1
|
Avelino-Flores F, Soria-Bustos J, Saldaña-Ahuactzi Z, Martínez-Laguna Y, Yañez-Santos JA, Cedillo-Ramírez ML, Girón JA. The Transcription of Flagella of Enteropathogenic Escherichia coli O127:H6 Is Activated in Response to Environmental and Nutritional Signals. Microorganisms 2022; 10:microorganisms10040792. [PMID: 35456842 PMCID: PMC9032864 DOI: 10.3390/microorganisms10040792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The flagella of enteropathogenic Escherichia coli (EPEC) O127:H6 E2348/69 mediate adherence to host proteins and epithelial cells. What environmental and nutritional signals trigger or down-regulate flagella expression in EPEC are largely unknown. In this study, we analyzed the influence of pH, oxygen tension, cationic and anionic salts (including bile salt), carbon and nitrogen sources, and catecholamines on the expression of the flagellin gene (fliC) of E2348/69. We found that sodium bicarbonate, which has been shown to induce the expression of type III secretion effectors, down-regulated flagella expression, explaining why E2348/69 shows reduced motility and flagellation when growing in Dulbecco’s Minimal Essential Medium (DMEM). Further, growth under a 5% carbon dioxide atmosphere, in DMEM adjusted to pH 8.2, in M9 minimal medium supplemented with 80 mM glucose or sucrose, and in DMEM containing 150 mM sodium chloride, 0.1% sodium deoxycholate, or 30 µM epinephrine significantly enhanced fliC transcription to different levels in comparison to growth in DMEM alone. When EPEC was grown in the presence of HeLa cells or in supernatants of cultured HeLa cells, high levels (4-fold increase) of fliC transcription were detected in comparison to growth in DMEM alone. Our data suggest that nutritional and host signals that EPEC may encounter in the intestinal niche activate fliC expression in order to favor motility and host colonization.
Collapse
Affiliation(s)
- Fabiola Avelino-Flores
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge Soria-Bustos
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca 42160, Mexico;
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| | - Ygnacio Martínez-Laguna
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge A. Yañez-Santos
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - María L. Cedillo-Ramírez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
- Correspondence:
| |
Collapse
|
2
|
Abstract
Diarrheal disease is still a major public health concern, as it is still considered an important cause of death in children under five years of age. A few decades ago, the detection of enteropathogenic E. coli was made by detecting the O, H, and K antigens, mostly by agglutination. The recent protocols recommend the molecular methods for diagnosing EPEC, as they can distinguish between typical and atypical EPEC by identifying the presence/absence of specific virulence factors. EPEC are defined as diarrheagenic strains of E. coli that can produce attaching and effacing lesions on the intestinal epithelium while being incapable of producing Shiga toxins and heat-labile or heat-stable enterotoxins. The ability of these strains to produce attaching and effacing lesions enable them to cause localized lesions by attaching tightly to the surface of the intestinal epithelial cells, disrupting the surfaces of the cells, thus leading to the effacement of the microvilli. EPEC are classified on typical and atypical isolates, based on the presence or absence of E. coli adherence factor plasmids. All the EPEC strains are eae positive; typical EPEC strains are eae+, bfpA+, while atypical strains are eae+, bfpA−. No vaccines are currently available to prevent EPEC infections.
Collapse
|
3
|
Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, Ferreira LCS, Martinez MB. Diarrheagenic Escherichia coli. Braz J Microbiol 2016; 47 Suppl 1:3-30. [PMID: 27866935 PMCID: PMC5156508 DOI: 10.1016/j.bjm.2016.10.015] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.
Collapse
Affiliation(s)
- Tânia A T Gomes
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil.
| | - Waldir P Elias
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Isabel C A Scaletsky
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Beatriz E C Guth
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Juliana F Rodrigues
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Luís C S Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Marina B Martinez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Abstract
Enteropathogenic Escherichia coli (EPEC) strains induce morphological changes in infected epithelial cells. The resulting attaching and effacing (A/E) lesion is characterized by intimate bacterial adherence to epithelial cells, with microvillus destruction, cytoskeletal rearrangement, and aggregation of host cytoskeletal proteins. This review presents an overview of the adhesion mechanisms used for the colonization of the human gastrointestinal tract by EPEC. The mechanisms underlying EPEC adhesion, prior to and during the formation of the A/E lesion, and the host cytosolic responses to bacterial infection leading to diarrheal disease are discussed.
Collapse
|
5
|
Teixeira NB, Rojas TCG, da Silveira WD, Matheus-Guimarães C, Silva NP, Scaletsky ICA. Genetic analysis of enteropathogenic Escherichia coli (EPEC) adherence factor (EAF) plasmid reveals a new deletion within the EAF probe sequence among O119 typical EPEC strains. BMC Microbiol 2015; 15:200. [PMID: 26438110 PMCID: PMC4594896 DOI: 10.1186/s12866-015-0539-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/29/2015] [Indexed: 11/22/2022] Open
Abstract
Background Enteropathogenic Escherichia coli (EPEC) are classified into typical and atypical strains based on the presence of the E. coli adherence factor (EAF) plasmid. The EAF plasmid contains the bfp (bundle-forming pilus) operon and the perABC (plasmid encoded regulator) gene cluster. A 1-kb cryptic region of EAF plasmid has been widely used as a genetic probe for EPEC detection. However, some EPEC strains may harbor an EAF plasmid lacking the EAF probe sequence, which makes the differentiation between typical and atypical a complex task. In this study, we report the genetic analysis of the EAF plasmid-encoded genes in a collection of EPEC clinical isolates. Methods A total of 222 EPEC clinical isolates, which were previously classified as typical (n = 70) or atypical (n = 152) by EAF probe reactivity, were screened for the presence of different EAF sequences by PCR and DNA hybridization. Results All typical strains possessed intact bfpA and perA genes, and most of them were positive in the PCR for EAF probe sequence. However, a subset of 30 typical strains, 22 of which belonged to O119 serogroup, presented a 1652 pb deletion in the region between 1093-bp downstream perC and 616-bp of the EAF fragment. The bfpA, bfpG, and per genes were found in all typical strains. In addition, 32 (21 %) atypical strains presented the perA gene, and 20 (13.2 %) also presented the bfpA gene. Among the 32 strains, 16 belonged to the O119:H2, O119:HND, and ONT:HND serotypes. All 32 atypical strains contained perA mutation frameshifts and possessed an IS1294 element upstream of the per operon as detected by PCR followed by restriction fragment length polymorphism (RFLP) typing and multiplex PCR. Among the 20 bfpA probe-positive strains, eight O119 strains possessed deletion in the bfp operon at the 3′end of bfpA due to an IS66 element. Conclusion Our data show that typical O119 strains may contain a deletion within the EAF probe sequence not previously reported. This new finding suggests that care should be taken when using the previously described EAF PCR assay in epidemiological studies for the detection of typical O119 strains. In addition, we were able to confirm that some atypical strains carry vestiges of the EAF plasmid.
Collapse
Affiliation(s)
- Nathalia B Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, 3 andar, São Paulo, 04023-062, São Paulo, Brazil.
| | - Thais C G Rojas
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| | - Wanderley D da Silveira
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| | - Cecília Matheus-Guimarães
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, 3 andar, São Paulo, 04023-062, São Paulo, Brazil.
| | - Neusa P Silva
- Disciplina de Reumatologia, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Isabel C A Scaletsky
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, 3 andar, São Paulo, 04023-062, São Paulo, Brazil.
| |
Collapse
|
6
|
Lääveri T, Pakkanen SH, Antikainen J, Riutta J, Mero S, Kirveskari J, Kantele A. High number of diarrhoeal co-infections in travellers to Benin, West Africa. BMC Infect Dis 2014; 14:81. [PMID: 24521079 PMCID: PMC3928613 DOI: 10.1186/1471-2334-14-81] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/10/2014] [Indexed: 11/22/2022] Open
Abstract
Background Travellers’ diarrhoea (TD) is the most frequent health problem among travellers to the tropics. Using routine techniques, the aetiology mostly remains unresolved, whereas modern molecular methods enable reducing the number of equivocal cases considerably. While many studies address the aetiology of TD in Asian, Central American and North African tourist resorts, only few focus on Western Africa. Methods Stool samples from 45 travellers travelling in Benin, West Africa, were analyzed by a new multiplex qPCR assay for Salmonella, Yersinia, Campylobacter, Vibrio cholerae, Shigella or enteroinvasive (EIEC), enterohaemorrhagic (EHEC), enterotoxigenic (ETEC), enteroaggregative (EAEC), and enteropathogenic Escherichia coli (EPEC). Results All 18 pre-travel samples proved negative for bacterial pathogens. Of the 39/45 (87%) travellers having had TD, EPEC was detected in post-travel samples in 30 (77%) cases, EAEC in 23 (59%), ETEC in 22 (56%), Shigella or EIEC in 7 (18%), EHEC in two (5%), and Salmonella in one (3%). In 31(79%) of the TD cases two or more bacterial pathogens were identified. Two (8%) samples remained negative: both patients had taken antimicrobials for TD. Conclusions EPEC, EAEC and ETEC were the most common findings. 79% of the cases had a co-infection. As modern diagnostics reveals in most patients a multitude of pathogens, the role of each pathogen should be re-evaluated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anu Kantele
- Division of Infectious Diseases, Department of Medicine, Helsinki University Central Hospital, PO Box 348, 00029 HUS Helsinki, Finland.
| |
Collapse
|
7
|
Nara JM, Pimenta DC, Abe CM, Abreu PAE, Moraes CTP, Freitas NC, Elias WP, Piazza RMF. Low-molecular mass comparative proteome of four atypical enteropathogenic Escherichia coli isolates showing different adherence patterns. Comp Immunol Microbiol Infect Dis 2012; 35:539-49. [PMID: 22768807 DOI: 10.1016/j.cimid.2012.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/04/2012] [Accepted: 06/10/2012] [Indexed: 11/19/2022]
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) are heterogeneous in terms of serotypes, adherence patterns and the presence of non-locus of enterocyte effacement virulence factors. In this study, the low-molecular mass proteomes of four representative aEPEC, comprising three different adhesion phenotypes (localized-like, aggregative and diffuse) and one non-adherent isolate, were analyzed and compared by 2D gel electrophoresis and LC-MS/MS. By mass spectrometry, a total of 59 proteins were identified according to their annotated function, with most of them being involved in metabolism, protection, and transport; some of them still classified as hypothetical proteins. Thus, in this comparative proteomic analysis of low-molecular mass extracted proteins from different aEPEC isolates, the proteins identified are mainly involved in key metabolic pathways. Also, the majority of the hypothetical and filamentous proteins identified in the isolates studied are products of genes originally identified in the genome of enterohemorrhagic E. coli.
Collapse
Affiliation(s)
- Júlia M Nara
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Saldaña Z, Xicohtencatl-Cortes J, Avelino F, Phillips AD, Kaper JB, Puente JL, Girón JA. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Environ Microbiol 2009; 11:992-1006. [PMID: 19187284 DOI: 10.1111/j.1462-2920.2008.01824.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Curli are adhesive fimbriae of Escherichia coli and Salmonella enterica. Expression of curli (csgA) and cellulose (bcsA) is co-activated by the transcriptional activator CsgD. In this study, we investigated the contribution of curli and cellulose to the adhesive properties of enterohaemorragic (EHEC) O157:H7 and enteropathogenic E. coli (EPEC) O127:H6. While single mutations in csgA, csgD or bcsA in EPEC and EHEC had no dramatic effect on cell adherence, double csgAbcsA mutants were significantly less adherent than the single mutants or wild-type strains to human colonic HT-29 epithelial cells or to cow colon tissue in vitro. Overexpression of csgD (carried on plasmid pCP994) in a csgD mutant, but not in the single csgA or bscA mutants, led to significant increase in adherence and biofilm formation in EPEC and EHEC, suggesting that synchronized over-production of curli and cellulose enhances bacterial adherence. In line with this finding, csgD transcription was activated significantly in the presence of cultured epithelial cells as compared with growth in tissue culture medium. Analysis of the influence of virulence and global regulators in the production of curli in EPEC identified Fis (factor for inversion stimulation) as a, heretofore unrecognized, negative transcriptional regulator of csgA expression. An EPEC E2348/69Deltafis produced abundant amounts of curli whereas a double fis/csgD mutant yielded no detectable curli production. Our data suggest that curli and cellulose act in concert to favour host colonization, biofilm formation and survival in different environments.
Collapse
Affiliation(s)
- Zeus Saldaña
- Department of Immunobiology, University of Arizona, 1501 N. Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Nara JM, Cianciarullo AM, Culler HF, Bueris V, Horton DSPQ, Menezes MA, Franzolin MR, Elias WP, Piazza RMF. Differentiation of typical and atypical enteropathogenic Escherichia coli using colony immunoblot for detection of bundle-forming pilus expression. J Appl Microbiol 2009; 109:35-43. [PMID: 19968733 DOI: 10.1111/j.1365-2672.2009.04625.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS The aim of study was to develop a colony immunoblot assay to differentiate typical from atypical enteropathogenic Escherichia coli (EPEC) by detection of bundle-forming pilus (BFP) expression. METHODS AND RESULTS Anti-BFP antiserum was raised in rabbits and its reactivity was confirmed by immunoelectron microscopy and by immunoblotting recognizing bundlin, the major pilus repeating subunit. The bacterial isolates tested in the colony immunoblot assay were grown in different media. Proteins from bacterial isolates were transferred to nitrocellulose membrane after treatment with phosphate buffer containing Triton X-100, EDTA and sodium chloride salts. When 24 typical EPEC and 96 isolates including, 72 atypical EPEC, 13 Gram-negative type IV-expressing strains and 11 enterobacteriaceae were cultivated in Dulbecco's Modified Eagle's Medium agar containing fetal bovine serum or in blood agar in the presence of CaCl(2) , they showed a positivity of 92 and 83%, and specificity of 96 and 97%, respectively. CONCLUSION The assay enables reliable identification of BFP-expressing isolates and contributes to the differentiation of typical and atypical EPEC. SIGNIFICANCE AND IMPACT OF THE STUDY The colony immunoblot for BFP detection developed in this study combines the simplicity of an immunoserological assay with the high efficiency of testing a large number of EPEC colonies.
Collapse
Affiliation(s)
- J M Nara
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abe CM, Trabulsi LR, Blanco J, Blanco M, Dahbi G, Blanco JE, Mora A, Franzolin MR, Taddei CR, Martinez MB, Piazza RMF, Elias WP. Virulence features of atypical enteropathogenic Escherichia coli identified by the eae+ EAF-negative stx− genetic profile. Diagn Microbiol Infect Dis 2009; 64:357-65. [PMID: 19442475 DOI: 10.1016/j.diagmicrobio.2009.03.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/09/2009] [Accepted: 03/20/2009] [Indexed: 11/29/2022]
Affiliation(s)
- Cecilia M Abe
- Laboratório de Bacteriologia, Instituto Butantan, 055030-900 São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The Escherichia coli common pilus and the bundle-forming pilus act in concert during the formation of localized adherence by enteropathogenic E. coli. J Bacteriol 2009; 191:3451-61. [PMID: 19218393 DOI: 10.1128/jb.01539-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although the bundle-forming pilus (BFP) of enteropathogenic Escherichia coli (EPEC) mediates microcolony formation on epithelial cells, the adherence of BFP-deficient mutants is significantly abrogated, but the mutants are still adherent due to the presence of intimin and possibly other adhesins. In this study we investigated the contribution of the recently described E. coli common pilus (ECP) to the overall adherence properties of EPEC. We found that ECP and BFP structures can be simultaneously observed in the course (between zero time and 7 h during infection) of formation of localized adherence on cultured epithelial cells. These two pilus types colocalized at different levels of the microcolony topology, tethering the adhering bacteria. No evidence of BFP disappearance was found after prolonged infection. When expressed from a plasmid present in nonadherent E. coli HB101, ECP rendered this organism highly adherent at levels comparable to those of HB101 expressing the BFP. Purified ECP bound in a dose-dependent manner to epithelial cells, and the binding was blocked with anti-ECP antibodies, confirming that the pili possess adhesin properties. An ECP mutant showed only a modest reduction in adherence to cultured cells due to background expression levels of BFP and intimin. However, isogenic mutants not expressing EspA or BFP were significantly less adherent when the ecpA gene was also deleted. Furthermore, a DeltaespA DeltaecpA double mutant (unable to translocate Tir and to establish intimate adhesion) was at least 10-fold less adherent than the DeltaespA and DeltaecpA single mutants, even in the presence of BFP. A Delta bfp DeltaespA DeltaecpA triple mutant showed the least adherence compared to the wild type and all the isogenic mutant strains tested, suggesting that ECP plays a synergistic role in adherence. Our data indicate that ECP is an accessory factor that, in association with BFP and other adhesins, contributes to the multifactorial complex interaction of EPEC with host epithelial cells.
Collapse
|
12
|
Escherichia coli O125ac:H6 encompasses atypical enteropathogenic E. coli strains that display the aggregative adherence pattern. J Clin Microbiol 2008; 46:4052-5. [PMID: 18923012 DOI: 10.1128/jcm.01252-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
O125 is an enteropathogenic Escherichia coli (EPEC) serogroup, which includes the O125ac:H6 serotype, defined as atypical EPEC. Strains of this serotype displayed the aggregative adherence (AA) pattern with HEp-2, Caco-2, T84, and HT-29 cells, possessed all the LEE region genes, and expressed intimin, Tir, and EspABD, although the attaching-effacing lesion was not detected in vitro. These results confirm that E. coli O125ac:H6 is atypical EPEC that displays the AA pattern and indicate the necessity of testing for EPEC genes combined with the determination of the adherence pattern for atypical EPEC identification.
Collapse
|
13
|
Xicohtencatl-Cortes J, Monteiro-Neto V, Ledesma MA, Jordan DM, Francetic O, Kaper JB, Puente JL, Girón JA. Intestinal adherence associated with type IV pili of enterohemorrhagic Escherichia coli O157:H7. J Clin Invest 2008; 117:3519-29. [PMID: 17948128 DOI: 10.1172/jci30727] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 08/13/2007] [Indexed: 12/24/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and hemolytic uremic syndrome (HUS) by colonizing the gut mucosa and producing Shiga toxins (Stx). The only factor clearly demonstrated to play a role in EHEC adherence to intestinal epithelial cells is intimin, which binds host cell integrins and nucleolin, as well as a receptor (Tir) that it injects into the host cell. Here we report that EHEC O157:H7 produces adhesive type IV pili, which we term hemorrhagic coli pilus (HCP), composed of a 19-kDa pilin subunit (HcpA) that is encoded by the hcpA chromosomal gene. HCP were observed as bundles of fibers greater than 10 microm in length that formed physical bridges between bacteria adhering to human and bovine host cells. Sera of HUS patients, but not healthy individuals, recognized HcpA, suggesting that the pili are produced in vivo during EHEC infections. Inactivation of the hcpA gene in EHEC EDL933 resulted in significantly reduced adherence to cultured human intestinal and bovine renal epithelial cells and to porcine and bovine gut explants. An escN mutant, which is unable to translocate Tir, adhered less than the hcpA mutant, suggesting that adherence mediated by intimin-Tir interactions is a prelude to HCP-mediated adherence. An hcpA and stx1,2 triple mutant and an hcpA mutant had similar levels of adherence to bovine and human epithelial cells while a stx1,2 double mutant had only a minor defect in adherence, indicating that HCP-mediated adherence and cytotoxicity are independent events. Our data establish that EHEC O157:H7 HCP are intestinal colonization factors that are likely to contribute to the pathogenic potential of this food-borne pathogen.
Collapse
|
14
|
Campos LC, Franzolin MR, Trabulsi LR. Diarrheagenic Escherichia coli categories among the traditional enteropathogenic E. coli O serogroups--a review. Mem Inst Oswaldo Cruz 2004; 99:545-52. [PMID: 15558161 DOI: 10.1590/s0074-02762004000600001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The so called enteropathogenic Escherichia coli (EPEC) O serogroups include typical and atypical EPEC, enterohaemorrragic E. coli, enterotoxigenic E. coli, and enteroaggregative E. coli. The aim of this article is to review the composition of each O serogroup and the major serotypes, clones, and additional virulence characteristics of each of these diarrheagenic categories. Their adherence patterns and genetic relationships are also presented. The review is based on the study of 805 strains of serogroups O26, O55, O86, O111, O114, O119, O125, O126, O1127, O128, and O142 most of which isolated in Sao Paulo from children with diarrhea between 1970 and 1990. Since some O serogroups include more than one diarrheagenic category O serogrouping only should be abandoned as a diagnostic method. However serotyping is a reliable method for those serotypes that correspond to clones.
Collapse
Affiliation(s)
- Leila C Campos
- Departamento de Bacteriologia, Instituto Oswaldo Cruz-Fiocruz, Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
15
|
Nakazato G, Gyles C, Ziebell K, Keller R, Trabulsi LR, Gomes TAT, Irino K, Da Silveira WD, Pestana De Castro AF. Attaching and effacing Escherichia coli isolated from dogs in Brazil: characteristics and serotypic relationship to human enteropathogenic E. coli (EPEC). Vet Microbiol 2004; 101:269-77. [PMID: 15262000 DOI: 10.1016/j.vetmic.2004.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 04/15/2004] [Accepted: 04/21/2004] [Indexed: 11/18/2022]
Abstract
Escherichia coli isolates recovered from 182 fecal specimens from dogs up to five months old from the cities of São Paulo and Campinas, SP, Brazil, were examined by polymerase chain reaction (PCR) for several virulence factors and properties. The eae gene was found in 23 isolates of E. coli from 22 dogs, 19 of 146 (13%) from dogs with diarrhea and 3 of 36 (8.3%) from dogs with no diarrhea. Two different eae+ isolates were recovered from one dog with diarrhea. Isolates from two dogs with diarrhea harbored the bfpA gene, and none of the isolates possessed genes for enterotoxins, the EAF plasmid or Shiga toxins. PCR showed that, among the 23 isolates, eight were positive for beta intimin, six for gamma, two for, one for alpha, one for kappa, and five showed no amplification with any of the nine pairs of specific intimin primers used. PCR also showed that the LEE (locus of enterocyte effacement) was inserted in selC in four isolates, likely in pheU in seven isolates, and in undetermined sites in twelve isolates. Fifteen isolates adhered to HEp-2 cells and were fluorescence actin staining (FAS) positive. The predominant adherence pattern was the localized adherence-like (LAL) pattern. The eae-positive isolates belonged to a wide diversity of serotypes, including O111:H25, O119:H2 and O142:H6, which are serotypes that are common among human EPEC. These results confirmed the presence of EPEC in dogs (DEPEC) with and without diarrhea. The virulence factors found in these strains were similar to those in human EPEC, leading to the possibility that EPEC may move back and forth among human and canine populations.
Collapse
Affiliation(s)
- G Nakazato
- Department of Microbiology and Immunology, Institute of Biology, University of Campinas, 13081-900, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Monteiro-Neto V, Bando SY, Moreira-Filho CA, Girón JA. Characterization of an outer membrane protein associated with haemagglutination and adhesive properties of enteroaggregative Escherichia coli O111:H12. Cell Microbiol 2003; 5:533-47. [PMID: 12864813 DOI: 10.1046/j.1462-5822.2003.00299.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diarrhoeagenic Escherichia coli strains of serotype O111:H12 are characterized by their aggregative pattern of adherence on cultured epithelial cells and thus are considered enteroaggregative E. coli (EAEC). We have previously shown that these EAEC strains lack the genes encoding the aggregative fimbriae I and II described in other heterologous EAEC strains. In this paper, we show compelling data suggesting that a plasmid-encoded outer membrane 58 kDa protein termed aggregative protein 58 (Ap58) produced by EAEC O111:H12 strains, is associated with the adherence capabilities and haemagglutination of animal red blood cells. This conclusion is supported by several lines of evidence: (i) adherent O111:H12 strains are able to produce Ap58; (ii) non-adherent O111:H12 strains are unable to produce Ap58; (iii) antibodies raised against Ap58 inhibited adherence and haemagglutination of epithelial and bovine red blood cells, respectively; (iv) a non-adherent E. coli K-12 host strain containing the ap58 gene determinant on plasmid pVM15 displayed abundant adherence to cultured HEp-2 cells; and (v) the purified Ap58 bound specifically to HEp-2 and bovine red blood cells. Our findings indicate that the aggregative adherence in the O111:H12 strains may be also mediated by non-fimbrial adhesins. We believe our data contribute to the understanding of the adherence mechanisms of these organisms.
Collapse
Affiliation(s)
- Valerio Monteiro-Neto
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | | | | | | |
Collapse
|