1
|
Bacterial agents (3rd section). Transfusion 2024; 64 Suppl 1:S208-S242. [PMID: 38394040 DOI: 10.1111/trf.17693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/25/2024]
|
2
|
Parise CM, Bai Y, Brandt KS, Ford SL, Maes S, Replogle AJ, Kneubehl AR, Lopez JE, Eisen RJ, Hojgaard A. A serological assay to detect and differentiate rodent exposure to soft tick and hard tick relapsing fever infections in the United States. Ticks Tick Borne Dis 2023; 14:102167. [PMID: 36965260 PMCID: PMC10956445 DOI: 10.1016/j.ttbdis.2023.102167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
Human cases of relapsing fever (RF) in North America are caused primarily by Borrelia hermsii and Borrelia turicatae, which are spread by argasid (soft) ticks, and by Borrelia miyamotoi, which is transmitted by ixodid (hard) ticks. In some regions of the United States, the ranges of the hard and soft tick RF species are known to overlap; in many areas, recorded ranges of RF spirochetes overlap with Lyme disease (LD) group Borrelia spirochetes. Identification of RF clusters or cases detected in unusual geographic localities might prompt public health agencies to investigate environmental exposures, enabling prevention of additional cases through locally targeted mitigation. However, exposure risks and mitigation strategies differ among hard and soft tick RF, prompting a need for additional diagnostic strategies that differentiate hard tick from soft tick RF. We evaluated the ability of new and previously described recombinant antigens in serological assays to differentiate among prior exposures in mice to LD, soft or hard tick RF spirochetes. We extracted whole-cell protein lysates from RF Borrelia cultures and synthesized six recombinant RF antigens (Borrelia immunogenic protein A (BipA) derived from four species of RF Borrelia, glycerophosphodiester phosphodiesterase (GlpQ), and Borrelia miyamotoi membrane antigen A (BmaA)) to detect reactivity in laboratory derived (Peromyscus sp. and Mus sp.) mouse serum infected with RF and LD Borrelia species. Among 44 Borrelia exposed mouse samples tested, all five mice exposed to LD spirochetes were correctly differentiated from the 39 mice exposed to RF Borrelia using the recombinant targets. Of the 39 mice exposed to RF spirochetes, 28 were accurately categorized to species of exposure (71%). Segregation among soft tick RF species (Borrelia hermsii, Borrelia parkeri and Borrelia turicatae) was inadequate (58%) owing to observed cross-reactivity among recombinant BipA protein targets. However, among the 28 samples accurately separated to species, all were accurately assigned to soft tick or hard tick RF type. Although not adequately specific to accurately categorize exposure to soft tick RF species, the recombinant BipA protein targets from soft and hard tick RF species show utility in accurately discriminating mouse exposures to LD or RF Borrelia, and accurately segregate hard tick from soft tick RF Borrelia exposure.
Collapse
Affiliation(s)
- Christina M Parise
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Ying Bai
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Kevin S Brandt
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Shelby L Ford
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Sarah Maes
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Adam J Replogle
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Alexander R Kneubehl
- Department of Pediatrics, National School of Tropical Medicine at Baylor College of Medicine One Baylor Plaza, BCM113, Houston, TX 77030, USA
| | - Job E Lopez
- Department of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine at Baylor College of Medicine One Baylor Plaza, BCM113, Houston, TX 77030, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Andrias Hojgaard
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA.
| |
Collapse
|
3
|
Armstrong BA, Brandt KS, Goodrich I, Gilmore RD. Evaluation of Immunocompetent Mouse Models for Borrelia miyamotoi Infection. Microbiol Spectr 2023; 11:e0430122. [PMID: 36715531 PMCID: PMC10100797 DOI: 10.1128/spectrum.04301-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
Borrelia miyamotoi is a relapsing fever spirochete that is harbored by Ixodes spp. ticks and is virtually uncharacterized, compared to other relapsing fever Borrelia vectored by Ornithodoros spp. ticks. There is not an immunocompetent mouse model for studying B. miyamotoi infection in vivo or for transmission in the vector-host cycle. Our goal was to evaluate B. miyamotoi infections in multiple mouse breeds/strains as a prelude to the ascertainment of the best experimental infection model. Two B. miyamotoi strains, namely, LB-2001 and CT13-2396, as well as three mouse models, namely, CD-1, C3H/HeJ, and BALB/c, were evaluated. We were unable to observe B. miyamotoi LB-2001 spirochetes in the blood via darkfield microscopy or to detect DNA via real-time PCR post needle inoculation in the CD-1 and C3H/HeJ mice. However, LB-2001 DNA was detected via real-time PCR in the blood of the BALB/c mice after needle inoculation, although spirochetes were not observed via microscopy. CD-1, C3H/HeJ, and BALB/c mice generated an antibody response to B. miyamotoi LB-2001 following needle inoculation, but established infections were not detected, and the I. scapularis larvae failed to acquire spirochetes from the exposed CD-1 mice. In contrast, B. miyamotoi CT13-2396 was visualized in the blood of the CD-1 and C3H/HeJ mice via darkfield microscopy and detected by real-time PCR post needle inoculation. Both mouse strains seroconverted. However, no established infection was detected in the mouse organs, and the I. scapularis larvae failed to acquire Borrelia after feeding on CT13-2396 exposed CD-1 or C3H/HeJ mice. These findings underscore the challenges in establishing an experimental B. miyamotoi infection model in immunocompetent laboratory mice. IMPORTANCE Borrelia miyamotoi is a causative agent of hard tick relapsing fever, was first identified in the early 1990s, and was characterized as a human pathogen in 2011. Unlike other relapsing fever Borrelia species, B. miyamotoi spread by means of Ixodes ticks. The relatively recent recognition of this human pathogen means that B. miyamotoi is virtually uncharacterized, compared to other Borrelia species. Currently there is no standard mouse-tick model with which to study the interactions of the pathogen within its vector and hosts. We evaluated two B. miyamotoi isolates and three immunocompetent mouse models to identify an appropriate model with which to study tick-host-pathogen interactions. With the increased prevalence of human exposure to Ixodes ticks, having an appropriate model with which to study B. miyamotoi will be critical for the future development of diagnostics and intervention strategies.
Collapse
Affiliation(s)
- Brittany A. Armstrong
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Kevin S. Brandt
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Irina Goodrich
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Robert D. Gilmore
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Jakab Á, Kahlig P, Kuenzli E, Neumayr A. Tick borne relapsing fever - a systematic review and analysis of the literature. PLoS Negl Trop Dis 2022; 16:e0010212. [PMID: 35171908 PMCID: PMC8887751 DOI: 10.1371/journal.pntd.0010212] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/01/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Tick borne relapsing fever (TBRF) is a zoonosis caused by various Borrelia species transmitted to humans by both soft-bodied and (more recently recognized) hard-bodied ticks. In recent years, molecular diagnostic techniques have allowed to extend our knowledge on the global epidemiological picture of this neglected disease. Nevertheless, due to the patchy occurrence of the disease and the lack of large clinical studies, the knowledge on several clinical aspects of the disease remains limited. In order to shed light on some of these aspects, we have systematically reviewed the literature on TBRF and summarized the existing data on epidemiology and clinical aspects of the disease. Publications were identified by using a predefined search strategy on electronic databases and a subsequent review of the reference lists of the obtained publications. All publications reporting patients with a confirmed diagnosis of TBRF published in English, French, Italian, German, and Hungarian were included. Maps showing the epidemiogeographic mosaic of the different TBRF Borrelia species were compiled and data on clinical aspects of TBRF were analysed. The epidemiogeographic mosaic of TBRF is complex and still continues to evolve. Ticks harbouring TBRF Borrelia have been reported worldwide, with the exception of Antarctica and Australia. Although only molecular diagnostic methods allow for species identification, microscopy remains the diagnostic gold standard in most clinical settings. The most suggestive symptom in TBRF is the eponymous relapsing fever (present in 100% of the cases). Thrombocytopenia is the most suggestive laboratory finding in TBRF. Neurological complications are frequent in TBRF. Treatment is with beta-lactams, tetracyclines or macrolids. The risk of Jarisch-Herxheimer reaction (JHR) appears to be lower in TBRF (19.3%) compared to louse-borne relapsing fever (LBRF) (55.8%). The overall case fatality rate of TBRF (6.5%) and LBRF (4-10.2%) appears to not differ. Unlike LBRF, where perinatal fatalities are primarily attributable to abortion, TBRF-related perinatal fatalities appear to primarily affect newborns.
Collapse
Affiliation(s)
- Ákos Jakab
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascal Kahlig
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Esther Kuenzli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andreas Neumayr
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Department of Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Queensland, Australia
| |
Collapse
|
5
|
Simultaneous Detection and Differentiation of Clinically Relevant Relapsing Fever Borrelia with Semimultiplex Real-Time PCR. J Clin Microbiol 2021; 59:e0298120. [PMID: 33910966 DOI: 10.1128/jcm.02981-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial vector-borne diseases, including Borrelia species, present a significant diagnostic, clinical, and public health challenge due to their overlapping symptoms and the breadth of causative agents and arthropod vectors. The relapsing fever (RF) borreliae encompass both established and emerging pathogens and are transmitted to humans by soft ticks, hard ticks, or lice. We developed a real-time semimultiplex PCR assay that detects multiple RF borreliae causing human illness and classifies them into one of three groups. The groups are based on genetic similarity and include agents of soft-tick relapsing fever (Borrelia hermsii and others), the emerging hard-tick-transmitted pathogen B. miyamotoi, and the agent of louse-borne relapsing fever (B. recurrentis). The real-time PCR assay uses a single primer pair designed to amplify all known pathogenic RF borreliae and multiple TaqMan probes to allow the detection of and differentiation among the three groups. The assay detects all RF borreliae tested, with an analytical limit of detection below 15 genome equivalents per reaction. Thirty isolates of RF borreliae encompassing six species were accurately identified. Thirty-nine of 41 residual specimens (EDTA whole blood, serum, or plasma) from patients with RF were detected and correctly classified. None of 42 clinical samples from patients with other infections and 46 culture specimens from non-RF bacteria were detected. The development of a single-assay real-time PCR approach will help to improve the diagnosis of RF by simplifying the selection of tests to aid in the clinical management of acutely ill RF patients.
Collapse
|
6
|
Campbell SB, Klioueva A, Taylor J, Nelson C, Tomasi S, Replogle A, Kwit N, Sexton C, Schwartz A, Hinckley A. Evaluating the risk of tick-borne relapsing fever among occupational cavers-Austin, TX, 2017. Zoonoses Public Health 2019; 66:579-586. [PMID: 31152496 DOI: 10.1111/zph.12588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 11/28/2022]
Abstract
Tick-borne relapsing fever (TBRF) is a potentially serious spirochetal infection caused by certain species of Borrelia and acquired through the bite of Ornithodoros ticks. In 2017, Austin Public Health, Austin, TX, identified five cases of febrile illness among employees who worked in caves. A cross-sectional serosurvey and interview were conducted for 44 employees at eight organizations that conduct cave-related work. Antibodies against TBRF-causing Borrelia were detected in the serum of five participants, four of whom reported recent illness. Seropositive employees entered significantly more caves (Median 25 [SD: 15] versus Median 4 [SD: 16], p = 0.04) than seronegative employees. Six caves were entered more frequently by seropositive employees posing a potentially high risk. Several of these caves were in public use areas and were opened for tours. Education of area healthcare providers about TBRF and prevention recommendations for cavers and the public are advised.
Collapse
Affiliation(s)
| | | | | | - Christina Nelson
- Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Suzanne Tomasi
- Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Adam Replogle
- Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Natalie Kwit
- Centers for Disease Control and Prevention, Fort Collins, Colorado
| | | | - Amy Schwartz
- Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Alison Hinckley
- Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
7
|
Talagrand-Reboul E, Boyer PH, Bergström S, Vial L, Boulanger N. Relapsing Fevers: Neglected Tick-Borne Diseases. Front Cell Infect Microbiol 2018; 8:98. [PMID: 29670860 PMCID: PMC5893795 DOI: 10.3389/fcimb.2018.00098] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
Relapsing fever still remains a neglected disease and little is known on its reservoir, tick vector and physiopathology in the vertebrate host. The disease occurs in temperate as well as tropical countries. Relapsing fever borreliae are spirochaetes, members of the Borreliaceae family which also contain Lyme disease spirochaetes. They are mainly transmitted by Ornithodoros soft ticks, but some species are vectored by ixodid ticks. Traditionally a Borrelia species is associated with a specific vector in a particular geographical area. However, new species are regularly described, and taxonomical uncertainties deserve further investigations to better understand Borrelia vector/host adaptation. The medical importance of Borrelia miyamotoi, transmitted by Ixodes spp., has recently spawned new interest in this bacterial group. In this review, recent data on tick-host-pathogen interactions for tick-borne relapsing fevers is presented, with special focus on B. miyamotoi.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Pierre H. Boyer
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Laurence Vial
- CIRAD BIOS, UMR15 CIRAD/Institut National de la Recherche Agronomique “Contrôle des Maladies Animales Exotiques et Emergentes,” Equipe “Vecteurs,” Campus International de Baillarguet, Montpellier, France
| | - Nathalie Boulanger
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
- Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| |
Collapse
|
8
|
Kotlyar S. Tick-Borne Relapsing Fever in Southwest Colorado: A Case Report. J Emerg Med 2017; 52:83-85. [PMID: 27650717 DOI: 10.1016/j.jemermed.2016.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 06/02/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Tick-borne relapsing fever (TBRF) is a zoonosis caused by spirochetes of the genus Borrelia. The zoonosis is endemic in higher-elevation coniferous forests of the western United States. CASE REPORT We discuss the case of a 44-year-old male residing in the San Juan Mountains of Western Colorado who presented with fever, myalgia, vomiting, and "violent chills" to an emergency department. Laboratory studies were notable for bandemia and thrombocytopenia with mild hyperbilirubinemia. Peripheral smear demonstrated multiple Borrelia spirochetes. The patient was treated with parenteral ceftriaxone and discharged with oral doxycycline therapy and recovered uneventfully. We discuss the clinical and epidemiological features of TBRF and the salient points for clinical diagnosis and management of this rare but important disease entity. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: TBRF is a rare and potentially life-threatening infectious process, which presents with nonspecific findings and often poses a diagnostic challenge. TBRF should be considered in the differential diagnosis for patients residing or vacationing in high-altitude forested areas in the western United States.
Collapse
Affiliation(s)
- Simon Kotlyar
- Telluride Medical Center, Telluride, CO; Montrose Memorial Hospital, Montrose, CO
| |
Collapse
|
9
|
Johnson TL, Fischer RJ, Raffel SJ, Schwan TG. Host associations and genomic diversity of Borrelia hermsii in an endemic focus of tick-borne relapsing fever in western North America. Parasit Vectors 2016; 9:575. [PMID: 27832805 PMCID: PMC5105259 DOI: 10.1186/s13071-016-1863-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/31/2016] [Indexed: 11/30/2022] Open
Abstract
Background An unrecognized focus of tick-borne relapsing fever caused by Borrelia hermsii was identified in 2002 when five people became infected on Wild Horse Island in Flathead Lake, Montana. The terrestrial small mammal community on the island is composed primarily of pine squirrels (Tamiasciurus hudsonicus) and deer mice (Peromyscus maniculatus), neither of which was known as a natural host for the spirochete. Thus a 3-year study was performed to identify small mammals as hosts for B. hermsii. Methods Small mammals were captured alive on two island and three mainland sites, blood samples were collected and examined for spirochetes, and serological tests performed to detect anti-B. hermsii antibodies. Ornithodoros hermsi ticks were collected and fed on laboratory mice to assess infection. Genomic DNA samples from spirochetes isolated from infected mammals and ticks were analyzed by multilocus sequence typing. Results Eighteen pine squirrels and one deer mouse had detectable spirochetemias when captured, from which 12 isolates of B. hermsii were established. Most pine squirrels were seropositive, and the five species of sciurids combined had a significantly higher prevalence of seropositive animals than did the other six small mammal species captured. The greater diversity of small mammals on the mainland in contrast to the islands demonstrated that other species in addition to pine squirrels were also involved in the maintenance of B. hermsii at Flathead Lake. Ornithodoros hermsi ticks produced an additional 12 isolates of B. hermsii and multilocus sequence typing identified both genomic groups of B. hermsii described previously, and identified a new genomic subdivision. Experimental infections of deer mice with two strains of B. hermsii demonstrated that these animals were susceptible to infection with spirochetes belonging to Genomic Group II but not Genomic Group I. Conclusions Pine squirrels are the primary hosts for the maintenance of B. hermsii on the islands in Flathead Lake, however serological evidence showed that numerous additional species are also involved on the mainland. Future studies testing the susceptibility of several small mammal species to infection with different genetic types of B. hermsii will help define their role as hosts in this and other endemic foci.
Collapse
Affiliation(s)
- Tammi L Johnson
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.,Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Robert J Fischer
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.,Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sandra J Raffel
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tom G Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
10
|
Abstract
Relapsing fever borreliae were notorious and feared infectious agents that earned their place in history through their devastating impact as causes of both epidemic and endemic infection. They are now considered more as an oddity, and their burden of infection is largely overshadowed by other infections such as malaria, which presents in a similar clinical way. Despite this, they remain the most common bacterial infection in some developing countries. Transmitted by soft ticks or lice, these fascinating spirochetes have evolved a myriad of mechanisms to survive within their diverse environments.
Collapse
Affiliation(s)
- Sally J Cutler
- School of Health, Sport and Bioscience, University of East London, London E15 4LZ, UK.
| |
Collapse
|
11
|
Affiliation(s)
- Gwenn Skar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE
| | - Jessica Snowden
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
12
|
Christensen J, Fischer RJ, McCoy BN, Raffel SJ, Schwan TG. Tickborne relapsing fever, Bitterroot Valley, Montana, USA. Emerg Infect Dis 2015; 21:217-23. [PMID: 25625502 PMCID: PMC4313656 DOI: 10.3201/eid2102.141276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In July 2013, a resident of the Bitterroot Valley in western Montana, USA, contracted tickborne relapsing fever caused by an infection with the spirochete Borrelia hermsii. The patient's travel history and activities before onset of illness indicated a possible exposure on his residential property on the eastern side of the valley. An onsite investigation of the potential exposure site found the vector, Ornithodoros hermsi ticks, and 1 chipmunk infected with spirochetes, which on the basis of multilocus sequence typing were identical to the spirochete isolated from the patient. Field studies in other locations found additional serologic evidence and an infected tick that demonstrated a wider distribution of spirochetes circulating among the small mammal populations. Our study demonstrates that this area of Montana represents a previously unrecognized focus of relapsing fever and poses a risk for persons of acquiring this tickborne disease.
Collapse
|
13
|
Nieto NC, Teglas MB. Relapsing fever group Borrelia in Southern California rodents. JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:1029-1034. [PMID: 25276933 DOI: 10.1603/me14021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Wild rodent reservoir host species were surveyed prospectively for infection with Borrelia hermsii, the causative agent of tick-borne relapsing fever in the western United States. Trapping occurred during the summer of 2009-2012 at field sites surrounding Big Bear Lake, CA, a region where human infection has been reported for many years. Using quantitative polymerase chain reaction (qPCR), we tested 207 rodents from 11 species and found chipmunks (Tamias spp.) and a woodrat (Neotoma macrotis) infected. Chipmunks represented the majority of captures at these sites. Sixteen of the 207 (7.7%; CI = 4.6-12.4) animals were qPCR-positive for Borrelia spp. associated with relapsing fever, and of those, we obtained bacterial DNA sequences from eight. The phylogram made from these sequences depict a clear association with B. hermsii genomic group I. In addition, we identified an infection with Borrelia coriaceae in a Tamias merriami, a potentially nonpathogenic member of the tick-borne relapsing fever group. Our findings support the hypothesis that chipmunk species play an important role in the maintenance of Borrelia species that cause tick-borne relapsing fever in the western United States, and therefore the risk of infection to people.
Collapse
|
14
|
Kelly AL, Raffel SJ, Fischer RJ, Bellinghausen M, Stevenson C, Schwan TG. First isolation of the relapsing fever spirochete, Borrelia hermsii, from a domestic dog. Ticks Tick Borne Dis 2013; 5:95-9. [PMID: 24252262 DOI: 10.1016/j.ttbdis.2013.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/16/2013] [Accepted: 08/29/2013] [Indexed: 11/17/2022]
Abstract
In North America, tick-borne relapsing fever of humans is most frequently caused by infection with the spirochete Borrelia hermsii. Prior to our investigation, this spirochete was not known to infect dogs although another species, Borrelia turicatae, has been isolated from domestic canids in Florida and Texas. A clinically ill dog in Washington, USA, was spirochetemic upon examination. Spirochetes were isolated from the dog's serum and examined by PCR and multi-locus sequence typing. DNA sequences for 7 loci all typed the spirochete as B. hermsii and a member of genomic group II of this species. Therefore, companion dogs that reside in rustic cabins in higher elevation forests are at risk of infection with B. hermsii.
Collapse
Affiliation(s)
- Ashley L Kelly
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Sandra J Raffel
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Robert J Fischer
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | | - Connie Stevenson
- Phoenix Central Laboratories for Veterinarians, Mukilteo, WA, USA
| | - Tom G Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA.
| |
Collapse
|
15
|
Fritz CL, Payne JR, Schwan TG. Serologic evidence for Borrelia hermsii infection in rodents on federally owned recreational areas in California. Vector Borne Zoonotic Dis 2013; 13:376-81. [PMID: 23488454 PMCID: PMC3669604 DOI: 10.1089/vbz.2012.1137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tick-borne relapsing fever (TBRF) is endemic in mountainous regions of the western United States. In California, the principal agent is the spirochete Borrelia hermsii, which is transmitted by the argasid tick Ornithodoros hermsi. Humans are at risk of TBRF when infected ticks leave an abandoned rodent nest in quest of a blood meal. Rodents are the primary vertebrate hosts for B. hermsii. Sciurid rodents were collected from 23 sites in California between August, 2006, and September, 2008, and tested for serum antibodies to B. hermsii by immunoblot using a whole-cell sonicate and a specific antigen, glycerophosphodiester phosphodiesterase (GlpQ). Antibodies were detected in 20% of rodents; seroprevalence was highest (36%) in chipmunks (Tamias spp). Seroprevalence in chipmunks was highest in the Sierra Nevada (41%) and Mono (43%) ecoregions and between 1900 and 2300 meters elevation (43%). The serological studies described here are effective in implicating the primary vertebrate hosts involved in the maintenance of the ticks and spirochetes in regions endemic for TBRF.
Collapse
Affiliation(s)
- Curtis L Fritz
- Infectious Diseases Branch, Division of Communicable Disease Control, California Department of Public Health, Sacramento, California, USA.
| | | | | |
Collapse
|
16
|
Schwan TG, Anderson JM, Lopez JE, Fischer RJ, Raffel SJ, McCoy BN, Safronetz D, Sogoba N, Maïga O, Traoré SF. Endemic foci of the tick-borne relapsing fever spirochete Borrelia crocidurae in Mali, West Africa, and the potential for human infection. PLoS Negl Trop Dis 2012; 6:e1924. [PMID: 23209863 PMCID: PMC3510061 DOI: 10.1371/journal.pntd.0001924] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/12/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Tick-borne relapsing fever spirochetes are maintained in endemic foci that involve a diversity of small mammals and argasid ticks in the genus Ornithodoros. Most epidemiological studies of tick-borne relapsing fever in West Africa caused by Borrelia crocidurae have been conducted in Senegal. The risk for humans to acquire relapsing fever in Mali is uncertain, as only a few human cases have been identified. Given the high incidence of malaria in Mali, and the potential to confuse the clinical diagnosis of these two diseases, we initiated studies to determine if there were endemic foci of relapsing fever spirochetes that could pose a risk for human infection. METHODOLOGY/PRINCIPAL FINDINGS We investigated 20 villages across southern Mali for the presence of relapsing fever spirochetes. Small mammals were captured, thin blood smears were examined microscopically for spirochetes, and serum samples were tested for antibodies to relapsing fever spirochetes. Ornithodoros sonrai ticks were collected and examined for spirochetal infection. In total, 11.0% of the 663 rodents and 14.3% of the 63 shrews tested were seropositive and 2.2% of the animals had active spirochete infections when captured. In the Bandiagara region, the prevalence of infection was higher with 35% of the animals seropositive and 10% infected. Here also Ornithodoros sonrai were abundant and 17.3% of 278 individual ticks tested were infected with Borrelia crocidurae. Fifteen isolates of B. crocidurae were established and characterized by multi-locus sequence typing. CONCLUSIONS/SIGNIFICANCE The potential for human tick-borne relapsing fever exists in many areas of southern Mali.
Collapse
Affiliation(s)
- Tom G. Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
- * E-mail:
| | - Jennifer M. Anderson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Twinbrook, Maryland, United States of America
| | - Job E. Lopez
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Robert J. Fischer
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Sandra J. Raffel
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Brandi N. McCoy
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - David Safronetz
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Nafomon Sogoba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ousmane Maïga
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sékou F. Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
17
|
Nieto NC, Teglas MB, Stewart KM, Wasley T, Wolff PL. Detection of Relapsing Fever Spirochetes (Borrelia hermsiiandBorrelia coriaceae) in Free-Ranging Mule Deer (Odocoileus hemionus) from Nevada, United States. Vector Borne Zoonotic Dis 2012; 12:99-105. [DOI: 10.1089/vbz.2011.0716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nathan C. Nieto
- Department of Animal Biotechnology, University of Nevada, Reno, Nevada
| | - Mike B. Teglas
- Department of Animal Biotechnology, University of Nevada, Reno, Nevada
| | - Kelley M. Stewart
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada
| | | | | |
Collapse
|
18
|
Cotransmission of divergent relapsing fever spirochetes by artificially infected Ornithodoros hermsi. Appl Environ Microbiol 2011; 77:8494-9. [PMID: 21965393 DOI: 10.1128/aem.05830-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soft tick Ornithodoros hermsi, which ranges in specific arboreal zones of western North America, acts as a vector for the relapsing fever spirochete Borrelia hermsii. Two genomic groups (genomic group I [GGI] and GGII) of B. hermsii are differentiated by multilocus sequence typing yet are codistributed in much of the vector's range. To test whether the tick vector can be infected via immersion, noninfected, colony-derived O. hermsi larvae were exposed to reduced-humidity conditions before immersion in culture suspensions of several GGI and GGII isolates. We tested for spirochetes in ticks by immunofluorescence microscopy and in mouse blood by quantitative PCR of the vtp locus to differentiate spirochete genotypes. The immersed larval ticks were capable of spirochete transmission to mice at the first nymphal feeding. Tick infection with mixed cultures of isolates DAH (vtp-6) (GGI) and MTW-2 (vtp-5) (GGII) resulted in ticks that caused spirochetemias in mice consisting of MTW-2 or both DAH and MTW-2. These findings show that this soft tick species can acquire B. hermsii by immersion in spirochete suspensions, that GGI and GGII isolates can coinfect the tick vector by this method, and that these spirochetes can be cotransmitted to a rodent host.
Collapse
|
19
|
Genetic transformation of the relapsing fever spirochete Borrelia hermsii: stable integration and expression of green fluorescent protein from linear plasmid 200. J Bacteriol 2011; 193:3241-5. [PMID: 21551306 DOI: 10.1128/jb.05037-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tick-borne relapsing fever (TBRF) is a spirochetal disease caused by at least 15 different Borrelia species. It is a serious human health concern in regions of endemicity throughout the world. Transmission to humans occurs through the bites of infected Ornithodoros ticks. In North America, the primary Borrelia species associated with human disease are B. hermsii and B. turicatae. Direct demonstration of the role of putative TBRF spirochete virulence factors in the disease process has been hindered by the lack of a genetic manipulation system and complete genome sequences. Expanding on recent developments in these areas, here we demonstrate the successful generation of a clone of B. hermsii YOR that constitutively produces green fluorescent protein (GFP) (B. hermsii YOR::kan gfp). This strain was generated through introduction of a kan-gfp cassette into a noncoding region of the 200-kb B. hermsii linear plasmid lp200. Genetic manipulation did not affect the growth rate or trigger the loss of native plasmids. B. hermsii YOR::kan gfp retained infectivity and elicited host seroconversion. Stable production of GFP was demonstrated both in vitro and in vivo. This study represents a significant step forward in the development of tools that can be employed to study the virulence mechanisms of TBRF spirochetes.
Collapse
|
20
|
Meerburg BG, Singleton GR, Kijlstra A. Rodent-borne diseases and their risks for public health. Crit Rev Microbiol 2009; 35:221-70. [DOI: 10.1080/10408410902989837] [Citation(s) in RCA: 455] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Identification of an antiparallel coiled-coil/loop domain required for ligand binding by the Borrelia hermsii FhbA protein: additional evidence for the role of FhbA in the host-pathogen interaction. Infect Immun 2008; 76:2113-22. [PMID: 18299341 DOI: 10.1128/iai.01266-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Borrelia hermsii, an etiological agent of tick-borne relapsing fever in North America, binds host-derived serum proteins including factor H (FH), plasminogen, and an unidentified 60-kDa protein via its FhbA protein. Two distinct phylogenetic types of FhbA have been delineated (FhbA1 and FhbA2). These orthologs share a conserved C-terminal domain that contains two alpha helices with a high predictive probability of coiled-coil formation that are separated by a 14-amino-acid loop domain. Through site-directed mutagenesis, we have identified residues within these domains that influence the binding of both mouse and human FH, plasminogen, and/or the 60-kDa protein. To further investigate the involvement of FhbA in the host-pathogen interaction, strains that are either FhbA(+) (isolate YOR) or FhbA(-) (isolate REN) were tested for serum sensitivity. Significant differences were observed, with YOR and REN being serum resistant and serum sensitive (intermediate), respectively. To test the abilities of these strains to infect and persist in mice, mice were needle inoculated, and infectivity and persistence were then assessed. While both strains REN and YOR infected mice, only the FhbA(+) YOR strain persisted beyond day 4. Survival of the YOR isolate in blood correlated with the upregulation of the fhbA gene, as demonstrated by real-time reverse transcriptase PCR. These data advance our understanding of the unique interactions of FhbA with individual serum proteins and provide support for the hypothesis that FhbA is an important contributor to the pathogenesis of the relapsing fever spirochete B. hermsii.
Collapse
|
22
|
Abstract
Borrelia hermsii is the most common cause of tickborne relapsing fever in North America. DNA sequences of the 16S-23S rDNA noncoding intergenic spacer (IGS) region were determined for 37 isolates of this spirochete. These sequences distinguished the 2 genomic groups of B. hermsii identified previously with other loci. Multiple IGS genotypes were identified among isolates from an island, which suggested that birds might play a role in dispersing these spirochetes in nature. In support of this theory, all stages of the tick vector Ornithodoros hermsi fed successfully on birds in the laboratory and advanced in their life cycle. B. hermsii produced a detectable spirochetemia in 1 chicken inoculated subcutaneously. Additional work is warranted to explore the role of birds as enzootic hosts for this relapsing fever spirochete.
Collapse
Affiliation(s)
- Tom G Schwan
- National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | | | | | |
Collapse
|
23
|
Hovis KM, Schriefer ME, Bahlani S, Marconi RT. Immunological and molecular analyses of the Borrelia hermsii factor H and factor H-like protein 1 binding protein, FhbA: demonstration of its utility as a diagnostic marker and epidemiological tool for tick-borne relapsing fever. Infect Immun 2006; 74:4519-29. [PMID: 16861638 PMCID: PMC1539583 DOI: 10.1128/iai.00377-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been demonstrated that Borrelia hermsii, a causative agent of relapsing fever, produces a factor H (FH) and FH-like protein 1 (FHL-1) binding protein. The binding protein has been designated FhbA. To determine if FH/FHL-1 binding is widespread among B. hermsii isolates, a diverse panel of strains was tested for the FH/FHL-1 binding phenotype and FhbA production. Most isolates (23/24) produced FhbA and bound FH/FHL-1. Potential variation in FhbA among isolates was analyzed by DNA sequence analyses. Two genetically distinct FhbA types, designated fhbA1 and fhbA2, were delineated, and type-specific PCR primers were generated to allow for rapid differentiation. Pulsed-field gel electrophoresis and hybridization analyses demonstrated that all isolates that possess the gene carry it on a 200-kb linear plasmid (lp200), whereas isolates that lack the gene lack lp200 and instead carry an lp170. To determine if FhbA is antigenic during infection and to assess the specificity of the response, recombinant FhbA1 (rFhbA1) and rFhbA2 were screened with serum from infected mice and humans. FhbA was found to be expressed and antigenic and to elicit a potentially type-specific FhbA response. To localize the epitopes of FhbA1 and FhbA2, truncations were generated and screened with infection serum. The epitopes were determined to be conformationally defined. Collectively, these analyses indicate that FH/FHL-1 binding is a widespread virulence mechanism for B. hermsii and provide insight into the genetic and antigenic structure of FhbA. The data also have potential implications for understanding the epidemiology of relapsing fever in North America and can be applied to the future development of species-specific diagnostic tools.
Collapse
Affiliation(s)
- Kelley M Hovis
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, 1112 E. Clay St., McGuire Hall, Richmond, Virginia 23298-0678, USA
| | | | | | | |
Collapse
|
24
|
Lim LL, Rosenbaum JT. Borrelia hermsii causing relapsing Fever and uveitis. Am J Ophthalmol 2006; 142:348-9. [PMID: 16876531 DOI: 10.1016/j.ajo.2006.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 03/07/2006] [Accepted: 03/08/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE To describe a case of uveitis that is associated with Borrelia hermsii relapsing fever. DESIGN Interventional case report. METHODS A 12-year-old boy with two weeks of relapsing fevers 10 days after camping in remote eastern Oregon was examined. Borrelia hermsii immunoglobulin M and G levels were markedly elevated. Intravenous ceftriaxone, followed by four weeks of oral cephuroxime was administered, but the patient developed unilateral floaters and blurred vision in association with anterior and intermediate uveitis. RESULTS Doxycycline was administered for presumed residual infection. Four weeks later, the visual acuity had improved. The anterior chamber was quiet, and topical corticosteroid was tapered successfully. CONCLUSION Although rare, Borrelia hermsii should be included in the list of spirochetal diseases that are associated with uveitis.
Collapse
MESH Headings
- Anti-Bacterial Agents/therapeutic use
- Antibodies, Bacterial/blood
- Borrelia/immunology
- Borrelia/isolation & purification
- Ceftriaxone/therapeutic use
- Cefuroxime/therapeutic use
- Child
- Doxycycline/therapeutic use
- Drug Therapy, Combination
- Eye Infections, Bacterial/diagnosis
- Eye Infections, Bacterial/drug therapy
- Eye Infections, Bacterial/microbiology
- Humans
- Immunoglobulin G/analysis
- Immunoglobulin M/analysis
- Male
- Relapsing Fever/diagnosis
- Relapsing Fever/drug therapy
- Relapsing Fever/microbiology
- Uveitis, Anterior/diagnosis
- Uveitis, Anterior/drug therapy
- Uveitis, Anterior/microbiology
- Uveitis, Intermediate/diagnosis
- Uveitis, Intermediate/drug therapy
- Uveitis, Intermediate/microbiology
Collapse
Affiliation(s)
- Lyndell L Lim
- Ocular Inflammatory Diseases Unit, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | |
Collapse
|
25
|
Porcella SF, Raffel SJ, Anderson DE, Gilk SD, Bono JL, Schrumpf ME, Schwan TG. Variable tick protein in two genomic groups of the relapsing fever spirochete Borrelia hermsii in western North America. Infect Immun 2005; 73:6647-58. [PMID: 16177341 PMCID: PMC1230938 DOI: 10.1128/iai.73.10.6647-6658.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia hermsii is the primary cause of tick-borne relapsing fever in North America. When its tick vector, Ornithodoros hermsi, acquires these spirochetes from the blood of an infected mammal, the bacteria switch their outer surface from one of many bloodstream variable major proteins (Vmps) to a unique protein, Vtp (Vsp33). Vtp may be critical for successful tick transmission of B. hermsii; however, the gene encoding this protein has been described previously in only one isolate. Here we identified and sequenced the vtp gene in 31 isolates of B. hermsii collected over 40 years from localities throughout much of its known geographic distribution. Seven major Vtp types were found. Little or no sequence variation existed within types, but between them significant variation was observed, similar to the pattern of diversity described for the outer surface protein C (OspC) gene in Lyme disease spirochetes. The pattern of sequence relatedness among the Vtp types was incongruent in two branches compared to two genomic groups identified among the isolates by multilocus sequence typing of the 16S rRNA, flaB, gyrB, and glpQ genes. Therefore, both horizontal transfer and recombination within and between the two genomic groups were responsible for some of the variation observed in the vtp gene. O. hermsi ticks were capable of transmitting spirochetes in the newly identified genomic group. Therefore, given the longevity of the tick vector and persistent infection of spirochetes in ticks, these arthropods rather than mammals may be the likely host where the exchange of spirochetal DNA occurs.
Collapse
Affiliation(s)
- Stephen F Porcella
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Schwan TG, Raffel SJ, Schrumpf ME, Policastro PF, Rawlings JA, Lane RS, Breitschwerdt EB, Porcella SF. Phylogenetic analysis of the spirochetes Borrelia parkeri and Borrelia turicatae and the potential for tick-borne relapsing fever in Florida. J Clin Microbiol 2005; 43:3851-9. [PMID: 16081922 PMCID: PMC1233929 DOI: 10.1128/jcm.43.8.3851-3859.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 05/06/2005] [Accepted: 05/13/2005] [Indexed: 11/20/2022] Open
Abstract
Isolates of Borrelia turicatae, Borrelia parkeri, and the Florida canine borrelia (FCB) were examined to further phylogenetically characterize the identities of these spirochetes in the United States. DNA sequences of four chromosomal loci (the 16S rRNA gene, flaB, gyrB, and glpQ) were determined for eight isolates of B. turicatae and six isolates of B. parkeri, which grouped the spirochetes into two distinct but closely related taxa (>98% sequence identity) separate from Borrelia hermsii. The FCB was clearly separated with the group identified as B. turicatae, confirming this bacterium as a relapsing fever spirochete. Therefore, the potential for tick-borne relapsing fever in humans and other animals exists in Florida and future efforts are needed to determine the enzootic hosts and distribution of this spirochete in the southeastern United States. Analysis of plasmids demonstrated both linear and circular forms in B. turicatae but only linear plasmids in B. parkeri, which should be of interest to investigators concerned with plasmid diversity and evolution within this group of spirochetes.
Collapse
Affiliation(s)
- Tom G Schwan
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th St., Hamilton, MT 59840, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Guyard C, Chester EM, Raffel SJ, Schrumpf ME, Policastro PF, Porcella SF, Leong JM, Schwan TG. Relapsing fever spirochetes contain chromosomal genes with unique direct tandemly repeated sequences. Infect Immun 2005; 73:3025-37. [PMID: 15845510 PMCID: PMC1087331 DOI: 10.1128/iai.73.5.3025-3037.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome sequencing of the relapsing fever spirochetes Borrelia hermsii and Borrelia turicatae identified three open reading frames (ORFs) on the chromosomes that contained internal, tandemly repeated amino acid sequences that were absent in the Lyme disease spirochete Borrelia burgdorferi. The predicted amino acid sequences of these genes (BH0209, BH0512, and BH0553) have hydrophobic N termini, indicating that these proteins may be secreted. B. hermsii transcribed the three ORFs in vitro, and the BH0512- and BH0553-encoded proteins (PBH-512 and PBH-553) were produced in vitro and in experimentally infected mice. PBH-512 and PBH-553 were on the spirochete's outer surface, and antiserum to these proteins reduced the adherence of B. hermsii to red blood cells. PCR analyses of 28 isolates of B. hermsii and 8 isolates of B. turicatae demonstrated polymorphism in each gene correlated with the number of repeats. Serum samples from relapsing fever patients reacted with recombinant PBH-512 and PBH-553, suggesting that these proteins are produced during human infection. These polymorphic proteins may be involved in the pathogenicity of these relapsing fever spirochetes and provide a mechanism for antigenic heterogeneity within their populations.
Collapse
Affiliation(s)
- Cyril Guyard
- Rocky Mountain Laboratories, 903 S. Fourth St., Hamilton, MT 59840, USA.
| | | | | | | | | | | | | | | |
Collapse
|