is involved in pathogenesis, as this pathogen switches from mycelium to yeast forms in a temperature dependent fashion that is essential to establish infection. HSP90 is a molecular chaperone that helps in the folding and stabilization of selected polypeptides. HSP90 family members have been shown to present important roles in fungi, especially in the pathogenic species, as an immunodominant antigen and also as a potential antifungal therapeutic target. Results In this work, we decided to further study the Pbhsp90 gene, its expression and role in cell viability because it plays important roles in fungal physiology and pathogenesis. Thus, we have sequenced a Pbhsp90 cDNA and shown that this gene is present on the genome as a single copy. We have also confirmed its preferential expression in the yeast phase and its overexpression during dimorphic transition and oxidative stress. Treatment of the yeast with the specific HSP90 inhibitors geldanamycin and radicicol inhibited growth at 2 and 10 μM, respectively. Conclusion The data confirm that the Pbhsp90 gene encodes a morphologically regulated and stress-responsive protein whose function is essential to cell viability of this pathogen. This work also enforces the potential of HSP90 as a target for antifungal therapies, since the use of HSP90 inhibitors is lethal to the P. brasiliensis yeast cells in a dose-responsive manner.
Collapse
Affiliation(s)
- André M Nicola
- Department of Cell Biology, University of Brasília, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Most dimorphic fungal pathogens cause respiratory disease in mammals and must therefore possess virulence mechanisms to combat and overcome host pulmonary defenses. Over the past decade, advances in genetic tools have made it possible to investigate the basis of dimorphic fungal pathogenesis at the molecular level. Gene disruptions and RNA interference have now formally demonstrated the involvement of six virulence factors: CBP, alpha-(1,3)-glucan, BAD1, SOWgp, Mep1, and urease. Additional candidate virulence-associated genes have been identified on the premise that factors necessary for pathogenicity are associated specifically with the parasitic form. This principle continues to form the foundation for genomics-based analyses to further augment the list. Thus, the stage is set and the tools are in place for the next phase of medical mycology research: defining the virulence-associated factors underlying the success of dimorphic fungal pathogens.
Collapse
Affiliation(s)
- Chad A Rappleye
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
19
|
Abstract
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.
Collapse
Affiliation(s)
- James P Burnie
- Department of Medical Microbiology, Clinical Sciences Building, University of Manchester, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
20
|
Bisio LC, Silva SP, Pereira IS, Xavier MAS, Venâncio EJ, Puccia R, Soares CMA, Felipe MSS. A new Paracoccidioides brasiliensis 70-kDa heat shock protein reacts with sera from paracoccidioidomycosis patients. Med Mycol 2006; 43:495-503. [PMID: 16320493 DOI: 10.1080/13693780400029478] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A cDNA coding for a new member of the 70-kDa heat shock proteins (HSP70) family from the dimorphic and pathogenic fungus, Paracoccidioides brasiliensis, was cloned and characterized. The cDNA-deduced sequence coded for 655 amino acid residues and showed 95% identity to a previously described P. brasiliensis hsp70 gene. Cytoplasmic and typical nuclear localization signals, which indicate induction upon stress, were identified in the deduced peptide. The complete hsp70 cDNA coding region was cloned into a pGEX 4T-3 plasmid and expressed in Escherichia coli as a glutathione-S-transferase-tagged fusion protein. The recombinant protein reacted with a rabbit polyclonal antibody against HSP70. Western immunoblot experiments demonstrated that sera from paracoccidioidomycosis patients recognized the purified recombinant protein, suggesting an immunological role for this protein in the infectious process. The antigenicity analysis of rHSP70 detected three internal peptides that could act as activators of T-cell proliferation.
Collapse
Affiliation(s)
- Laura C Bisio
- Laboratório de Biologia Molecular, Universidade de Brasília, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Goes TS, Goes VS, Kalapothakis E, Leite MF, Goes AM. Identification of immunogenic proteins from Paracoccidioides brasiliensis antigenic fractions F0, FII and FIII. Immunol Lett 2005; 101:24-31. [PMID: 15904973 DOI: 10.1016/j.imlet.2005.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Indexed: 11/21/2022]
Abstract
Paracoccidioides brasiliensis causes a chronic granulomatous mycosis prevalent in South America, and cell-mediated immunity is the principal mode of protection against this fungal infection. In this context, one of the strategies to discover proteins that are target of an effective immune response against P. brasiliensis is the partial sequencing of cDNA from an expression library previously screened with immunoglobulins (Ig) to generate antigen sequence tags (AST). In the present work, a P. brasiliensis yeast cDNA expression library was screened with affinity chromatography-purified IgG from rabbit sera immunized with P. brasiliensis antigenic fractions (F0, FII or FIII) or from paracoccidioidomycosis (PCM) patient sera by indirect ELISA. From 119 clones selected by the immunoscreening procedure, 40% were recognized by IgG from PCM patients, 25% were recognized by anti-F0, 8% were selected by anti-FII and 11% recognized by FIII specific antibodies. The remaining clones presented cross-reaction to all anti-sera tested. The AST homologies with previously reported sequences in the nonredundant GenBank at NCBI revealed high significant homology to fungal proteins of known function. One of them matched calcineurin B of Neurospora crassa with 35% identity and 55% similarity in amino acid sequence. We also identified an AST homologous to a Kinesin like protein from Ustilagus maydis and other fungi with 86% identity and 91% similarity. On the other hand, the vast majority of selected cDNA clones are new genes and represent 60% of the total. Prediction of transmembrane regions with the prediction transmembrane protein topology with a hidden markov model (TMHMM) revealed consensus sequences representing structural membrane segments in 28 encoded proteins.
Collapse
Affiliation(s)
- T S Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, CEP 31 270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
22
|
González A, Gómez BL, Diez S, Hernández O, Restrepo A, Hamilton AJ, Cano LE. Purification and partial characterization of a Paracoccidioides brasiliensis protein with capacity to bind to extracellular matrix proteins. Infect Immun 2005; 73:2486-95. [PMID: 15784595 PMCID: PMC1087412 DOI: 10.1128/iai.73.4.2486-2495.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms adhere to extracellular matrix proteins by means of their own surface molecules. Paracoccidioides brasiliensis conidia have been shown to be capable of interacting with extracellular matrix proteins. We aimed at determining the presence of fungal proteins that could interact with extracellular matrix protein and, if found, attempt their purification and characterization. Various extracts were prepared from P. brasiliensis mycelial and yeast cultures (total homogenates, beta-mercaptoethanol, and sodium dodecyl sulfate [SDS] extracts) and analyzed by ligand affinity assays with fibronectin, fibrinogen and laminin. Two polypeptides were detected in both fungal forms. SDS extracts that interacted with all the extracellular matrix protein were tested; their molecular masses were 19 and 32 kDa. Analysis of the N-terminal amino acid sequence of the purified 32-kDa mycelial protein showed substantial homology with P. brasiliensis, Histoplasma capsulatum, and Neurospora crassa hypothetical proteins. Additionally, a monoclonal antibody (MAb) produced against this protein recognized the 32-kDa protein in the SDS extracts of both fungal forms for immunoblot. Immunofluorescence analysis revealed that this MAb reacted not only with mycelia and yeast cells, but also with conidia, indicating that this protein was shared by the three fungal propagules. By immunoelectron microscopy, this protein was detected in the cell walls and in the cytoplasm. Both the 32-kDa purified protein and MAb inhibited the adherence of conidia to the three extracellular matrix proteins in a dose-dependent manner. These findings demonstrate the presence of two polypeptides capable of interacting with extracellular matrix proteins on the surface of P. brasiliensis propagules, indicating that there may be common receptors for laminin, fibronectin, and fibrinogen. These proteins would be crucial for initial conidial adherence and perhaps also in dissemination of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Angel González
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Carrera 72 A, No. 78B 141, A. A. 73 78 Medellín, Colombia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Borges CL, Pereira M, Felipe MSS, de Faria FP, Gomez FJ, Deepe GS, Soares CMA. The antigenic and catalytically active formamidase of Paracoccidioides brasiliensis: protein characterization, cDNA and gene cloning, heterologous expression and functional analysis of the recombinant protein. Microbes Infect 2005; 7:66-77. [PMID: 15716068 DOI: 10.1016/j.micinf.2004.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/10/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
Paracoccidioides brasiliensis is a well-characterized pathogen of humans. To identify proteins involved in the fungus-host interaction, P. brasiliensis yeast proteins were separated by liquid isoelectric focusing, and fractions were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis. Immunoreactive bands were detected with pooled sera of patients with P. brasiliensis infection. A protein species with a molecular mass of 45 kDa was subsequently purified to homogeneity by preparative gel electrophoresis. The amino acid sequence of four endoproteinase Lys-C-digested peptides indicated that the protein was a formamidase (FMD) (E.C. 3.5.1.49) of P. brasiliensis. The complete cDNA and a genomic clone (Pbfmd) encoding the isolated FMD were isolated. An open reading frame predicted a 415-amino acid protein. The sequence contained each of the peptide sequences obtained from amino acid sequencing. The Pbfmd gene contained five exons interrupted by four introns. Northern and Southern blot analysis suggested that there is one copy of the gene in P. brasiliensis and that it is preferentially expressed in mycelium. The complete coding cDNA was expressed in Escherichia coli to produce a recombinant fusion protein with glutathione S-transferase (GST). The purified recombinant protein was recognized by sera of patients with proven paracoccidioidomycosis and not by sera of healthy individuals. The recombinant 45-kDa protein was shown to be catalytically active; FMD activity was detected in P. brasiliensis yeast and mycelium.
Collapse
Affiliation(s)
- Clayton L Borges
- Laboratório de Biologia Molecular, ICBII, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
da Silva SHM, Grosso DDM, Lopes JD, Colombo AL, Blotta MHSL, Queiroz-Telles F, de Camargo ZP. Detection of Paracoccidioides brasiliensis gp70 circulating antigen and follow-up of patients undergoing antimycotic therapy. J Clin Microbiol 2004; 42:4480-6. [PMID: 15472297 PMCID: PMC522319 DOI: 10.1128/jcm.42.10.4480-4486.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paracoccidioidomycosis (PCM), one of the most important systemic mycoses in Central and South America, is caused by the dimorphic fungus Paracoccidioides brasiliensis and has a high prevalence in Brazil. Glycoproteins of 43 and 70 kDa are the main antigenic compounds of P. brasiliensis and are recognized by Western blotting by 100 and 96% of PCM patient sera, respectively. In the present study, an inhibition enzyme-linked immunosorbent assay (ELISA) was used to detect gp70 in different biological samples from patients with PCM. gp70 was detected in 98.76% of 81 serum samples, with an average concentration of 8.19 microg/ml. The test was positive for 100% of the patients with the acute and chronic unifocal forms of PCM and 98.43% of the patients with the multifocal chronic form, with average concentrations of 11.86, 4.83, and 7.87 microg/ml, respectively. Bronchoalveolar lavage fluid from 23 patients with pulmonary unifocal PCM and 14 samples of cerebrospinal fluid from patients with neurological PCM were also tested for gp70 detection, with the test showing 100% sensitivity and 100% specificity, with mean gp70 concentrations of 7.5 and 6.78 microg/ml, respectively. To investigate the potential of gp70 detection by inhibition ELISA for the follow-up of PCM patients during antimycotic therapy with itraconazole (ITZ), the sera of 23 patients presenting with the chronic multifocal form of PCM were monitored at regular intervals of 1 month for 12 months. The results showed a decrease in circulating gp70 levels during treatment which paralleled the reduction in anti-P. brasiliensis antibody levels. The detection of P. brasiliensis gp70 from the biological fluids of patients suspected of having PCM proved to be a promising method for diagnosing infection and evaluating the efficacy of ITZ treatment.
Collapse
|
25
|
Diniz SN, Reis BS, Goes TS, Zouain CS, Leite MF, Goes AM. Protective immunity induced in mice by F0 and FII antigens purified from Paracoccidioides brasiliensis. Vaccine 2004; 22:485-92. [PMID: 14670331 DOI: 10.1016/j.vaccine.2003.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Paracoccidioides brasiliensis causes a chronic granulomatous mycosis prevalent in South America, and cell-mediated immunity represents the principal mode of protection against this fungal infection. We investigated whether immunization with P. brasiliensis antigens fractionated by anionic chromatography on fast protein liquid chromatography (FPLC) could elicit protective immunity. BALB/c mice were immunized by subcutaneous injection of either 10 microg fractions 0 (F0), II (FII) or III (FIII) in the presence of 100 microg of Corynebacterium parvum and 1 mg of Al(OH)(3) and challenged with pathogenic P. brasiliensis strain. Mice immunized with F0 presented cellular and humoral immune responses with significant production of IFN-gamma, and high levels of IgG2a and IgG3 isotypes. Immunization with FII induced significant production of IFN-gamma and IL-10 associated with high levels of IgG1 and IgG2a. It was demonstrated that immunization with F0 or FII promoted significant decrease of organ colony-forming units (CFUs) in the lung after challenge infection without fungi dissemination to the spleen or liver. In contrast, FIII immunized mice develop a progressive disseminated disease to spleen and liver presented significant levels of INF-gamma, IL-10 or TGF-beta associated with high production of IgG1 and IgG2a with low production of IgG2b and IgG3 after challenge infection. Taken together, these findings suggest that antigens of F0 and FII are reliable vaccine candidates against the paracoccidioidomycosis.
Collapse
Affiliation(s)
- S N Diniz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, CEP 32270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Tobón AM, Agudelo CA, Osorio ML, Alvarez DL, Arango M, Cano LE, Restrepo A. Residual pulmonary abnormalities in adult patients with chronic paracoccidioidomycosis: prolonged follow-up after itraconazole therapy. Clin Infect Dis 2003; 37:898-904. [PMID: 13130400 DOI: 10.1086/377538] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2003] [Accepted: 05/21/2003] [Indexed: 11/03/2022] Open
Abstract
Itraconazole effectively controls active paracoccidioidomycosis but appears not to hinder lung fibrosis. Clinical records and chest radiographs from 47 itraconazole-treated patients with prolonged posttherapy follow-up (mean follow-up period, 5.6 years) were analyzed; the radiographs were interpreted following pneumoconiosis standards that consider the lungs as 6 fields and grade damage according to the number of fields involved. Infiltrative lesions were observed at diagnosis in 93.6% of the patients. Fibrosis was observed in 31.8% of the patients at diagnosis and had not cleared at the end of the observation period in any of these patients. Fibrosis also developed de novo in 11 patients (25%), so that by the end of the follow-up period it was seen in 53.2% of patients overall. Fibrosis correlated with severity of infiltrates at diagnosis: fibrosis was present in 83% of patients with very severe infiltration and in 12.5% of patients with minor infiltration. Among patients with severe infiltration, fibrosis was present in 30%; this increased (to 75%) when bullae were concomitantly present at diagnosis. Prompt initiation of treatment is necessary to avoid the development of fibrosis.
Collapse
Affiliation(s)
- A M Tobón
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | | | | | | | | | | | | |
Collapse
|
27
|
Díez S, Gómez BL, McEwen JG, Restrepo A, Hay RJ, Hamilton AJ. Combined use of Paracoccidioides brasiliensis recombinant 27-kilodalton and purified 87-kilodalton antigens in an enzyme-linked immunosorbent assay for serodiagnosis of paracoccidioidomycosis. J Clin Microbiol 2003; 41:1536-42. [PMID: 12682142 PMCID: PMC153928 DOI: 10.1128/jcm.41.4.1536-1542.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diagnosis of paracoccidioidomycosis (PCM) has relied on the identification of the host's humoral response by using a variety of immunological methods, such as complement fixation and immunodiffusion. Although these approaches are useful, historically their sensitivity and specificity have often been compromised by the use of complex mixtures of undefined antigens. The use of combinations of purified, well-characterized antigens appears preferable and may yield optimum results. Accordingly an indirect enzyme-linked immunosorbent assay (ELISA) using combinations of the previously described 27-kDa recombinant antigen and the 87-kDa heat shock protein were used for diagnosis and follow-up of patients with PCM. A total of 37 patients classified according to their clinical presentations (7 with the acute or subacute form of the disease, 22 with the chronic form of the disease, and 8 with the chronic unifocal form) were studied. Eighteen of these patients were also evaluated at every follow-up appointment. Forty serum samples from patients with other diseases and 50 serum samples from healthy individuals were also studied. Detection of anti-27-kDa and anti-87-kDa antibodies in sera of patients with PCM by ELISA using a combination of the two purified proteins showed a sensitivity of 92% with a specificity of 88% in comparison with normal human sera and 90% in comparison with the heterologous sera. These results demonstrated a significant increase in sensitivity and specificity compared to results when the antigens were used separately. Thus, the use of combinations of well-defined antigens appears to offer clear advantages over the use of single antigens when diagnosing PCM.
Collapse
Affiliation(s)
- Soraya Díez
- St. John's Institute of Dermatology, Guy's Hospital, London, England.
| | | | | | | | | | | |
Collapse
|
28
|
Current awareness on yeast. Yeast 2002; 19:805-12. [PMID: 12112235 DOI: 10.1002/yea.825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|