1
|
Bose D, Mukhopadhyay S. The hunt for a yet unknown: Common molecular signature in some genetically monomorphic enterobacteria. J Basic Microbiol 2021; 61:524-546. [PMID: 33991346 DOI: 10.1002/jobm.202000630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/04/2021] [Accepted: 04/22/2021] [Indexed: 11/09/2022]
Abstract
Mark Achtman introduced the term "genetically monomorphic bacteria" (GM bacteria) for some human and plant pathogens. They displayed a great uniformity in terms of their "genetic" properties. This "uniformity" poses a challenge to microbiologists. To address these problems, we used CodonW and IslandViewer 3 as analytical tools and took Escherichia coli, Salmonella, and Shigella strains as a model organisms. We hypothesized that GM bacterium contains a common molecular signature among them. We have found a significant correlation regarding the number of protein-coding genes, predicted highly expressed genes, and the highest length of gene in this regard. On the other hand, the correspondence analysis of pathogenicity-related genes identified by IslandViewer 3 displayed a somewhat unique pattern in GM bacteria. The probable pathogenic genes are clustered into two separate groups, which is a hallmark of some pattern. Similar genes of non-monomorphic pathogenic strain clustered almost similarly, but the clusters are joined together, they are not completely separated. These features, in our considered view, may be considered as codon usages signatures of these bacteria, and E. coli in particular.
Collapse
Affiliation(s)
- Debadin Bose
- Department of Botany, Kabi Nazrul College, Murarai, West Bengal, India
| | - Subhasis Mukhopadhyay
- Distributed Information Centre for Bioinformatics, Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Calcutta, West Bengal, India
| |
Collapse
|
2
|
A Survey of Antimicrobial Resistance Determinants in Category A Select Agents, Exempt Strains, and Near-Neighbor Species. Int J Mol Sci 2020; 21:ijms21051669. [PMID: 32121349 PMCID: PMC7084191 DOI: 10.3390/ijms21051669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/02/2023] Open
Abstract
A dramatic increase in global antimicrobial resistance (AMR) has been well documented. Of particular concern is the dearth of information regarding the spectrum and prevalence of AMR within Category A Select Agents. Here, we performed a survey of horizontally and vertically transferred AMR determinants among Category A agents and their near neighbors. Microarrays provided broad spectrum screening of 127 Francisella spp., Yersinia spp., and Bacillus spp. strains for the presence/absence of 500+ AMR genes (or families of genes). Detecting a broad variety of AMR genes in each genus, microarray analysis also picked up the presence of an engineered plasmid in a Y. pestis strain. High resolution melt analysis (HRMA) was also used to assess the presence of quinolone resistance-associated mutations in 100 of these strains. Though HRMA was able to detect resistance-causing point mutations in B. anthracis strains, it was not capable of discriminating these point mutations from other nucleotide substitutions (e.g., arising from sequence differences in near neighbors). Though these technologies are well-established, to our knowledge, this is the largest survey of Category A agents and their near-neighbor species for genes covering multiple mechanisms of AMR.
Collapse
|
3
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
4
|
Richard D, Ravigné V, Rieux A, Facon B, Boyer C, Boyer K, Grygiel P, Javegny S, Terville M, Canteros BI, Robène I, Vernière C, Chabirand A, Pruvost O, Lefeuvre P. Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements. Mol Ecol 2017; 26:2131-2149. [PMID: 28101896 DOI: 10.1111/mec.14007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022]
Abstract
Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the copLAB gene system. The emergence of resistant strains has since been reported in Réunion and Martinique. Using microsatellite-based genotyping and copLAB PCR, we demonstrated that the genetic structure of the copper-resistant strains from these three regions was made up of two distant clusters and varied for the detection of copLAB amplicons. In order to investigate this pattern more closely, we sequenced six copper-resistant X. citri pv. citri strains from Argentina, Martinique and Réunion, together with reference copper-resistant Xanthomonas and Stenotrophomonas strains using long-read sequencing technology. Genes involved in copper resistance were found to be strain dependent with the novel identification in X. citri pv. citri of copABCD and a cus heavy metal efflux resistance-nodulation-division system. The genes providing the adaptive trait were part of a mobile genetic element similar to Tn3-like transposons and included in a conjugative plasmid. This indicates the system's great versatility. The mining of all available bacterial genomes suggested that, within the bacterial community, the spread of copper resistance associated with mobile elements and their plasmid environments was primarily restricted to the Xanthomonadaceae family.
Collapse
Affiliation(s)
- D Richard
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France.,Plant Health Laboratory, ANSES, F-97410, St Pierre, Réunion, France.,Université de la Réunion, UMR PVBMT, F-97490, St Denis, Réunion, France
| | - V Ravigné
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - A Rieux
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - B Facon
- INRA, UMR PVBMT, F-97410, St Pierre, Réunion, France.,INRA, UMR CBGP, F-34090, Montpellier, France
| | - C Boyer
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - K Boyer
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - P Grygiel
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - S Javegny
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - M Terville
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - B I Canteros
- INTA, Estación Experimental Agropecuaria Bella Vista, Bella Vista, Argentina
| | - I Robène
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - C Vernière
- CIRAD, UMR BGPI, F-34398, Montpellier, France
| | - A Chabirand
- Plant Health Laboratory, ANSES, F-97410, St Pierre, Réunion, France
| | - O Pruvost
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - P Lefeuvre
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| |
Collapse
|
5
|
Fluoroquinolone and multidrug resistance phenotypes associated with the overexpression of AcrAB and an orthologue of MarA in Yersinia enterocolitica. Int J Med Microbiol 2010; 300:457-63. [DOI: 10.1016/j.ijmm.2010.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/14/2010] [Accepted: 02/20/2010] [Indexed: 11/21/2022] Open
|
6
|
Rougé C, Goldenberg O, Ferraris L, Berger B, Rochat F, Legrand A, Göbel UB, Vodovar M, Voyer M, Rozé JC, Darmaun D, Piloquet H, Butel MJ, de La Cochetière MF. Investigation of the intestinal microbiota in preterm infants using different methods. Anaerobe 2010; 16:362-70. [DOI: 10.1016/j.anaerobe.2010.06.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 05/28/2010] [Accepted: 06/03/2010] [Indexed: 12/26/2022]
|
7
|
Ayyadurai S, Lepidi H, Nappez C, Raoult D, Drancourt M. Lovastatin protects against experimental plague in mice. PLoS One 2010; 5:e10928. [PMID: 20532198 PMCID: PMC2880009 DOI: 10.1371/journal.pone.0010928] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/07/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Plague is an ectoparasite-borne deadly infection caused by Yersinia pestis, a bacterium classified among the group A bioterrorism agents. Thousands of deaths are reported every year in some African countries. Tetracyclines and cotrimoxazole are used in the secondary prophylaxis of plague in the case of potential exposure to Y. pestis, but cotrimoxazole-resistant isolates have been reported. There is a need for additional prophylactic measures. We aimed to study the effectiveness of lovastatin, a cholesterol-lowering drug known to alleviate the symptoms of sepsis, for plague prophylaxis in an experimental model. METHODOLOGY Lovastatin dissolved in Endolipide was intraperitoneally administered to mice (20 mg/kg) every day for 6 days prior to a Y. pestis Orientalis biotype challenge. Non-challenged, lovastatin-treated and challenged, untreated mice were also used as control groups in the study. Body weight, physical behavior and death were recorded both prior to infection and for 10 days post-infection. Samples of the blood, lungs and spleen were collected from dead mice for direct microbiological examination, histopathology and culture. The potential antibiotic effect of lovastatin was tested on blood agar plates. CONCLUSIONS/SIGNIFICANCE Lovastatin had no in-vitro antibiotic effect against Y. pestis. The difference in the mortality between control mice (11/15; 73.5%) and lovastatin-treated mice (3/15; 20%) was significant (P<0.004; Mantel-Haenszel test). Dead mice exhibited Y. pestis septicemia and inflammatory destruction of lung and spleen tissues not seen in lovastatin-treated surviving mice. These data suggest that lovastatin may help prevent the deadly effects of plague. Field observations are warranted to assess the role of lovastatin in the prophylaxis of human plague.
Collapse
Affiliation(s)
- Saravanan Ayyadurai
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes: UMR CNRS 6236- IRD 198, Faculté de Médecine, IFR48, Université de la Méditerranée, Marseille, France
| | - Hubert Lepidi
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes: UMR CNRS 6236- IRD 198, Faculté de Médecine, IFR48, Université de la Méditerranée, Marseille, France
| | - Claude Nappez
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes: UMR CNRS 6236- IRD 198, Faculté de Médecine, IFR48, Université de la Méditerranée, Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes: UMR CNRS 6236- IRD 198, Faculté de Médecine, IFR48, Université de la Méditerranée, Marseille, France
| | - Michel Drancourt
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes: UMR CNRS 6236- IRD 198, Faculté de Médecine, IFR48, Université de la Méditerranée, Marseille, France
| |
Collapse
|
8
|
Loveless BM, Yermakova A, Christensen DR, Kondig JP, Heine HS, Wasieloski LP, Kulesh DA. Identification of ciprofloxacin resistance by SimpleProbe™, High Resolution Melt and Pyrosequencing™ nucleic acid analysis in biothreat agents: Bacillus anthracis, Yersinia pestis and Francisella tularensis. Mol Cell Probes 2010; 24:154-60. [DOI: 10.1016/j.mcp.2010.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|
9
|
Nazaret S, Assade F, Brothier E, Freydière AM, Bellon G, Cournoyer B. RISA–HPLC analysis of lung bacterial colonizers of cystic fibrosis children. J Microbiol Methods 2009; 76:58-69. [DOI: 10.1016/j.mimet.2008.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/05/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
|
10
|
Das R, Hammamieh R, Neill R, Ludwig GV, Eker S, Lincoln P, Ramamoorthy P, Dhokalia A, Mani S, Mendis C, Cummings C, Kearney B, Royaee A, Huang XZ, Paranavitana C, Smith L, Peel S, Kanesa-Thasan N, Hoover D, Lindler LE, Yang D, Henchal E, Jett M. Early indicators of exposure to biological threat agents using host gene profiles in peripheral blood mononuclear cells. BMC Infect Dis 2008; 8:104. [PMID: 18667072 PMCID: PMC2542375 DOI: 10.1186/1471-2334-8-104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 07/30/2008] [Indexed: 12/03/2022] Open
Abstract
Background Effective prophylaxis and treatment for infections caused by biological threat agents (BTA) rely upon early diagnosis and rapid initiation of therapy. Most methods for identifying pathogens in body fluids and tissues require that the pathogen proliferate to detectable and dangerous levels, thereby delaying diagnosis and treatment, especially during the prelatent stages when symptoms for most BTA are indistinguishable flu-like signs. Methods To detect exposures to the various pathogens more rapidly, especially during these early stages, we evaluated a suite of host responses to biological threat agents using global gene expression profiling on complementary DNA arrays. Results We found that certain gene expression patterns were unique to each pathogen and that other gene changes occurred in response to multiple agents, perhaps relating to the eventual course of illness. Nonhuman primates were exposed to some pathogens and the in vitro and in vivo findings were compared. We found major gene expression changes at the earliest times tested post exposure to aerosolized B. anthracis spores and 30 min post exposure to a bacterial toxin. Conclusion Host gene expression patterns have the potential to serve as diagnostic markers or predict the course of impending illness and may lead to new stage-appropriate therapeutic strategies to ameliorate the devastating effects of exposure to biothreat agents.
Collapse
Affiliation(s)
- Rina Das
- Division of Pathology, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect Immun 2008; 76:3640-50. [PMID: 18505806 DOI: 10.1128/iai.00050-08] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chloroplast bioreactor is an alternative to fermentation-based systems for production of vaccine antigens and biopharmaceuticals. We report here expression of the plague F1-V fusion antigen in chloroplasts. Site-specific transgene integration and homoplasmy were confirmed by PCR and Southern blotting. Mature leaves showed the highest level of transgene expression on the third day of continuous illumination, with a maximum level of 14.8% of the total soluble protein. Swiss Webster mice were primed with adjuvant-containing subcutaneous (s.c.) doses of F1-V and then boosted with either adjuvanted s.c. doses (s.c. F1-V mice) or unadjuvanted oral doses (oral F1-V mice). Oral F1-V mice had higher prechallenge serum immunoglobulin G1 (IgG1) titers than s.c. F1-V mice. The corresponding serum levels of antigen-specific IgG2a and IgA were 2 and 3 orders of magnitude lower, respectively. After vaccination, mice were exposed to an inhaled dose of 1.02 x 10(6) CFU of aerosolized Yersinia pestis CO92 (50% lethal dose, 6.8 x 10(4) CFU). All control animals died within 3 days. F1-V given s.c. (with adjuvant) protected 33% of the immunized mice, while 88% of the oral F1-V mice survived aerosolized Y. pestis challenge. A comparison of splenic Y. pestis CFU counts showed that there was a 7- to 10-log reduction in the mean bacterial burden in survivors. Taken together, these data indicate that oral booster doses effectively elicit protective immune responses in vivo. In addition, this is the first report of a plant-derived oral vaccine that protected animals from live Y. pestis challenge, bringing the likelihood of lower-cost vaccines closer to reality.
Collapse
|
12
|
Das R, Dhokalia A, Huang XZ, Hammamieh R, Chakraborty N, Lindler LE, Jett M. Study of proinflammatory responses induced by Yersinia pestis in human monocytes using cDNA arrays. Genes Immun 2007; 8:308-19. [PMID: 17429414 DOI: 10.1038/sj.gene.6364389] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Yersinia pestis, the causative agent of plague, is known to develop strategies to overcome the host immune mechanisms and survive in the host. The molecular changes induced by Y. pestis in the host are not well delineated. Here, we examined the early events triggered after the intracellular infection of Y. pestis in human monocytes and lymphocytes by analyzing the host transcriptional profiles using cDNA arrays. We found that sets of genes that, especially at early time periods, were highly upregulated in monocytes alone when compared with a mixed culture of lymphocytes and monocytes. Gene expression responses revealed genes coding for cytokines, chemokines, transcription factors, inflammatory and apoptosis-related genes. Protein levels were measured, and real-time polymerase chain reaction was used to validate the microarray results. Our data suggest that intracellular infection of human monocytes with Y. pestis results in a strong inflammatory response at early time periods and a downregulation of genes such as thromobomodulin, which may play a role in coagulation, resulting in disseminated intravascular coagulation, a primary cause of death in plague infected hosts. We provide evidence that genomic analysis can provide a solid foundation to mechanistic insights to explain some of the symptoms induced by Y. pestis.
Collapse
Affiliation(s)
- R Das
- Department of Molecular Pathology, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Xu L, Evans J, Ling T, Nye K, Hawkey P. Rapid genotyping of CTX-M extended-spectrum beta-lactamases by denaturing high-performance liquid chromatography. Antimicrob Agents Chemother 2007; 51:1446-54. [PMID: 17210774 PMCID: PMC1855489 DOI: 10.1128/aac.01088-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Denaturing high-performance liquid chromatography (dHPLC) is a powerful technique which has been used extensively to detect genetic variation. This is the first report of the application of dHPLC for rapid genotyping of bacterial beta-lactamase genes. The technique was specifically developed to genotype members of all blaCTX-M DNA homology groups. Thirteen well-defined blaCTX-M extended-spectrum beta-lactamase (ESBL)-producing strains were used to develop and optimize the dHPLC genotyping assay. Further evaluation was carried out with a blinded panel of 62 clinical isolates. The results of blaCTX-M genotyping achieved by dHPLC were comparable to the typing results obtained by DNA sequencing. Applying the newly developed dHPLC-based genotyping method, we successfully genotyped all 73 blaCTX-M ESBL-producing strains from the 4-month survey study. Furthermore, we found the first reported cases in the United Kingdom of clinically significant disease caused by CTX-M-14- and CTX-M-1-producing Escherichia coli strains. We conclude that the novel dHPLC assay is highly accurate, rapid, and cost-effective for the genotyping of blaCTX-M-producing ESBLs and has great potential for determining the clinical relevance of different and new blaCTX-M genotypes, as well as for epidemiological studies and surveillance programs.
Collapse
Affiliation(s)
- Li Xu
- Health Protection Agency, West Midlands Public Health Laboratory, Heart of England NHS Foundation Trust, Bordesley Green East, Birmingham B9 5SS, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Anisimov AP, Amoako KK. Treatment of plague: promising alternatives to antibiotics. J Med Microbiol 2006; 55:1461-1475. [PMID: 17030904 DOI: 10.1099/jmm.0.46697-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plague still poses a significant threat to human health, and interest has been renewed recently in the possible use of Yersinia pestis as a biological weapon by terrorists. The septicaemic and pneumonic forms are always lethal if untreated. Attempts to treat this deadly disease date back to the era of global pandemics, when various methods were explored. The successful isolation of the plague pathogen led to the beginning of more scientific approaches to the treatment and cure of plague. This subsequently led to specific antibiotic prophylaxis and therapy for Y. pestis. The use of antibiotics such as tetracycline and streptomycin for the treatment of plague has been embraced by the World Health Organization Expert Committee on Plague as the 'gold standard' treatment. However, concerns regarding the development of antibiotic-resistant Y. pestis strains have led to the exploration of alternatives to antibiotics. Several investigators have looked into the use of alternatives, such as immunotherapy, non-pathogen-specific immunomodulatory therapy, phage therapy, bacteriocin therapy, and treatment with inhibitors of virulence factors. The alternative therapies reported in this review should be further investigated by comprehensive studies of their clinical application for the treatment of plague.
Collapse
Affiliation(s)
- Andrey P Anisimov
- Laboratory for Plague Microbiology, Department of Infectious Diseases, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Serpukhov District, Moscow Region, Russia
| | - Kingsley K Amoako
- Canadian Food Inspection Agency, Animal Diseases Research Institute, P.O. 640, Township Road 9-1, Lethbridge, AB T1J 3Z4, Canada
| |
Collapse
|
15
|
Posteraro P, Branca G, Sanguinetti M, Ranno S, Cammarota G, Rahimi S, De Carlo M, Posteraro B, Fadda G. Rapid detection of clarithromycin resistance in Helicobacter pylori using a PCR-based denaturing HPLC assay. J Antimicrob Chemother 2005; 57:71-8. [PMID: 16284224 DOI: 10.1093/jac/dki406] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES We evaluated a new approach for the rapid detection of clarithromycin resistance in Helicobacter pylori, based on PCR and denaturing HPLC (DHPLC). METHODS A 180 bp fragment of the 23S rRNA gene was amplified using DNA from 81 clinical H. pylori isolates (51 isolates were shown to be resistant to clarithromycin by Etest), and, directly, from 101 gastric biopsies from patients with digestive diseases, who were infected with H. pylori as assessed by a 13C-urea breath test, histology and/or culture. DHPLC was used to detect mutations in all the PCR products. RESULTS DHPLC profiles for the 30 susceptible isolates all showed homoduplex peaks; the resistant isolates consistently generated heteroduplex peaks that were easily distinguishable from the wild-type H. pylori reference strain. Sequencing revealed point mutations in all the resistant isolates. Overall, five different mutations were detected. Four of these mutations (A2142G, A2142C, A2143G and T2182C) are known to be associated with clarithromycin resistance; the remaining mutation (C2195T) has not been previously described. This novel single-base substitution was found in combination with the common mutation A2143G. Of the biopsies tested, 25 specimens generated heteroduplexes due to sequence alterations (mutation A2142G, A2142C or A2143G). In one of these specimens, A2143G was found together with the novel mutation T2221C; in another, a mixture of wild-type and mutant (A2143G) sequences was detected. For 20 culture-positive out of the 25 biopsies DHPLC results confirmed the presence of clarithromycin resistance. CONCLUSIONS Our results suggest that the PCR-DHPLC assay is a valid tool for rapid assessment of clarithromycin resistance in H. pylori and that in the future it could be used directly on biopsy specimens, avoiding the need for culture-based methods.
Collapse
Affiliation(s)
- Patrizia Posteraro
- Laboratory of Clinical Pathology and Microbiology, Ospedale San Carlo-Istituto Dermopatico dell'Immacolata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Woodford N, Sundsfjord A. Molecular detection of antibiotic resistance: when and where? J Antimicrob Chemother 2005; 56:259-61. [PMID: 15967769 DOI: 10.1093/jac/dki195] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance is a key issue affecting public health, and diagnostic bacteriology laboratories are essential for prompt recognition of resistant isolates. Determination of susceptibility or resistance using phenotypic tests is a 'gold standard' against which newer technologies are compared in terms of performance, cost and ease of use. Molecular methods for detecting resistance are myriad, and are used widely in academia and in reference laboratories, but gaining a significant foothold in diagnostic laboratories is proving more difficult. However, if used widely in a diagnostic setting, these techniques would impact more directly on patient care and would be valuable infection control tools, e.g. by rapidly confirming patients colonized by resistant bacteria. The cost of molecular assays may be considered prohibitive, and this is compounded by the daunting variety of proprietary platforms available; most diagnostic laboratories would prefer to invest their capital and to train their staff in a single versatile technology. In a market that has no clear leader, many laboratories are understandably reluctant to gamble on making the correct choice. If molecular detection of resistance is to achieve wide acceptance, manufacturers must broaden the repertoires of their technologies, develop more off-the-shelf applications with in-built quality control, and make them suitable for laboratory personnel with no specialist expertise in molecular biology.
Collapse
Affiliation(s)
- Neil Woodford
- Antibiotic Resistance Monitoring and Reference Laboratory, Centre for Infections, Health Protection Agency, 61 Colindale Avenue, London NW9 5HT, UK.
| | | |
Collapse
|
17
|
Barlaan EA, Sugimori M, Furukawa S, Takeuchi K. Profiling and monitoring of microbial populations by denaturing high-performance liquid chromatography. J Microbiol Methods 2005; 61:399-412. [PMID: 15767016 DOI: 10.1016/j.mimet.2005.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 11/25/2004] [Accepted: 01/11/2005] [Indexed: 10/25/2022]
Abstract
We describe a new molecular technique for the analysis of microbial species and complex microbial populations based on the separation of PCR-amplified 16S rDNA fragments by denaturing high-performance liquid chromatography (DHPLC). Using marine bacterial samples, we determined the optimum conditions for the analysis of bacterial species and the examination of complex bacterial assemblages obtained from different environments. The incorporation of a 40-bp GC clamp into the amplification primer was essential to effectively discriminate genetic differences in DHPLC-primers with a 20-, 10-, or 0-bp GC clamp length were less efficient. A 64.5 degrees C column temperature in DHPLC allowed optimal separation of species in a complex bacterial population. PCR-DHPLC analysis of bacterial assemblages demonstrated profiles with distinguishable peaks, which constituted the different populations and their degree of abundance. Fraction collection and DNA sequencing from profile peaks enabled bacterial identification. PCR-DHPLC analysis can also provide opportunities for describing bacterial communities, cloning bacteria, and monitoring bacterial populations in environments of interest.
Collapse
Affiliation(s)
- Edward A Barlaan
- Nagasaki Industrial Promotion Foundation, Ikeda 2-1303-8, Omura City Nagasaki 856-0026, Japan.
| | | | | | | |
Collapse
|
18
|
Canu A, Abbas A, Malbruny B, Sichel F, Leclercq R. Denaturing high-performance liquid chromatography detection of ribosomal mutations conferring macrolide resistance in gram-positive cocci. Antimicrob Agents Chemother 2004; 48:297-304. [PMID: 14693554 PMCID: PMC310208 DOI: 10.1128/aac.48.1.297-304.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in genes coding for L4 (rplD) or L22 (rplV) ribosomal proteins or in 23S rRNA (rrl gene) are reported as a cause of macrolide resistance in streptococci and staphylococci. This study was aimed at evaluating a denaturing high-performance liquid chromatography (DHPLC) technique as a rapid mutation screening method. Portions of these genes were amplified by PCR from total DNA of 48 strains of Streptococcus pneumoniae (n = 22), Staphylococcus aureus (n = 16), Streptococcus pyogenes (n = 6), Streptococcus oralis (n = 2), and group G streptococcus (n = 2). Thirty-seven of these strains were resistant to macrolides and harbored one or several mutations in one or two of the target genes, and 11 were susceptible. PCR products were analyzed by DHPLC. All mutations were detected, except a point mutation in a pneumococcal rplD gene. The method detected one mutated rrl copy out of six in S. aureus. This automated method is promising for screening of mutations involved in macrolide resistance in gram-positive cocci.
Collapse
Affiliation(s)
- Annie Canu
- UFR des Sciences Pharmaceutiques, Groupe Régional d'Etudes sur le Cancer, Université de Caen/Basse-Normandie, France
| | | | | | | | | |
Collapse
|