1
|
Lau B, Kerr K, Camiolo S, Nightingale K, Gu Q, Antrobus R, Suárez NM, Loney C, Stanton RJ, Weekes MP, Davison AJ. Human Cytomegalovirus RNA2.7 Is Required for Upregulating Multiple Cellular Genes To Promote Cell Motility and Viral Spread Late in Lytic Infection. J Virol 2021; 95:e0069821. [PMID: 34346763 PMCID: PMC8475523 DOI: 10.1128/jvi.00698-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are frequently associated with broad modulation of gene expression and thus provide the cell with the ability to synchronize entire metabolic processes. We used transcriptomic approaches to investigate whether the most abundant human cytomegalovirus-encoded lncRNA, RNA2.7, has this characteristic. By comparing cells infected with wild-type virus (WT) to cells infected with RNA2.7 deletion mutants, RNA2.7 was implicated in regulating a large number of cellular genes late in lytic infection. Pathway analysis indicated that >100 of these genes are associated with promoting cell movement, and the 10 most highly regulated of these were validated in further experiments. Morphological analysis and live cell tracking of WT- and RNA2.7 mutant-infected cells indicated that RNA2.7 is involved in promoting the movement and detachment of infected cells late in infection, and plaque assays using sparse cell monolayers indicated that RNA2.7 is also involved in promoting cell-to-cell spread of virus. Consistent with the observation that upregulated mRNAs are relatively A+U-rich, which is a trait associated with transcript instability, and that they are also enriched in motifs associated with mRNA instability, transcriptional inhibition experiments on WT- and RNA2.7 mutant-infected cells showed that four upregulated transcripts lived longer in the presence of RNA2.7. These findings demonstrate that RNA2.7 is required for promoting cell movement and viral spread late in infection and suggest that this may be due to general stabilization of A+U-rich transcripts. IMPORTANCE In addition to messenger RNAs (mRNAs), the human genome encodes a large number of long noncoding RNAs (lncRNAs). Many lncRNAs that have been studied in detail are associated with broad modulation of gene expression and have important biological roles. Human cytomegalovirus, which is a large, clinically important DNA virus, specifies four lncRNAs, one of which (RNA2.7) is expressed at remarkably high levels during lytic infection. Our studies show that RNA2.7 is required for upregulating a large number of human genes, about 100 of which are associated with cell movement, and for promoting the movement of infected cells and the spread of virus from one cell to another. Further bioinformatic and experimental analyses indicated that RNA2.7 may exert these effects by stabilizing mRNAs that are relatively rich in A and U nucleotides. These findings increase our knowledge of how human cytomegalovirus regulates the infected cell to promote its own success.
Collapse
Affiliation(s)
- Betty Lau
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Salvatore Camiolo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
2
|
Kakuk B, Tombácz D, Balázs Z, Moldován N, Csabai Z, Torma G, Megyeri K, Snyder M, Boldogkői Z. Combined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome. Sci Rep 2021; 11:14487. [PMID: 34262076 PMCID: PMC8280142 DOI: 10.1038/s41598-021-93593-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Long-read sequencing (LRS), a powerful novel approach, is able to read full-length transcripts and confers a major advantage over the earlier gold standard short-read sequencing in the efficiency of identifying for example polycistronic transcripts and transcript isoforms, including transcript length- and splice variants. In this work, we profile the human cytomegalovirus transcriptome using two third-generation LRS platforms: the Sequel from Pacific BioSciences, and MinION from Oxford Nanopore Technologies. We carried out both cDNA and direct RNA sequencing, and applied the LoRTIA software, developed in our laboratory, for the transcript annotations. This study identified a large number of novel transcript variants, including splice isoforms and transcript start and end site isoforms, as well as putative mRNAs with truncated in-frame ORFs (located within the larger ORFs of the canonical mRNAs), which potentially encode N-terminally truncated polypeptides. Our work also disclosed a highly complex meshwork of transcriptional read-throughs and overlaps.
Collapse
Affiliation(s)
- Balázs Kakuk
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
- MTA-SZTE Momentum GeMiNI Research Group, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr, Stanford, CA, USA
| | - Zsolt Balázs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
| | - Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary
| | - Klára Megyeri
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, 6720, Hungary
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr, Stanford, CA, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4, 6720, Szeged, Hungary.
| |
Collapse
|
3
|
The Zinc Finger Antiviral Protein ZAP Restricts Human Cytomegalovirus and Selectively Binds and Destabilizes Viral UL4/ UL5 Transcripts. mBio 2021; 12:mBio.02683-20. [PMID: 33947766 PMCID: PMC8263000 DOI: 10.1128/mbio.02683-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon-stimulated gene products (ISGs) play a crucial role in early infection control. The ISG zinc finger CCCH-type antiviral protein 1 (ZAP/ZC3HAV1) antagonizes several RNA viruses by binding to CG-rich RNA sequences, whereas its effect on DNA viruses is less well understood. Here, we decipher the role of ZAP in the context of human cytomegalovirus (HCMV) infection, a β-herpesvirus that is associated with high morbidity in immunosuppressed individuals and newborns. We show that expression of the two major isoforms of ZAP, ZAP-S and ZAP-L, is induced during HCMV infection and that both negatively affect HCMV replication. Transcriptome and proteome analyses demonstrated that the expression of ZAP results in reduced viral mRNA and protein levels and decelerates the progression of HCMV infection. Metabolic RNA labeling combined with high-throughput sequencing (SLAM-seq) revealed that most of the gene expression changes late in infection result from the general attenuation of HCMV. Furthermore, at early stages of infection, ZAP restricts HCMV by destabilizing a distinct subset of viral mRNAs, particularly those from the previously uncharacterized UL4-UL6 HCMV gene locus. Through enhanced cross-linking immunoprecipitation and sequencing analysis (eCLIP-seq), we identified the transcripts expressed from this HCMV locus as the direct targets of ZAP. Moreover, our data show that ZAP preferentially recognizes not only CG, but also other cytosine-rich sequences, thereby expanding its target specificity. In summary, this report is the first to reveal direct targets of ZAP during HCMV infection, which strongly indicates that transcripts from the UL4-UL6 locus may play an important role for HCMV replication.IMPORTANCE Viral infections have a large impact on society, leading to major human and economic losses and even global instability. So far, many viral infections, including human cytomegalovirus (HCMV) infection, are treated with a small repertoire of drugs, often accompanied by the occurrence of resistant mutants. There is no licensed HCMV vaccine in sight to protect those most at risk, particularly immunocompromised individuals or pregnant women who might otherwise transmit the virus to the fetus. Thus, the identification of novel intervention strategies is urgently required. In this study, we show that ZAP decelerates the viral gene expression cascade, presumably by selectively handpicking a distinct set of viral transcripts for degradation. Our study illustrates the potent role of ZAP as an HCMV restriction factor and sheds light on a possible role for UL4 and/or UL5 early during infection, paving a new avenue for the exploration of potential targets for novel therapies.
Collapse
|
4
|
Contributions of the Human Cytomegalovirus U L30-Associated Open Reading Frames to Infection. J Virol 2021; 95:JVI.02417-20. [PMID: 33568511 DOI: 10.1128/jvi.02417-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 11/20/2022] Open
Abstract
Transposon-based insertional mutagenesis screens have assessed how disruption of numerous human cytomegalovirus (HCMV) open reading frames (ORFs) impacts in vitro viral replication. Insertional mutagenesis of the HCMV UL30 gene was previously found to substantially inhibit production of viral progeny. However, there are a number of putative UL30-associated ORFs, and it is unclear how they impact viral replication. Here, we report on the contributions of the eight UL30-associated ORFs to infection. We find that deletion of the canonically annotated UL30 ORF substantially reduces production of infectious virus at both high and low multiplicities of infection (MOI). This deletion likely has complex effects on viral replication, as we find that it reduces the expression of neighboring non-UL30-associated ORFs. Mutation of the initiating methionine of the canonical UL30 ORF indicated that it is dispensable for high- and low-MOI infection in the highly passaged AD169 strain, although it is important for low-MOI infection in the less-passaged TB40/E strain. Comutation of eight methionines in the UL30 region results in a low-MOI viral replication defect, as does mutation of the TATA box responsible for the most abundant UL30 transcript, which is found to be necessary for the accumulation of multiple UL30-associated protein isoforms during infection. In total, our data indicate the importance of the UL30-associated ORFs during low-MOI HCMV infection and further highlight the difficulty associated with the functional interrogation of broadly disruptive mutations: e.g., large deletions or transposon insertions.IMPORTANCE Viral genes and their products are the critical determinants of viral infection. Human cytomegalovirus (HCMV) encodes many gene products whose roles during viral infection have not been assessed. Elucidation of the contributions that various HCMV gene products make to infection provides insight into the infectious program, which could potentially be used to limit HCMV-associated morbidity, a major issue during congenital infection and in immunosuppressed populations. Here, we explored the role of HCMV's UL30-associated gene products and found that they are important for HCMV replication. Future work elucidating the mechanisms through which they contribute to viral infection could highlight novel avenues for therapeutic intervention.
Collapse
|
5
|
Identification and characterization of a novel group of natural anti-sense transcripts from RNA1.2 gene locus of human cytomegalovirus. Chin Med J (Engl) 2019; 132:1591-1598. [PMID: 31205077 PMCID: PMC6616230 DOI: 10.1097/cm9.0000000000000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Natural anti-sense transcripts (NATs), which are transcribed from the complementary DNA strand of annotated genes, exert regulatory function of gene expression. Increasing studies recognized anti-sense transcription widespread throughout human cytomegalovirus (HCMV) genome, whereas the anti-sense transcription of RNA1.2 gene locus has never been investigated. In this study, the transcription of the RNA1.2 anti-sense strand was investigated in clinically isolated HCMV strain. Methods: Strand-specific high-through RNA-sequencing (RNA-seq) was performed to find possible anti-sense transcripts (ASTs). For analyzing and visualization of RNA-seq data sets, Integrative Genomics Viewer software was applied. To confirm these possibilities, Northern blotting and rapid amplification of cDNA ends (RACE) were used. Results: Transcription of the opposite strand of RNA1.2 gene locus was detected by RNA-sequencing using RNAs extracted from human embryonic lung fibroblasts infected with HCMV clinical isolate HAN. At least three HCMV NATs, named RNA1.2 AST 1, RNA1.2 AST2, and RNA1.2 AST3, were characterized by Northern blotting and RACE analyses. These RNA1.2 ASTs orientated from the complementary strand of RNA1.2 locus during the late phase of HCMV infection. The 5′- and 3′-termini of these transcripts were located within the opposite sequence of the predicted RNA1.2 gene. Conclusion: A cluster of novel NATs was transcribed from the opposite sequence of the HCMV RNA1.2 gene region.
Collapse
|
6
|
Vincent HA, Ziehr B, Moorman NJ. Human Cytomegalovirus Strategies to Maintain and Promote mRNA Translation. Viruses 2016; 8:97. [PMID: 27089357 PMCID: PMC4848592 DOI: 10.3390/v8040097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 02/02/2023] Open
Abstract
mRNA translation requires the ordered assembly of translation initiation factors and ribosomal subunits on a transcript. Host signaling pathways regulate each step in this process to match levels of protein synthesis to environmental cues. In response to infection, cells activate multiple defenses that limit viral protein synthesis, which viruses must counteract to successfully replicate. Human cytomegalovirus (HCMV) inhibits host defenses that limit viral protein expression and manipulates host signaling pathways to promote the expression of both host and viral proteins necessary for virus replication. Here we review key regulatory steps in mRNA translation, and the strategies used by HCMV to maintain protein synthesis in infected cells.
Collapse
Affiliation(s)
- Heather A Vincent
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Benjamin Ziehr
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Nathaniel J Moorman
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Tombácz D, Csabai Z, Oláh P, Havelda Z, Sharon D, Snyder M, Boldogkői Z. Characterization of novel transcripts in pseudorabies virus. Viruses 2015; 7:2727-44. [PMID: 26008709 PMCID: PMC4452928 DOI: 10.3390/v7052727] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 01/20/2023] Open
Abstract
In this study we identified two 3'-coterminal RNA molecules in the pseudorabies virus. The highly abundant short transcript (CTO-S) proved to be encoded between the ul21 and ul22 genes in close vicinity of the replication origin (OriL) of the virus. The less abundant long RNA molecule (CTO-L) is a transcriptional readthrough product of the ul21 gene and overlaps OriL. These polyadenylated RNAs were characterized by ascertaining their nucleotide sequences with the Illumina HiScanSQ and Pacific Biosciences Real-Time (PacBio RSII) sequencing platforms and by analyzing their transcription kinetics through use of multi-time-point Real-Time RT-PCR and the PacBio RSII system. It emerged that transcription of the CTOs is fully dependent on the viral transactivator protein IE180 and CTO-S is not a microRNA precursor. We propose an interaction between the transcription and replication machineries at this genomic location, which might play an important role in the regulation of DNA synthesis.
Collapse
Affiliation(s)
- Dóra Tombácz
- These authors contributed equally to this work..
| | - Zsolt Csabai
- These authors contributed equally to this work..
| | - Péter Oláh
- These authors contributed equally to this work..
| | - Zoltán Havelda
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged H-6720, Hungary.
| | - Donald Sharon
- Agricultural Biotechnology Center, Institute for Plant Biotechnology, Plant Developmental Biology Group, Szent-Györgyi A. u. 4, Gödöllő H-2100, Hungary.
| | - Michael Snyder
- Agricultural Biotechnology Center, Institute for Plant Biotechnology, Plant Developmental Biology Group, Szent-Györgyi A. u. 4, Gödöllő H-2100, Hungary.
| | | |
Collapse
|
8
|
High-throughput analysis of human cytomegalovirus genome diversity highlights the widespread occurrence of gene-disrupting mutations and pervasive recombination. J Virol 2015; 89:7673-7695. [PMID: 25972543 DOI: 10.1128/jvi.00578-15] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus is a widespread pathogen of major medical importance. It causes significant morbidity and mortality in the immunocompromised and congenital infections can result in severe disabilities or stillbirth. Development of a vaccine is prioritized, but no candidate is close to release. Although correlations of viral genetic variability with pathogenicity are suspected, knowledge about strain diversity of the 235kb genome is still limited. In this study, 96 full-length human cytomegalovirus genomes from clinical isolates were characterized, quadrupling the available information for full-genome analysis. These data provide the first high-resolution map of human cytomegalovirus interhost diversity and evolution. We show that cytomegalovirus is significantly more divergent than all other human herpesviruses and highlight hotspots of diversity in the genome. Importantly, 75% of strains are not genetically intact, but contain disruptive mutations in a diverse set of 26 genes, including immunomodulative genes UL40 and UL111A. These mutants are independent from culture passaging artifacts and circulate in natural populations. Pervasive recombination, which is linked to the widespread occurrence of multiple infections, was found throughout the genome. Recombination density was significantly higher than in other human herpesviruses and correlated with strain diversity. While the overall effects of strong purifying selection on virus evolution are apparent, evidence of diversifying selection was found in several genes encoding proteins that interact with the host immune system, including UL18, UL40, UL142 and UL147. These residues may present phylogenetic signatures of past and ongoing virus-host interactions. IMPORTANCE Human cytomegalovirus has the largest genome of all viruses that infect humans. Currently, there is a great interest in establishing associations between genetic variants and strain pathogenicity of this herpesvirus. Since the number of publicly available full-genome sequences is limited, knowledge about strain diversity is highly fragmented and biased towards a small set of loci. Combined with our previous work, we have now contributed 101 complete genome sequences. We have used these data to conduct the first high-resolution analysis of interhost genome diversity, providing an unbiased and comprehensive overview of cytomegalovirus variability. These data are of major value to the development of novel antivirals and a vaccine and to identify potential targets for genotype-phenotype experiments. Furthermore, they have enabled a thorough study of the evolutionary processes that have shaped cytomegalovirus diversity.
Collapse
|
9
|
Identification of the alternative splicing of the UL49 locus of human cytomegalovirus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:280276. [PMID: 25866769 PMCID: PMC4383306 DOI: 10.1155/2015/280276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/06/2014] [Indexed: 12/04/2022]
Abstract
The UL49 ORF of human cytomegalovirus (HCMV) is essential for viral replication; conserved among all herpes viruses; however, the function is unclear. Once the UL49 ORF was precisely deleted from the start to stop codon, the mutant did not yield infectious progeny. In this study, we find out many alternatively processed ESTs in UL49 locus in HCMV-infected cells, in which there are two novel transcription termination sites in UL49 locus. Most of these ESTs are rare transcripts that contain directed repeat sequences in the intron splicing regions. There is a typical GU-AG intron splicing site in UL49Y transcripts. The 1847 bp UL49Y cDNA spans an ORF from 335 to 1618 and encodes a putative protein of 427 amino acids with a predicted molecular mass of 47.1 kDa. All the new EST sequences and UL49Y cDNA sequence have been deposited in the GenBank database (GenBank Accession nos. GW314860-GW314900 and GU376796). This study provides us with very important clues for revealing the importance of the UL49 locus alternative splicing.
Collapse
|
10
|
Complex expression of the UL136 gene of human cytomegalovirus results in multiple protein isoforms with unique roles in replication. J Virol 2014; 88:14412-25. [PMID: 25297993 DOI: 10.1128/jvi.02711-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is a complex DNA virus with a 230-kb genome encoding 170 and up to 750 proteins. The upper limit of this coding capacity suggests the evolution of complex mechanisms to substantially increase the coding potential from the 230-kb genome. Our work examines the complexity of one gene, UL136, encoded within the ULb' region of the genome that is lost during serial passage of HCMV in cultured fibroblasts. UL136 is expressed as five protein isoforms. We mapped these isoforms and demonstrate that they originate from both a complex transcriptional profile and, possibly, the usage of multiple translation initiation sites. Intriguingly, the pUL136 isoforms exhibited distinct subcellular distributions with varying association with the Golgi apparatus. The subcellular localization of membrane-bound isoforms of UL136 differed between when they were expressed exogenously and when they were expressed in the context of viral infection, suggesting that the trafficking of these isoforms is mediated by infection-specific factors. While UL136, like most ULb' genes, was dispensable for replication in fibroblasts, the soluble 23- and 19-kDa isoforms suppressed virus replication. In CD34(+) hematopoietic progenitor cells (HPCs) infected in vitro, disruption of the 23- and 19-kDa isoforms resulted in increased replication and a loss of the latency phenotype, similar to the effects of the UL138 latency determinant encoded within the same genetic locus. Our work suggests a complex interplay between the UL136 isoforms which balances viral replication in multiple cell types and likely contributes to the cell type-dependent phenotypes of the UL133/8 locus and the outcome of HCMV infection. IMPORTANCE HCMV is a significant cause of morbidity in immunocompromised individuals, including transplant patients. The lifelong persistence of the virus results in a high seroprevalence worldwide and may contribute to age-related pathologies, such as atherosclerosis. The mechanisms of viral persistence are poorly understood; however, understanding the molecular basis of persistence is imperative for the development of new treatments. In this work, we characterize a complex HCMV gene, UL136, which is expressed as five protein isoforms. These isoforms arise predominantly from complex transcriptional mechanisms, which contribute to an increased coding capacity of the virus. Further, the UL136 isoforms oppose the activity of one another to balance HCMV replication in multiple cell types. We identify soluble isoforms of UL136 that function to suppress virus replication in fibroblasts and in CD34(+) HPCs for latency.
Collapse
|
11
|
Abstract
ABSTRACT: Human cytomegalovirus (HCMV) has a tremendous coding capacity within its dsDNA genome that has allowed it to coevolve with its host. Transcription of the virus genome is not limited to protein-coding genes; in fact, most of the transcription from the HCMV genome during lytic replication generates viral ncRNAs that are not translated into protein. Four long ncRNAs (RNA5.0, RNA4.9, RNA1.2 and RNA2.7) account for the majority of HCMV transcription during lytic replication. Here, we review the expression and function of these long ncRNAs in the context of virus replication and pathogenesis. Long ncRNAs may contribute to HCMV evasion of the host response and manipulate cellular and viral programs to successfully persist throughout the lifetime of its host.
Collapse
Affiliation(s)
- Toni M Schwarz
- University of Colorado School of Medicine, Department of Microbiology, MS8333, 12800 E 19th Ave, Aurora, CO 80045, USA
| | - Caroline A Kulesza
- University of Colorado School of Medicine, Department of Microbiology, MS8333, 12800 E 19th Ave, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Van Damme E, Van Loock M. Functional annotation of human cytomegalovirus gene products: an update. Front Microbiol 2014; 5:218. [PMID: 24904534 PMCID: PMC4032930 DOI: 10.3389/fmicb.2014.00218] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/25/2014] [Indexed: 01/31/2023] Open
Abstract
Human cytomegalovirus is an opportunistic double-stranded DNA virus with one of the largest viral genomes known. The 235 kB genome is divided in a unique long (UL) and a unique short (US) region which are flanked by terminal and internal repeats. The expression of HCMV genes is highly complex and involves the production of protein coding transcripts, polyadenylated long non-coding RNAs, polyadenylated anti-sense transcripts and a variety of non-polyadenylated RNAs such as microRNAs. Although the function of many of these transcripts is unknown, they are suggested to play a direct or regulatory role in the delicately orchestrated processes that ensure HCMV replication and life-long persistence. This review focuses on annotating the complete viral genome based on three sources of information. First, previous reviews were used as a template for the functional keywords to ensure continuity; second, the Uniprot database was used to further enrich the functional database; and finally, the literature was manually curated for novel functions of HCMV gene products. Novel discoveries were discussed in light of the viral life cycle. This functional annotation highlights still poorly understood regions of the genome but more importantly it can give insight in functional clusters and/or may be helpful in the analysis of future transcriptomics and proteomics studies.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| | - Marnix Van Loock
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| |
Collapse
|
13
|
Sijmons S, Thys K, Corthout M, Van Damme E, Van Loock M, Bollen S, Baguet S, Aerssens J, Van Ranst M, Maes P. A method enabling high-throughput sequencing of human cytomegalovirus complete genomes from clinical isolates. PLoS One 2014; 9:e95501. [PMID: 24755734 PMCID: PMC3995935 DOI: 10.1371/journal.pone.0095501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/26/2014] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous virus that can cause serious sequelae in immunocompromised patients and in the developing fetus. The coding capacity of the 235 kbp genome is still incompletely understood, and there is a pressing need to characterize genomic contents in clinical isolates. In this study, a procedure for the high-throughput generation of full genome consensus sequences from clinical HCMV isolates is presented. This method relies on low number passaging of clinical isolates on human fibroblasts, followed by digestion of cellular DNA and purification of viral DNA. After multiple displacement amplification, highly pure viral DNA is generated. These extracts are suitable for high-throughput next-generation sequencing and assembly of consensus sequences. Throughout a series of validation experiments, we showed that the workflow reproducibly generated consensus sequences representative for the virus population present in the original clinical material. Additionally, the performance of 454 GS FLX and/or Illumina Genome Analyzer datasets in consensus sequence deduction was evaluated. Based on assembly performance data, the Illumina Genome Analyzer was the platform of choice in the presented workflow. Analysis of the consensus sequences derived in this study confirmed the presence of gene-disrupting mutations in clinical HCMV isolates independent from in vitro passaging. These mutations were identified in genes RL5A, UL1, UL9, UL111A and UL150. In conclusion, the presented workflow provides opportunities for high-throughput characterization of complete HCMV genomes that could deliver new insights into HCMV coding capacity and genetic determinants of viral tropism and pathogenicity.
Collapse
Affiliation(s)
- Steven Sijmons
- Laboratory of Clinical Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
- * E-mail:
| | - Kim Thys
- Janssen Infectious Diseases BVBA, Beerse, Belgium
| | - Michaël Corthout
- Laboratory of Clinical Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | - Stefanie Bollen
- Laboratory of Clinical Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sylvie Baguet
- Laboratory of Clinical Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Marc Van Ranst
- Laboratory of Clinical Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Piet Maes
- Laboratory of Clinical Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
14
|
The carboxy terminal region of the human cytomegalovirus immediate early 1 (IE1) protein disrupts type II inteferon signaling. Viruses 2014; 6:1502-24. [PMID: 24699362 PMCID: PMC4014707 DOI: 10.3390/v6041502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 12/21/2022] Open
Abstract
Interferons (IFNs) activate the first lines of defense against viruses, and promote innate and adaptive immune responses to viruses. We report that the immediate early 1 (IE1) protein of human cytomegalovirus (HCMV) disrupts signaling by IFNγ. The carboxyl-terminal region of IE1 is required for this function. We found no defect in the initial events in IFNγ signaling or in nuclear accumulation of signal transducer and activator of transcription 1 (STAT1) in IE1-expressing cells. Moreover, we did not observe an association between disruption of IFNγ signaling and nuclear domain 10 (ND10) disruption. However, there is reduced binding of STAT1 homodimers to target gamma activated sequence (GAS) elements in the presence of IE1. Co-immunoprecipitation studies failed to support a direct interaction between IE1 and STAT1, although these studies revealed that the C-terminal region of IE1 was required for interaction with STAT2. Together, these results indicate that IE1 disrupts IFNγ signaling by interfering with signaling events in the nucleus through a novel mechanism.
Collapse
|
15
|
Zheng B, Li M, Gao S, Wang L, Qi Y, Ma Y, Ruan Q. Characterization of a novel group of antisense transcripts in human cytomegalovirus UL83 gene region. J Med Virol 2014; 86:2033-41. [PMID: 24615924 DOI: 10.1002/jmv.23887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2013] [Indexed: 11/11/2022]
Abstract
The rapid advances in research on antisense transcripts are gradually changing our understanding of the expression of the Herpesviridae genome. In this study, the transcripts of the human cytomegalovirus (HCMV) UL83 antisense strand were investigated in three clinical isolates. Three cDNA clones containing sequences with an antisense orientation to the UL83 gene were identified in a late HCMV cDNA library. The UL83 antisense transcripts (UL83asts) were then shown to be transcribed only in the late infection phase of the three clinical HCMV strains, using rapid amplification of cDNA ends (RACE) and northern blotting. These UL83asts were identical at their 3' termini but different at 5' ends. Two open reading frames were predicted in the UL83asts.
Collapse
Affiliation(s)
- Bo Zheng
- Virus Laboratory, The affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Pervasive transcription is observed in a wide range of organisms, including humans, mice, and viruses, but the functional significance of the resulting transcripts remains uncertain. Current genetic approaches are often limited by their emphasis on protein-coding open reading frames (ORFs). We previously identified extensive pervasive transcription from the murine gammaherpesvirus 68 (MHV68) genome outside known ORFs and antisense to known genes (termed expressed genomic regions [EGRs]). Similar antisense transcripts have been identified in many other herpesviruses, including Kaposi’s sarcoma-associated herpesvirus and human and murine cytomegalovirus. Despite their prevalence, whether these RNAs have any functional importance in the viral life cycle is unknown, and one interpretation is that these are merely “noise” generated by functionally unimportant transcriptional events. To determine whether pervasive transcription of a herpesvirus genome generates RNA molecules that are functionally important, we used a strand-specific functional approach to target transcripts from thirteen EGRs in MHV68. We found that targeting transcripts from six EGRs reduced viral protein expression, proving that pervasive transcription can generate functionally important RNAs. We characterized transcripts emanating from EGRs 26 and 27 in detail using several methods, including RNA sequencing, and identified several novel polyadenylated transcripts that were enriched in the nuclei of infected cells. These data provide the first evidence of the functional importance of regions of pervasive transcription emanating from MHV68 EGRs. Therefore, studies utilizing mutation of a herpesvirus genome must account for possible effects on RNAs generated by pervasive transcription. The fact that pervasive transcription produces functionally important RNAs has profound implications for design and interpretation of genetic studies in herpesviruses, since such studies often involve mutating both strands of the genome. This is a common potential problem; for example, a conservative estimate is that there are an additional 73,000 nucleotides transcribed antisense to annotated ORFs from the 119,450-bp MHV68 genome. Recognizing the importance of considering the function of each strand of the viral genome independently, we used strand-specific approaches to identify six regions of the genome encoding transcripts that promoted viral protein expression. For two of these regions, we mapped novel transcripts and determined that targeting transcripts from these regions reduced viral replication and the expression of other viral genes. This is the first description of a function for these RNAs and suggests that novel transcripts emanating from regions of pervasive transcription are critical for the viral life cycle.
Collapse
|
17
|
Lee S, Song J, Kim S, Kim J, Hong Y, Kim Y, Kim D, Baek D, Ahn K. Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production. Cell Host Microbe 2013; 13:678-90. [PMID: 23768492 DOI: 10.1016/j.chom.2013.05.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/01/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022]
Abstract
Virulence of human cytomegalovirus (HCMV) clinical isolates correlates with carriage of a 15 kb segment in the UL/b' region of the viral genome, which is absent from attenuated strains. The mechanisms by which this segment contributes to HCMV virulence remain obscure. We observed that intergenic RNA sequences within the 15 kb segment function as a microRNA (miRNA) decay element (miRDE) and direct the selective, sequence-specific turnover of mature miR-17 and miR-20a encoded within the host miR-17-92 cluster. Unlike canonical miRNA-mRNA interactions, the miRNA-miRDE interactions did not repress miRDE expression. miRNA binding site mutations retargeted miRDE to other miR-17-92 cluster miRNAs, which are otherwise resistant to miRDE-mediated decay. miRDE function was required to accelerate virus production in the context of lytic HCMV infection. These results indicate a role for viral noncoding RNA in regulating cellular miRNAs during HCMV pathogenesis and suggest that noncoding RNAs may play a role in mature miRNA turnover.
Collapse
Affiliation(s)
- Sanghyun Lee
- National Creative Research Initiatives Center for Antigen Presentation, Seoul 151-747, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Amaral PP, Dinger ME, Mattick JS. Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. Brief Funct Genomics 2013; 12:254-78. [PMID: 23709461 DOI: 10.1093/bfgp/elt016] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells and organisms are subject to challenges and perturbations in their environment and physiology in all stages of life. The molecular response to such changes, including insulting conditions such as pathogen infections, involves coordinated modulation of gene expression programmes and has not only homeostatic but also ecological and evolutionary importance. Although attention has been primarily focused on signalling pathways and protein networks, non-coding RNAs (ncRNAs), which comprise a significant output of the genomes of prokaryotes and especially eukaryotes, are increasingly implicated in the molecular mechanisms of these responses. Long and short ncRNAs not only regulate development and cell physiology, they are also involved in disease states, including cancers, in host-pathogen interactions, and in a variety of stress responses. Indeed, regulatory RNAs are part of genetically encoded response networks and also underpin epigenetic processes, which are emerging as key mechanisms of adaptation and transgenerational inheritance. Here we present the growing evidence that ncRNAs are intrinsically involved in cellular and organismal adaptation processes, in both robustness and protection to stresses, as well as in mechanisms generating evolutionary change.
Collapse
|
19
|
Global bidirectional transcription of the Epstein-Barr virus genome during reactivation. J Virol 2013; 88:1604-16. [PMID: 24257595 DOI: 10.1128/jvi.02989-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) reactivation involves the ordered induction of approximately 90 viral genes that participate in the generation of infectious virions. Using strand-specific RNA-seq to assess the EBV transcriptome during reactivation, we found extensive bidirectional transcription extending across nearly the entire genome. In contrast, only 4% of the EBV genome is currently bidirectionally annotated. Most of the newly identified transcribed regions show little evidence of coding potential, supporting noncoding roles for most of these RNAs. Based on previous cellular long noncoding RNA size calculations, we estimate that there are likely hundreds more EBV genes expressed during reactivation than was previously known. Limited 5' and 3' rapid amplification of cDNA ends (RACE) experiments and findings of novel splicing events by RNA-seq suggest that the complexity of the viral genome during reactivation may be even greater. Further analysis of antisense transcripts at some of the EBV latency gene loci showed that they are "late" genes, they are nuclear, and they tend to localize in areas of the nucleus where others find newly synthesized viral genomes. This raises the possibility that these transcripts perform functions such as new genome processing, stabilization, organization, etc. The finding of a significantly more complex EBV transcriptome during reactivation changes our view of the viral production process from one that is facilitated and regulated almost entirely by previously identified viral proteins to a process that also involves the contribution of a wide array of virus encoded noncoding RNAs. Epstein-Barr virus (EBV) is a herpesvirus that infects the majority of the world's population, in rare cases causing serious disease such as lymphoma and gastric carcinoma. Using strand-specific RNA-seq, we have studied viral gene expression during EBV reactivation and have discovered hundreds more viral transcripts than were previously known. The finding of alternative splicing and the prevalence of overlapping transcripts indicate additional complexity. Most newly identified transcribed regions do not encode proteins but instead likely function as noncoding RNA molecules which could participate in regulating gene expression, gene splicing or even activities such as viral genome processing. These findings broaden the scope of what we need to consider to understand the viral manufacturing process. As more detailed studies are undertaken they will likely change the way we view this process as a whole.
Collapse
|
20
|
Abstract
Latent Kaposi's sarcoma-associated herpesvirus (KSHV) episomes are coated with viral latency-associated nuclear antigen (LANA). In contrast, LANA rapidly disassociates from episomes during reactivation. Lytic KSHV expresses polyadenylated nuclear RNA (PAN RNA), a long noncoding RNA (lncRNA). We report that PAN RNA promotes LANA-episome disassociation through an interaction with LANA which facilitates LANA sequestration away from KSHV episomes during reactivation. These findings suggest that KSHV may have evolved an RNA aptamer to regulate latent protein function.
Collapse
|
21
|
Juranic Lisnic V, Babic Cac M, Lisnic B, Trsan T, Mefferd A, Das Mukhopadhyay C, Cook CH, Jonjic S, Trgovcich J. Dual analysis of the murine cytomegalovirus and host cell transcriptomes reveal new aspects of the virus-host cell interface. PLoS Pathog 2013; 9:e1003611. [PMID: 24086132 PMCID: PMC3784481 DOI: 10.1371/journal.ppat.1003611] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/26/2013] [Indexed: 11/19/2022] Open
Abstract
Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV) and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq). We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus-associated diseases.
Collapse
Affiliation(s)
- Vanda Juranic Lisnic
- Department of Histology and Embryology and the Center for Proteomics, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Marina Babic Cac
- Department of Histology and Embryology and the Center for Proteomics, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Berislav Lisnic
- Laboratory of Biology and Microbial Genetics, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Tihana Trsan
- Department of Histology and Embryology and the Center for Proteomics, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Adam Mefferd
- The Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | | | - Charles H. Cook
- The Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Stipan Jonjic
- Department of Histology and Embryology and the Center for Proteomics, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Joanne Trgovcich
- The Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
22
|
Yang CQ, Miao LF, Pan X, Wu CC, Rayner S, Mocarski ES, Ye HQ, Luo MH. Natural antisense transcripts of UL123 packaged in human cytomegalovirus virions. Arch Virol 2013; 159:147-51. [PMID: 23884634 DOI: 10.1007/s00705-013-1793-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
In this study, we demonstrated that antisense transcripts of human cytomegalovirus (HCMV) UL123, UL21.5 and cellular GAPDH genes were present in highly purified virions. These virion RNAs were delivered into the host cells upon infection, and de novo synthesized ones appeared in the infected cell at the immediate early stage. Although the sequence of UL123 antisense transcripts in virions is uncertain, we found that these transcripts in Towne-infected human fibroblasts had novel transcriptional start sites (TSSs) with various 5'-terminal deletions of open reading frame (ORF) 59. These findings not only provide new insight into the composition of HCMV virions but also reveal a possible viral strategy for initiating latent infection and switching between latent and productive infections.
Collapse
Affiliation(s)
- Cui-Qing Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Nucleosome maps of the human cytomegalovirus genome reveal a temporal switch in chromatin organization linked to a major IE protein. Proc Natl Acad Sci U S A 2013; 110:13126-31. [PMID: 23878222 DOI: 10.1073/pnas.1305548110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human CMV (hCMV) establishes lifelong infections in most of us, causing developmental defects in human embryos and life-threatening disease in immunocompromised individuals. During productive infection, the viral >230,000-bp dsDNA genome is expressed widely and in a temporal cascade. The hCMV genome does not carry histones when encapsidated but has been proposed to form nucleosomes after release into the host cell nucleus. Here, we present hCMV genome-wide nucleosome occupancy and nascent transcript maps during infection of permissive human primary cells. We show that nucleosomes occupy nuclear viral DNA in a nonrandom and highly predictable fashion. At early times of infection, nucleosomes associate with the hCMV genome largely according to their intrinsic DNA sequence preferences, indicating that initial nucleosome formation is genetically encoded in the virus. However, as infection proceeds to the late phase, nucleosomes redistribute extensively to establish patterns mostly determined by nongenetic factors. We propose that these factors include key regulators of viral gene expression encoded at the hCMV major immediate-early (IE) locus. Indeed, mutant virus genomes deficient for IE1 expression exhibit globally increased nucleosome loads and reduced nucleosome dynamics compared with WT genomes. The temporal nucleosome occupancy differences between IE1-deficient and WT viruses correlate inversely with changes in the pattern of viral nascent and total transcript accumulation. These results provide a framework of spatial and temporal nucleosome organization across the genome of a major human pathogen and suggest that an hCMV major IE protein governs overall viral chromatin structure and function.
Collapse
|
24
|
Analysis and mapping of a 3' coterminal transcription unit derived from human cytomegalovirus open reading frames UL30-UL32. Virol J 2013; 10:65. [PMID: 23446136 PMCID: PMC3600006 DOI: 10.1186/1743-422x-10-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/12/2013] [Indexed: 11/30/2022] Open
Abstract
Background It has been predicted that the UL31 gene originates from the positive strand of the human cytomegalovirus (HCMV) genome, whereas the UL30 and UL32 genes originate from the complementary strand. Except for the UL32 gene, the transcription of this gene region has not been investigated extensively. Methods Northern blotting, cDNA library screening, RACE-PCR,and RT-PCR were used. Results At least eight transcripts of the antisense orientation of UL31 were transcribed from the UL30–UL32 region during the late phase of HCMV infection. The 3′ coterminus of these transcripts was located within the predicted UL30 gene. The longest 6.0-kb transcript was initiated upstream of the predicted UL32 gene. Other transcripts were derived from the predicted UL30 and UL31 gene region. Except for the previously predicted UL32 open reading frame (ORF), three novel ORFs, named UL31anti-1, UL31anti-2 and UL31anti-3, were located in the transcripts from the UL31anti-UL32 transcription unit. No transcription was found in UL31. Conclusion A family of novel 3′ coterminal transcripts was transcribed from the UL30–UL32 gene region.
Collapse
|
25
|
Abstract
Three alloherpesviruses are known to cause disease in cyprinid fish: cyprinid herpesviruses 1 and 3 (CyHV1 and CyHV3) in common carp and koi and cyprinid herpesvirus 2 (CyHV2) in goldfish. We have determined the genome sequences of CyHV1 and CyHV2 and compared them with the published CyHV3 sequence. The CyHV1 and CyHV2 genomes are 291,144 and 290,304 bp, respectively, in size, and thus the CyHV3 genome, at 295,146 bp, remains the largest recorded among the herpesviruses. Each of the three genomes consists of a unique region flanked at each terminus by a sizeable direct repeat. The CyHV1, CyHV2, and CyHV3 genomes are predicted to contain 137, 150, and 155 unique, functional protein-coding genes, respectively, of which six, four, and eight, respectively, are duplicated in the terminal repeat. The three viruses share 120 orthologous genes in a largely colinear arrangement, of which up to 55 are also conserved in the other member of the genus Cyprinivirus, anguillid herpesvirus 1. Twelve genes are conserved convincingly in all sequenced alloherpesviruses, and two others are conserved marginally. The reference CyHV3 strain has been reported to contain five fragmented genes that are presumably nonfunctional. The CyHV2 strain has two fragmented genes, and the CyHV1 strain has none. CyHV1, CyHV2, and CyHV3 have five, six, and five families of paralogous genes, respectively. One family unique to CyHV1 is related to cellular JUNB, which encodes a transcription factor involved in oncogenesis. To our knowledge, this is the first time that JUNB-related sequences have been reported in a herpesvirus.
Collapse
|
26
|
Stern-Ginossar N, Weisburd B, Michalski A, Khanh Le VT, Hein MY, Huang SX, Ma M, Shen B, Qian SB, Hengel H, Mann M, Ingolia NT, Weissman JS. Decoding human cytomegalovirus. Science 2012; 338:1088-93. [PMID: 23180859 PMCID: PMC3817102 DOI: 10.1126/science.1227919] [Citation(s) in RCA: 464] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human cytomegalovirus (HCMV) genome was sequenced 20 years ago. However, like those of other complex viruses, our understanding of its protein coding potential is far from complete. We used ribosome profiling and transcript analysis to experimentally define the HCMV translation products and follow their temporal expression. We identified hundreds of previously unidentified open reading frames and confirmed a fraction by means of mass spectrometry. We found that regulated use of alternative transcript start sites plays a broad role in enabling tight temporal control of HCMV protein expression and allowing multiple distinct polypeptides to be generated from a single genomic locus. Our results reveal an unanticipated complexity to the HCMV coding capacity and illustrate the role of regulated changes in transcript start sites in generating this complexity.
Collapse
Affiliation(s)
- Noam Stern-Ginossar
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Ben Weisburd
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Annette Michalski
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, D-82152, Germany
| | - Vu Thuy Khanh Le
- Institut für Virologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Marco Y. Hein
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, D-82152, Germany
| | - Sheng-Xiong Huang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way #3A2, Jupiter, FL 33458
| | - Ming Ma
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way #3A2, Jupiter, FL 33458
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way #3A2, Jupiter, FL 33458
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way #3A2, Jupiter, FL 33458
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, 130 Scripps Way #3A2, Jupiter, FL 33458
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Hartmut Hengel
- Institut für Virologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, D-82152, Germany
| | - Nicholas T. Ingolia
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
- Present address: Department of Embryology, Carnegie Institute for Science, Baltimore, MD 21218, USA
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
27
|
The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. Proc Natl Acad Sci U S A 2012; 109:E3604-13. [PMID: 23151511 DOI: 10.1073/pnas.1207213109] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA viruses in insects are targets of an RNA interference (RNAi)-based antiviral immune response, in which viral replication intermediates or viral dsRNA genomes are processed by Dicer-2 (Dcr-2) into viral small interfering RNAs (vsiRNAs). Whether dsDNA virus infections are controlled by the RNAi pathway remains to be determined. Here, we analyzed the role of RNAi in DNA virus infection using Drosophila melanogaster infected with Invertebrate iridescent virus 6 (IIV-6) as a model. We show that Dcr-2 and Argonaute-2 mutant flies are more sensitive to virus infection, suggesting that vsiRNAs contribute to the control of DNA virus infection. Indeed, small RNA sequencing of IIV-6-infected WT and RNAi mutant flies identified abundant vsiRNAs that were produced in a Dcr-2-dependent manner. We observed a highly uneven distribution with strong clustering of vsiRNAs to small defined regions (hotspots) and modest coverage at other regions (coldspots). vsiRNAs mapped in similar proportions to both strands of the viral genome, suggesting that long dsRNA derived from convergent overlapping transcripts serves as a substrate for Dcr-2. In agreement, strand-specific RT-PCR and Northern blot analyses indicated that antisense transcripts are produced during infection. Moreover, we show that vsiRNAs are functional in silencing reporter constructs carrying fragments of the IIV-6 genome. Together, our data indicate that RNAi provides antiviral defense against dsDNA viruses in animals. Thus, RNAi is the predominant antiviral defense mechanism in insects that provides protection against all major classes of viruses.
Collapse
|
28
|
Ma Y, Wang N, Li M, Gao S, Wang L, Zheng B, Qi Y, Ruan Q. Human CMV transcripts: an overview. Future Microbiol 2012; 7:577-93. [PMID: 22568714 DOI: 10.2217/fmb.12.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human CMV (HCMV) genome consists of an approximately 230-kb dsDNA and is predicted to contain over 165 open reading frames. Although the entire sequence of the laboratory-adapted AD169 strain of HCMV was first available in 1991, the precise number and nature of viral genes and gene products are still unclear. Fewer than 100 predicted genes have been convincingly elucidated with respect to their expression patterns, transcript structure and transcription characteristics. The high gene number of HCMV creates a crowded genome with many overlapping transcriptional units. 3´- or 5´-coterminal overlapping polycistronic transcripts could use a common promoter element or a poly-A signal. 3´-coterminal monocistronic transcripts could encode 'nested' open reading frames, which possess different initiation but the same termination sites. As a virus with eukaryotic cells as the host, HCMV has the capacity to splice out introns during transcription. Major alternately spliced mRNA species of HCMV originate primarily, but not exclusively, from the immediate early gene regions. Alternate splicing patterns of the mRNAs could encode a number of gene products with different sizes. In recent years, some antisense and noncoding transcripts of HCMV have been reported. These RNAs probably have functions in genomic replication or the regulation of gene expression.
Collapse
Affiliation(s)
- Yanping Ma
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning of PR China, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
We used deep sequencing of poly(A) RNA to characterize the transcriptome of an economically important eel virus, anguillid herpesvirus 1 (AngHV1), at a stage during the lytic life cycle when infectious virus was being produced. In contrast to the transcription of mammalian herpesviruses, the overall level of antisense transcription from the 248,526-bp genome was low, amounting to only 1.5% of transcription in predicted protein-coding regions, and no abundant, nonoverlapping, noncoding RNAs were identified. RNA splicing was found to be more common than had been anticipated previously. Counting the 10,634-bp terminal direct repeat once, 100 splice junctions were identified, of which 58 were considered likely to be involved in the expression of functional proteins because they represent splicing between protein-coding exons or between 5' untranslated regions and protein-coding exons. Each of the 30 most highly represented of these 58 splice junctions was confirmed by RT-PCR. We also used deep sequencing to identify numerous putative 5' and 3' ends of AngHV1 transcripts, confirming some and adding others by rapid amplification of cDNA ends (RACE). The findings prompted a revision of the AngHV1 genome map to include a total of 129 protein-coding genes, 5 of which are duplicated in the terminal direct repeat. Not counting duplicates, 11 genes contain integral, spliced protein-coding exons, and 9 contain 5' untranslated exons or, because of alternative splicing, 5' untranslated and 5' translated exons. The results of this study sharpen our understanding of AngHV1 genomics and provide the first detailed view of a fish herpesvirus transcriptome.
Collapse
|
30
|
Boldogköi Z. Transcriptional interference networks coordinate the expression of functionally related genes clustered in the same genomic loci. Front Genet 2012; 3:122. [PMID: 22783276 PMCID: PMC3389743 DOI: 10.3389/fgene.2012.00122] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 11/25/2022] Open
Abstract
The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organization, transcription, various post-transcriptional processes, and translation. In this study, the Transcriptional Interference Network (TIN) hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighboring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronized cascade of gene expression in functionally linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular organisms too.
Collapse
Affiliation(s)
- Zsolt Boldogköi
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
31
|
Davison AJ. Evolution of sexually transmitted and sexually transmissible human herpesviruses. Ann N Y Acad Sci 2012; 1230:E37-49. [PMID: 22417106 DOI: 10.1111/j.1749-6632.2011.06358.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Herpesviruses occur in an impressively wide range of animals and are associated with various diseases. The numerous routes taken during hundreds of millions of years of evolution have contributed to their striking adaptability and success as pathogens. Herpesviruses share a distinct virion structure and are classified taxonomically into a single order, the Herpesvirales, which is divided into three families. The phylogenetic relationships among members of the most populous family, the Herpesviridae, which includes all nine human herpesviruses, are generally similar to those among their hosts, supporting the view that there has been a large degree of coevolution between virus and host. Three human herpesviruses (human cytomegalovirus, Kaposi's sarcoma-associated herpesvirus, and herpes simplex virus type 1) are classed as agents capable of sexually transmissible infection (StxI), and one (herpes simplex virus type 2) as an agent capable of sexually transmitted infection (STI). The evolutionary characteristics of these viruses are described.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.
| |
Collapse
|
32
|
Towler JC, Ebrahimi B, Lane B, Davison AJ, Dargan DJ. Human cytomegalovirus transcriptome activity differs during replication in human fibroblast, epithelial and astrocyte cell lines. J Gen Virol 2012; 93:1046-1058. [PMID: 22258857 PMCID: PMC3541802 DOI: 10.1099/vir.0.038083-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Broad cell tropism contributes to the pathogenesis of human cytomegalovirus (HCMV), but the extent to which cell type influences HCMV gene expression is unclear. A bespoke HCMV DNA microarray was used to monitor the transcriptome activity of the low passage Merlin strain of HCMV at 12, 24, 48 and 72 h post-infection, during a single round of replication in human fetal foreskin fibroblast cells (HFFF-2s), human retinal pigmented epithelial cells (RPE-1s) and human astrocytoma cells (U373MGs). In order to correlate transcriptome activity with concurrent biological responses, viral cytopathic effect, growth kinetics and genomic loads were examined in the three cell types. The temporal expression pattern of viral genes was broadly similar in HFFF-2s and RPE-1s, but dramatically different in U373MGs. Of the 165 known HCMV protein-coding genes, 41 and 48 were differentially regulated in RPE-1s and U373MGs, respectively, compared with HFFF-2s, and 22 of these were differentially regulated in both RPE-1s and U373MGs. In RPE-1s, all differentially regulated genes were downregulated, but, in U373MGs, some were down- and others upregulated. Differentially regulated genes were identified among the immediate-early, early, early late and true-late viral gene classes. Grouping of downregulated genes according to function at landmark stages of the replication cycle led to the identification of potential bottleneck stages (genome replication, virion assembly, and virion maturation and release) that may account for cell type-dependent viral growth kinetics. The possibility that cell type-specific differences in expressed cellular factors are responsible for modulation of viral gene expression is discussed.
Collapse
Affiliation(s)
- James C Towler
- MRC - University of Glasgow Centre for Virus Research, Glasgow G11 5JR, UK
| | - Bahram Ebrahimi
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Brian Lane
- Liverpool Microarray Facility, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Andrew J Davison
- MRC - University of Glasgow Centre for Virus Research, Glasgow G11 5JR, UK
| | - Derrick J Dargan
- MRC - University of Glasgow Centre for Virus Research, Glasgow G11 5JR, UK
| |
Collapse
|
33
|
Gatherer D, Seirafian S, Cunningham C, Holton M, Dargan DJ, Baluchova K, Hector RD, Galbraith J, Herzyk P, Wilkinson GWG, Davison AJ. High-resolution human cytomegalovirus transcriptome. Proc Natl Acad Sci U S A 2011; 108:19755-60. [PMID: 22109557 PMCID: PMC3241806 DOI: 10.1073/pnas.1115861108] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deep sequencing was used to bring high resolution to the human cytomegalovirus (HCMV) transcriptome at the stage when infectious virion production is under way, and major findings were confirmed by extensive experimentation using conventional techniques. The majority (65.1%) of polyadenylated viral RNA transcription is committed to producing four noncoding transcripts (RNA2.7, RNA1.2, RNA4.9, and RNA5.0) that do not substantially overlap designated protein-coding regions. Additional noncoding RNAs that are transcribed antisense to protein-coding regions map throughout the genome and account for 8.7% of transcription from these regions. RNA splicing is more common than recognized previously, which was evidenced by the identification of 229 potential donor and 132 acceptor sites, and it affects 58 protein-coding genes. The great majority (94) of 96 splice junctions most abundantly represented in the deep-sequencing data was confirmed by RT-PCR or RACE or supported by involvement in alternative splicing. Alternative splicing is frequent and particularly evident in four genes (RL8A, UL74A, UL124, and UL150A) that are transcribed by splicing from any one of many upstream exons. The analysis also resulted in the annotation of four previously unrecognized protein-coding regions (RL8A, RL9A, UL150A, and US33A), and expression of the UL150A protein was shown in the context of HCMV infection. The overall conclusion, that HCMV transcription is complex and multifaceted, has implications for the potential sophistication of virus functionality during infection. The study also illustrates the key contribution that deep sequencing can make to the genomics of nuclear DNA viruses.
Collapse
Affiliation(s)
- Derek Gatherer
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Sepehr Seirafian
- School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - Charles Cunningham
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Mary Holton
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Derrick J. Dargan
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Katarina Baluchova
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Ralph D. Hector
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| | - Julie Galbraith
- Sir Henry Wellcome Functional Genomics Facility, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Pawel Herzyk
- Sir Henry Wellcome Functional Genomics Facility, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Andrew J. Davison
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G11 5JR, United Kingdom
| |
Collapse
|
34
|
Ma Y, Wang N, Li M, Gao S, Wang L, Ji Y, Qi Y, He R, Sun Z, Ruan Q. An antisense transcript in the human cytomegalovirus UL87 gene region. Virol J 2011; 8:515. [PMID: 22074130 PMCID: PMC3223508 DOI: 10.1186/1743-422x-8-515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid advances in research on antisense transcripts are gradually changing our comprehension of genomic and gene expression aspects of the Herpesviridae. One such herpesvirus is the human cytomegalovirus (HCMV). Although transcription of the HCMV UL87 gene has not been specifically investigated, cDNA clones of UL87 antisense transcripts were found in HCMV cDNA libraries previously. In this study, the transcription of the UL87 antisense strand was investigated in three clinically isolated HCMV strains. RESULTS First, an 800 nucleotides transcript having an antisense orientation to the UL87 gene was found in a late HCMV cDNA library. Then, the UL87 antisense transcript was confirmed by Rapid amplification of cDNA ends (RACE) and Northern blot in three HCMV clinical strains. Two ORFs were predicted in the antisense transcript. The putative protein of ORF 1 showed a high degree of conservation among HCMV and other CMV strains. CONCLUSION An 800nt antisense transcript in the UL87 gene region exists in HCMV clinical strains.
Collapse
Affiliation(s)
- Yanping Ma
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, 110004 Shenyang, Liaoning of China, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection. J Virol 2011; 86:226-35. [PMID: 22013051 DOI: 10.1128/jvi.05903-11] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human cytomegalovirus (HCMV) contributes its own set of microRNAs (miRNAs) during lytic infection of cells, likely fine-tuning conditions important for viral replication. To enhance our understanding of this component of the HCMV-host transcriptome, we have conducted deep-sequencing analysis of small RNAs (smRNA-seq) from infected human fibroblast cells. We found that HCMV-encoded miRNAs accumulate to ∼20% of the total smRNA population at late stages of infection, and our analysis led to improvements in viral miRNA annotations and identification of two novel HCMV miRNAs, miR-US22 and miR-US33as. Both of these miRNAs were capable of functionally repressing synthetic targets in transient transfection experiments. Additionally, through cross-linking and immunoprecipitation (CLIP) of Argonaute (Ago)-bound RNAs from infected cells, followed by high-throughput sequencing, we have obtained direct evidence for incorporation of all HCMV miRNAs into the endogenous host silencing machinery. Surprisingly, three HCMV miRNA precursors exhibited differential incorporation of their mature miRNA arms between Ago2 and Ago1 complexes. Host miRNA abundances were also affected by HCMV infection, with significant upregulation observed for an miRNA cluster containing miR-96, miR-182, and miR-183. In addition to miRNAs, we also identified novel forms of virus-derived smRNAs, revealing greater complexity within the smRNA population during HCMV infection.
Collapse
|
36
|
Lacaze P, Forster T, Ross A, Kerr LE, Salvo-Chirnside E, Lisnic VJ, López-Campos GH, García-Ramírez JJ, Messerle M, Trgovcich J, Angulo A, Ghazal P. Temporal profiling of the coding and noncoding murine cytomegalovirus transcriptomes. J Virol 2011; 85:6065-76. [PMID: 21471238 PMCID: PMC3126304 DOI: 10.1128/jvi.02341-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/28/2011] [Indexed: 12/20/2022] Open
Abstract
The global transcriptional program of murine cytomegalovirus (MCMV), involving coding, noncoding, and antisense transcription, remains unknown. Here we report an oligonucleotide custom microarray platform capable of measuring both coding and noncoding transcription on a genome-wide scale. By profiling MCMV wild-type and immediate-early mutant strains in fibroblasts, we found rapid activation of the transcriptome by 6.5 h postinfection, with absolute dependency on ie3, but not ie1 or ie2, for genomic programming of viral gene expression. Evidence is also presented to show, for the first time, genome-wide noncoding and bidirectional transcription at late stages of MCMV infection.
Collapse
Affiliation(s)
- Paul Lacaze
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Thorsten Forster
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Alan Ross
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Lorraine E. Kerr
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| | - Eliane Salvo-Chirnside
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| | - Vanda Juranic Lisnic
- Department of Histology and Embryology, Faculty of Medicine, Rijeka University, Croatia
| | | | - José J. García-Ramírez
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla—La Mancha, Avenida de Almansa 14, 02006 Albacete, Spain
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Joanne Trgovcich
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210
| | - Ana Angulo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Peter Ghazal
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Abstract
Herpes B virus (BV) naturally infects macaque monkeys and is genetically similar to herpes simplex virus (HSV). Zoonotic infection of humans can cause encephalitis and if untreated has a fatality rate of ∼80%. The frequent use of macaques in biomedical research emphasizes the need to understand the molecular basis of BV pathogenesis with a view toward improving safety for those working with macaques. MicroRNAs (miRNAs) are small noncoding RNAs that regulate the expression of mRNAs bearing complementary target sequences and are employed by viruses to control viral and host gene expression. Using deep sequencing and validation by expression in transfected cells, we identified 12 novel BV-encoded miRNAs expressed in lytically infected cells and 4 in latently infected trigeminal ganglia (TG). Using quantitative reverse transcription-PCR (RT-qPCR), we found that most of the miRNAs exhibited a high level of abundance throughout infection. Further analyses showed that some miRNAs could be generated from multiple transcripts with different kinetic classes, possibly explaining detection throughout infection. Interestingly, miRNAs were detected at early times in the absence of viral gene expression and were present in purified virions. In TG, despite similar amounts of viral DNA per ganglion, it was notable that the relative amount of each miRNA varied between ganglia. The majority of the miRNAs are encoded by the regions that exhibit the most sequence differences between BV and HSV. Additionally, there is no sequence conservation between BV- and HSV-encoded miRNAs, which may be important for the differences in the human diseases caused by BV and HSV.
Collapse
|
38
|
Elongin B-mediated epigenetic alteration of viral chromatin correlates with efficient human cytomegalovirus gene expression and replication. mBio 2011; 2:e00023-11. [PMID: 21447700 PMCID: PMC3063379 DOI: 10.1128/mbio.00023-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Elongins B and C are members of complexes that increase the efficiency of transcriptional elongation by RNA polymerase II (RNAPII) and enhance the monoubiquitination of histone H2B, an epigenetic mark of actively transcribed genes. Here we show that, in addition to its role in facilitating transcription of the cellular genome, elongin B also enhances gene expression from the double-stranded DNA genome of human cytomegalovirus (HCMV), a pathogenic herpesvirus. Reducing the level of elongin B by small interfering RNA- or short hairpin RNA-mediated knockdown decreased viral mRNA expression, viral protein accumulation, viral DNA replication, and infectious virion production. Chromatin immunoprecipitation analysis indicated viral genome occupancy of the elongating form of RNAPII, and monoubiquitinated histone H2B was reduced in elongin B-deficient cells. These data suggest that, in addition to the previously documented epigenetic regulation of transcriptional initiation, HCMV also subverts cellular elongin B-mediated epigenetic mechanisms for enhancing transcriptional elongation to enhance viral gene expression and virus replication. The genetic and epigenetic control of transcription initiation at both cellular and viral promoters is well documented. Recently, the epigenetic modification of histone H2B monoubiquitination throughout the bodies of cellular genes has been shown to enhance the elongation of RNA polymerase II-initiated transcripts. Mechanisms that might control the elongation of viral transcripts are less well studied. Here we show that, as with cellular genes, elongin B-mediated monoubiquitination of histone H2B also facilitates the transcriptional elongation of human cytomegalovirus genes. This and perhaps other epigenetic markings of actively transcribed regions may help in identifying viral genes expressed during in vitro latency or during natural infections of humans. Furthermore, this work identifies a novel, tractable model system to further study the regulation of transcriptional elongation in living cells.
Collapse
|
39
|
Ma Y, Ruan Q, Ji Y, Wang N, Li M, Qi Y, He R, Sun Z, Ren G. Novel transcripts of human cytomegalovirus clinical strain found by cDNA library screening. GENETICS AND MOLECULAR RESEARCH 2011; 10:566-75. [DOI: 10.4238/vol10-2gmr1059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Dhuruvasan K, Sivasubramanian G, Pellett PE. Roles of host and viral microRNAs in human cytomegalovirus biology. Virus Res 2010; 157:180-92. [PMID: 20969901 DOI: 10.1016/j.virusres.2010.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 02/02/2023]
Abstract
Human cytomegalovirus (HCMV) has a relatively large and complex genome, a protracted lytic replication cycle, and employs a strategy of replicational latency as part of its lifelong persistence in the infected host. An important form of gene regulation in plants and animals revolves around a type of small RNA known as microRNA (miRNA). miRNAs can serve as major regulators of key developmental pathways, as well as provide subtle forms of regulatory control. The human genome encodes over 900 miRNAs, and miRNAs are also encoded by some viruses, including HCMV, which encodes at least 14 miRNAs. Some of the HCMV miRNAs are known to target both viral and cellular genes, including important immunomodulators. In addition to expressing their own miRNAs, infections with some viruses, including HCMV, can result in changes in the expression of cellular miRNAs that benefit virus replication. In this review, we summarize the connections between miRNAs and HCMV biology. We describe the nature of miRNA genes, miRNA biogenesis and modes of action, methods for studying miRNAs, HCMV-encoded miRNAs, effects of HCMV infection on cellular miRNA expression, roles of miRNAs in HCMV biology, and possible HCMV-related diagnostic and therapeutic applications of miRNAs.
Collapse
Affiliation(s)
- Kavitha Dhuruvasan
- Department of Immunology and Microbiology, Wayne State University School of Medicine, 540 East Canfield Avenue, 6225 Scott Hall, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
41
|
Lin YT, Kincaid RP, Arasappan D, Dowd SE, Hunicke-Smith SP, Sullivan CS. Small RNA profiling reveals antisense transcription throughout the KSHV genome and novel small RNAs. RNA (NEW YORK, N.Y.) 2010; 16:1540-1558. [PMID: 20566670 PMCID: PMC2905754 DOI: 10.1261/rna.1967910] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 04/27/2010] [Indexed: 05/29/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus that encodes 12 precursor microRNAs (pre-miRNAs) that give rise to 17 different known approximately 22-nucleotide (nt) effector miRNAs. Like all herpesviruses, KSHV has two modes of infection: (1) a latent mode whereby only a subset of viral genes are expressed and (2) a lytic mode during which the full remaining viral genes are expressed. To date, KSHV miRNAs have been mostly identified via analysis of cells that are undergoing latent infection. Here, we developed a method to profile small RNAs ( approximately 18-75 nt) from populations of cells undergoing predominantly lytic infection. Using two different next-generation sequencing platforms, we cloned and sequenced both pre-miRNAs and derivative miRNAs. Our analysis shows that the vast majority of viral and host 5p miRNAs are co-terminal with the 5' end of the cloned pre-miRNAs, consistent with both being defined by microprocessor cleavage. We report the complete repertoire (25 total) of 5p and 3p derivative miRNAs from all 12 previously described KSHV pre-miRNAs. Two KSHV pre-miRNAs, pre-miR-K12-8 and pre-miR-K12-12, encode abundant derivative miRNAs from the previously unreported strands of the pre-miRNA. We identify several novel small RNAs of low abundance, including viral miRNA-offset-RNAs (moRNAs), and antisense viral miRNAs (miRNA-AS) that are encoded antisense to previously reported KSHV pre-miRNAs. Finally, we observe widespread antisense transcription relative to known coding sequences during lytic replication. Despite the enormous potential to form double-stranded RNA in KSHV-infected cells, we observe no evidence for the existence of abundant viral-derived small interfering RNAs (siRNAs).
Collapse
Affiliation(s)
- Yao-Tang Lin
- Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX 78712-0162, USA
| | | | | | | | | | | |
Collapse
|
42
|
The lytic transcriptome of Kaposi's sarcoma-associated herpesvirus reveals extensive transcription of noncoding regions, including regions antisense to important genes. J Virol 2010; 84:7934-42. [PMID: 20534856 DOI: 10.1128/jvi.00645-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomewide analyses of the mammalian transcriptome have revealed that large tracts of sequence previously annotated as noncoding are frequently transcribed and give rise to stable RNA. Although the transcription of individual genes of the Kaposi's sarcoma-associated herpesvirus (KSHV) has been well studied, little is known of the architecture of the viral transcriptome on a genomewide scale. Here we have employed a genomewide tiling array to examine the lytic transcriptome of the Kaposi's sarcoma-associated herpesvirus, KSHV. Our results reveal that during lytic growth (but not during latency), there is extensive transcription from noncoding regions, including both intergenic regions and, especially, noncoding regions antisense to known open reading frames (ORFs). Several of these transcripts have been characterized in more detail, including (i) a 10-kb RNA antisense to the major latency locus, including many of its microRNAs as well as its ORFs; (ii) a 17-kb RNA antisense to numerous ORFs at the left-hand end of the genome; and (iii) a 0.7-kb RNA antisense to the viral homolog of interleukin-6 (vIL-6). These studies indicate that the lytic herpesviral transcriptome resembles a microcosm of the host transcriptome and provides a useful system for the study of noncoding RNAs.
Collapse
|
43
|
Zhang W, Li H, Li Y, Zeng Z, Li S, Zhang X, Zou Y, Zhou T. Effective inhibition of HCMV UL49 gene expression and viral replication by oligonucleotide external guide sequences and RNase P. Virol J 2010; 7:100. [PMID: 20482805 PMCID: PMC2885339 DOI: 10.1186/1743-422x-7-100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/18/2010] [Indexed: 12/03/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that typically causes asymptomatic infections in healthy individuals but may lead to serious complications in newborns and immunodeficient individuals. The emergence of drug-resistant strains of HCMV has posed a need for the development of new drugs and treatment strategies. Antisense molecules are promising gene-targeting agents for specific regulation of gene expression. External guide sequences (EGSs) are oligonucleotides that consist of a sequence complementary to a target mRNA and recruit intracellular RNase P for specific degradation of the target RNA. The UL49-deletion BAC of HCMV was significantly defective in growth in human foreskin fibroblasts. Therefore, UL49 gene may serve as a potential target for novel drug development to combat HCMV infection. In this study, DNA-based EGS molecules were synthesized to target the UL49 mRNA of human cytomegalovirus (HCMV). Results By cleavage activity assessing in vitro, the EGS aimed to the cleavage site 324 nt downstream from the translational initiation codon of UL49 mRNA (i.e. EGS324) was confirmed be efficient to direct human RNase P to cleave the target mRNA sequence. When EGS324 was exogenously administered into HCMV-infected human foreskin fibroblasts (HFFs), a significant reduction of ~76% in the mRNA and ~80% in the protein expression of UL49 gene, comparing with the cells transfected with control EGSs. Furthermore, a reduction of about 330-fold in HCMV growth were observed in HCMV-infected HFFs treated with the EGS. Conclusions These results indicated that UL49 gene was essential for replication of HCMV. Moreover, our study provides evidence that exogenous administration of a DNA-based EGS can be used as a potential therapeutic approach for inhibiting gene expression and replication of a human virus.
Collapse
Affiliation(s)
- WenJun Zhang
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Making sense of antisense: seemingly noncoding RNAs antisense to the master regulator of Kaposi's sarcoma-associated herpesvirus lytic replication do not regulate that transcript but serve as mRNAs encoding small peptides. J Virol 2010; 84:5465-75. [PMID: 20357088 DOI: 10.1128/jvi.02705-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian transcriptome is studded with putative noncoding RNAs, many of which are antisense to known open reading frames (ORFs). Roles in the regulation of their complementary mRNAs are often imputed to these antisense transcripts, but few have been experimentally examined, and such functions remain largely conjectural. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes two transcripts that lack obvious ORFs and are complementary to the gene (RTA) encoding the master regulator of the latent/lytic switch. Here, we show that, contrary to expectation, these RNAs do not regulate RTA expression. Rather, they are found on polysomes, and genetic analysis indicates that translational initiation occurs at several AUG codons in the RNA, leading to the presumptive synthesis of peptides of 17 to 48 amino acids. These findings underscore the need for circumspection in the computational assessment of coding potential and raise the possibility that the mammalian proteome may contain many previously unsuspected peptides generated from seemingly noncoding RNAs, some of which could have important biological functions. Irrespective of their function, such peptides could also contribute substantially to the repertoire of T cell epitopes generated in both uninfected and infected cells.
Collapse
|
45
|
Sullivan CS. New roles for large and small viral RNAs in evading host defences. Nat Rev Genet 2008; 9:503-7. [PMID: 18490927 DOI: 10.1038/nrg2349] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been known for decades that some clinically important viruses encode abundant amounts of non-coding RNAs (ncRNAs) during infection. Until recently, the number of viral ncRNAs identified was few and their functions were mostly unknown. Although our understanding is still in its infancy, several recent reports have identified new functions for viral microRNAs and larger ncRNAs. These results so far show that different classes of viral ncRNAs act to autoregulate viral gene expression and evade host antiviral defences such as apoptosis and the immune response.
Collapse
Affiliation(s)
- Christopher S Sullivan
- Christopher S. Sullivan is at The University of Texas, Molecular Genetics & Microbiology, 1 University Station A5000, Austin, Texas 78712-0162, USA.
| |
Collapse
|
46
|
Buck AH, Santoyo-Lopez J, Robertson KA, Kumar DS, Reczko M, Ghazal P. Discrete clusters of virus-encoded micrornas are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. J Virol 2007; 81:13761-70. [PMID: 17928340 PMCID: PMC2168849 DOI: 10.1128/jvi.01290-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 10/01/2007] [Indexed: 01/07/2023] Open
Abstract
The prevalence and importance of microRNAs (miRNAs) in viral infection are increasingly relevant. Eleven miRNAs were previously identified in human cytomegalovirus (HCMV); however, miRNA content in murine CMV (MCMV), which serves as an important in vivo model for CMV infection, has not previously been examined. We have cloned and characterized 17 novel miRNAs that originate from at least 12 precursor miRNAs in MCMV and are not homologous to HCMV miRNAs. In parallel, we applied a computational analysis, using a support vector machine approach, to identify potential precursor miRNAs in MCMV. Four of the top 10 predicted precursor sequences were cloned in this study, and the combination of computational and cloning analysis demonstrates that MCMV has the capacity to encode miRNAs clustered throughout the genome. On the basis of drug sensitivity experiments for resolving the kinetic class of expression, we show that the MCMV miRNAs are both early and late gene products. Notably, the MCMV miRNAs occur on complementary strands of the genome in specific regions, a feature which has not previously been observed for viral miRNAs. One cluster of miRNAs occurs in close proximity to the 5' splice site of the previously identified 7.2-kb stable intron, implying a variety of potential regulatory mechanisms for MCMV miRNAs.
Collapse
Affiliation(s)
- Amy H Buck
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | |
Collapse
|