1
|
Wick ET, Treadway CJ, Li Z, Nicely NI, Ren Z, Baldwin AS, Xiong Y, Harrison JS, Brown NG. Insight into Viral Hijacking of CRL4 Ubiquitin Ligase through Structural Analysis of the pUL145-DDB1 Complex. J Virol 2022; 96:e0082622. [PMID: 35938868 PMCID: PMC9472758 DOI: 10.1128/jvi.00826-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/21/2022] [Indexed: 12/21/2022] Open
Abstract
Viruses evolve mechanisms to exploit cellular pathways that increase viral fitness, e.g., enhance viral replication or evade the host cell immune response. The ubiquitin-proteosome system, a fundamental pathway-regulating protein fate in eukaryotes, is hijacked by all seven classes of viruses. Members of the Cullin-RING family of ubiquitin (Ub) ligases are frequently co-opted by divergent viruses because they can target a broad array of substrates by forming multisubunit assemblies comprised of a variety of adapters and substrate receptors. For example, the linker subunit DDB1 in the cullin 4-RING (CRL4)-DDB1 Ub ligase (CRL4DDB1) interacts with an H-box motif found in several unrelated viral proteins, including the V protein of simian virus 5 (SV5-V), the HBx protein of hepatitis B virus (HBV), and the recently identified pUL145 protein of human cytomegalovirus (HCMV). In HCMV-infected cells, pUL145 repurposes CRL4DDB1 to target STAT2, a protein vital to the antiviral immune response. However, the details of how these divergent viral sequences hijack DDB1 is not well understood. Here, we use a combination of binding assays, X-ray crystallography, alanine scanning, cell-based assays, and computational analysis to reveal that viral H-box motifs appear to bind to DDB1 with a higher affinity than the H-box motifs from host proteins DCAF1 and DDB2. This analysis reveals that viruses maintain native hot-spot residues in the H-box motif of host DCAFs and also acquire favorable interactions at neighboring residues within the H-box. Overall, these studies reveal how viruses evolve strategies to produce high-affinity binding and quality interactions with DDB1 to repurpose its Ub ligase machinery. IMPORTANCE Many different viruses modulate the protein machinery required for ubiquitination to enhance viral fitness. Specifically, several viruses hijack the cullin-RING ligase CRL4DDB1 to degrade host resistance factors. Human cytomegalovirus (HCMV) encodes pUL145 that redirects CRL4DDB1 to evade the immune system through the targeted degradation of the antiviral immune response protein STAT2. However, it is unclear why several viruses bind specific surfaces on ubiquitin ligases to repurpose their activity. We demonstrate that viruses have optimized H-box motifs that bind DDB1 with higher affinity than the H-box of native binders. For viral H-boxes, native interactions are maintained, but additional interactions that are absent in host cell H-boxes are formed, indicating that rewiring CRL4DDB1 creates a selective advantage for the virus. The DDB1-pUL145 peptide structure reveals that water-mediated interactions are critical to the higher affinity. Together, our data present an interesting example of how viral evolution can exploit a weakness in the ubiquitination machinery.
Collapse
Affiliation(s)
- Elizaveta T. Wick
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Colton J. Treadway
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhijun Li
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathan I. Nicely
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zhizhong Ren
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yue Xiong
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph S. Harrison
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Nicholas G. Brown
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Castro-Gonzalez S, Chen Y, Benjamin J, Shi Y, Serra-Moreno R. Residues T 48 and A 49 in HIV-1 NL4-3 Nef are responsible for the counteraction of autophagy initiation, which prevents the ubiquitin-dependent degradation of Gag through autophagosomes. Retrovirology 2021; 18:33. [PMID: 34711257 PMCID: PMC8555152 DOI: 10.1186/s12977-021-00576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Autophagy plays an important role as a cellular defense mechanism against intracellular pathogens, like viruses. Specifically, autophagy orchestrates the recruitment of specialized cargo, including viral components needed for replication, for lysosomal degradation. In addition to this primary role, the cleavage of viral structures facilitates their association with pattern recognition receptors and MHC-I/II complexes, which assists in the modulation of innate and adaptive immune responses against these pathogens. Importantly, whereas autophagy restricts the replicative capacity of human immunodeficiency virus type 1 (HIV-1), this virus has evolved the gene nef to circumvent this process through the inhibition of early and late stages of the autophagy cascade. Despite recent advances, many details of the mutual antagonism between HIV-1 and autophagy still remain unknown. Here, we uncover the genetic determinants that drive the autophagy-mediated restriction of HIV-1 as well as the counteraction imposed by Nef. Additionally, we also examine the implications of autophagy antagonism in HIV-1 infectivity. RESULTS We found that sustained activation of autophagy potently inhibits HIV-1 replication through the degradation of HIV-1 Gag, and that this effect is more prominent for nef-deficient viruses. Gag re-localizes to autophagosomes where it interacts with the autophagosome markers LC3 and SQSTM1. Importantly, autophagy-mediated recognition and recruitment of Gag requires the myristoylation and ubiquitination of this virus protein, two post-translational modifications that are essential for Gag's central role in virion assembly and budding. We also identified residues T48 and A49 in HIV-1 NL4-3 Nef as responsible for impairing the early stages of autophagy. Finally, a survey of pandemic HIV-1 transmitted/founder viruses revealed that these isolates are highly resistant to autophagy restriction. CONCLUSIONS This study provides evidence that autophagy antagonism is important for virus replication and suggests that the ability of Nef to counteract autophagy may have played an important role in mucosal transmission. Hence, disabling Nef in combination with the pharmacological manipulation of autophagy represents a promising strategy to prevent HIV spread.
Collapse
Affiliation(s)
| | - Yuexuan Chen
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jared Benjamin
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuhang Shi
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ruth Serra-Moreno
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
3
|
Novel Tsg101 Binding Partners Regulate Viral L Domain Trafficking. Viruses 2021; 13:v13061147. [PMID: 34203832 PMCID: PMC8232796 DOI: 10.3390/v13061147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Two decades ago, Tsg101, a component of the Endosomal Sorting Complexes Required for Transport (ESCRT) complex 1, was identified as a cellular factor recruited by the human immunodeficiency virus type 1 (HIV-1) to facilitate budding of viral particles assembled at the cell periphery. A highly conserved Pro-(Thr/Ser)-Ala-Pro [P(T/S)AP] motif in the HIV-1 structural polyprotein, Gag, engages a P(T/S)AP-binding pocket in the Tsg101 N-terminal domain. Since the same domain in Tsg101 that houses the pocket was found to bind mono-ubiquitin (Ub) non-covalently, Ub binding was speculated to enhance P(T/S)AP interaction. Within the past five years, we found that the Ub-binding site also accommodates di-Ub, with Lys63-linked di-Ub exhibiting the highest affinity. We also identified small molecules capable of disrupting Ub binding and inhibiting budding. The structural similarity of these molecules, prazoles, to nucleosides prompted testing for nucleic acid binding and led to identification of tRNA as a Tsg101 binding partner. Here, we discuss these recently identified interactions and their contribution to the viral assembly process. These new partners may provide additional insight into the control and function of Tsg101 as well as identify opportunities for anti-viral drug design.
Collapse
|
4
|
Zhang H, Zheng H, Zhu J, Dong Q, Wang J, Fan H, Chen Y, Zhang X, Han X, Li Q, Lu J, Tong Y, Chen Z. Ubiquitin-Modified Proteome of SARS-CoV-2-Infected Host Cells Reveals Insights into Virus-Host Interaction and Pathogenesis. J Proteome Res 2021; 20:2224-2239. [PMID: 33666082 PMCID: PMC7945586 DOI: 10.1021/acs.jproteome.0c00758] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Indexed: 12/12/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a serious threat to global public health. The mechanism of pathogenesis and the host immune response to SARS-CoV-2 infection are largely unknown. In the present study, we applied a quantitative proteomic technology to identify and quantify the ubiquitination changes that occur in both the virus and the Vero E6 cells during SARS-CoV-2 infection. By applying label-free, quantitative liquid chromatography with tandem mass spectrometry proteomics, 8943 lysine ubiquitination sites on 3086 proteins were identified, of which 138 sites on 104 proteins were quantified as significantly upregulated, while 828 sites on 447 proteins were downregulated at 72 h post-infection. Bioinformatics analysis suggested that SARS-CoV-2 infection might modulate host immune responses through the ubiquitination of important proteins, including USP5, IQGAP1, TRIM28, and Hsp90. Ubiquitination modification was also observed on 11 SAR-CoV-2 proteins, including proteins involved in virus replication and inhibition of the host innate immune response. Our study provides new insights into the interaction between SARS-CoV-2 and the host as well as potential targets for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease
Control and Prevention, Guangzhou 511430, P. R.
China
| | - Jinying Zhu
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Qiao Dong
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Jin Wang
- School of Public Health, Sun Yat-sen
University, Guangzhou 510080, P. R. China
| | - Huahao Fan
- Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| | - Yangzhen Chen
- Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| | - Xi Zhang
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Xiaohu Han
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Qianlin Li
- School of Public Health, Sun Yat-sen
University, Guangzhou 510080, P. R. China
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen
University, Guangzhou 510080, P. R. China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| | - Zeliang Chen
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
- School of Public Health, Sun Yat-sen
University, Guangzhou 510080, P. R. China
- Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| |
Collapse
|
5
|
Bussienne C, Marquet R, Paillart JC, Bernacchi S. Post-Translational Modifications of Retroviral HIV-1 Gag Precursors: An Overview of Their Biological Role. Int J Mol Sci 2021; 22:ijms22062871. [PMID: 33799890 PMCID: PMC8000049 DOI: 10.3390/ijms22062871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Protein post-translational modifications (PTMs) play key roles in eukaryotes since they finely regulate numerous mechanisms used to diversify the protein functions and to modulate their signaling networks. Besides, these chemical modifications also take part in the viral hijacking of the host, and also contribute to the cellular response to viral infections. All domains of the human immunodeficiency virus type 1 (HIV-1) Gag precursor of 55-kDa (Pr55Gag), which is the central actor for viral RNA specific recruitment and genome packaging, are post-translationally modified. In this review, we summarize the current knowledge about HIV-1 Pr55Gag PTMs such as myristoylation, phosphorylation, ubiquitination, sumoylation, methylation, and ISGylation in order to figure out how these modifications affect the precursor functions and viral replication. Indeed, in HIV-1, PTMs regulate the precursor trafficking between cell compartments and its anchoring at the plasma membrane, where viral assembly occurs. Interestingly, PTMs also allow Pr55Gag to hijack the cell machinery to achieve viral budding as they drive recognition between viral proteins or cellular components such as the ESCRT machinery. Finally, we will describe and compare PTMs of several other retroviral Gag proteins to give a global overview of their role in the retroviral life cycle.
Collapse
|
6
|
Lata S, Mishra R, Banerjea AC. Proteasomal Degradation Machinery: Favorite Target of HIV-1 Proteins. Front Microbiol 2018; 9:2738. [PMID: 30524389 PMCID: PMC6262318 DOI: 10.3389/fmicb.2018.02738] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Proteasomal degradation pathways play a central role in regulating a variety of protein functions by controlling not only their turnover but also the physiological behavior of the cell. This makes it an attractive target for the pathogens, especially viruses which rely on the host cellular machinery for their propagation and pathogenesis. Viruses have evolutionarily developed various strategies to manipulate the host proteasomal machinery thereby creating a cellular environment favorable for their own survival and replication. Human immunodeficiency virus-1 (HIV-1) is one of the most dreadful viruses which has rapidly spread throughout the world and caused high mortality due to its high evolution rate. Here, we review the various mechanisms adopted by HIV-1 to exploit the cellular proteasomal machinery in order to escape the host restriction factors and components of host immune system for supporting its own multiplication, and successfully created an infection.
Collapse
Affiliation(s)
- Sneh Lata
- Virology Lab II, National Institute of Immunology, New Delhi, India
| | - Ritu Mishra
- Virology Lab II, National Institute of Immunology, New Delhi, India
| | - Akhil C Banerjea
- Virology Lab II, National Institute of Immunology, New Delhi, India
| |
Collapse
|
7
|
Hurley JH, Cada AK. Inside job: how the ESCRTs release HIV-1 from infected cells. Biochem Soc Trans 2018; 46:1029-1036. [PMID: 30154094 PMCID: PMC6277019 DOI: 10.1042/bst20180019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) hijacks the host endosomal sorting complex required for transport (ESCRT) proteins in order to release infectious viral particles from the cell. ESCRT recruitment is virtually essential for the production of infectious virus, despite that the main structural protein of HIV-1, Gag, is capable of self-assembling and eventually budding from membranes on its own. Recent data have reinforced the paradigm of ESCRT-dependent particle release while clarifying why this rapid release is so critical. The ESCRTs were originally discovered as integral players in endosome maturation and are now implicated in many important cellular processes beyond viral and endosomal budding. Nearly all of these roles have in common that membrane scission occurs from the inward face of the membrane neck, which we refer to as 'reverse topology' scission. A satisfactory mechanistic description of reverse-topology membrane scission by ESCRTs remains a major challenge both in general and in the context of HIV-1 release. New observations concerning the fundamental scission mechanism for ESCRTs in general, and the process of HIV-1 release specifically, have generated new insights in both directions, bringing us closer to a mechanistic understanding.
Collapse
Affiliation(s)
- James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, U.S.A.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - A King Cada
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
8
|
Watanabe SM, Medina GN, Eastep GN, Ghanam RH, Vlach J, Saad JS, Carter CA. The matrix domain of the Gag protein from avian sarcoma virus contains a PI(4,5)P 2-binding site that targets Gag to the cell periphery. J Biol Chem 2018; 293:18841-18853. [PMID: 30309982 DOI: 10.1074/jbc.ra118.003947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
The Gag protein of avian sarcoma virus (ASV) lacks an N-myristoyl (myr) group, but contains structural domains similar to those of HIV-1 Gag. Similarly to HIV-1, ASV Gag accumulates on the plasma membrane (PM) before egress; however, it is unclear whether the phospholipid PI(4,5)P2 binds directly to the matrix (MA) domain of ASV Gag, as is the case for HIV-1 Gag. Moreover, the role of PI(4,5)P2 in ASV Gag localization and budding has been controversial. Here, we report that substitution of residues that define the PI(4,5)P2-binding site in the ASV MA domain (reported in an accompanying paper) interfere with Gag localization to the cell periphery and inhibit the production of virus-like particles (VLPs). We show that co-expression of Sprouty2 (Spry2) or the pleckstrin homology domain of phospholipase Cδ (PH-PLC), two proteins that bind PI(4,5)P2, affects ASV Gag trafficking to the PM and budding. Replacement of the N-terminal 32 residues of HIV-1 MA, which encode its N-terminal myr signal and its PI(4,5)P2-binding site, with the structurally equivalent N-terminal 24 residues of ASV MA created a chimera that localized at the PM and produced VLPs. In contrast, the homologous PI(4,5)P2-binding signal in ASV MA could target HIV-1 Gag to the PM when substituted, but did not support budding. Collectively, these findings reveal a basic patch in both ASV and HIV-1 Gag capable of mediating PM binding and budding for ASV but not for HIV-1 Gag. We conclude that PI(4,5)P2 is a strong determinant of ASV Gag targeting to the PM and budding.
Collapse
Affiliation(s)
- Susan M Watanabe
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794 and
| | - Gisselle N Medina
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794 and
| | - Gunnar N Eastep
- the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Ruba H Ghanam
- the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jiri Vlach
- the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jamil S Saad
- the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Carol A Carter
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794 and
| |
Collapse
|
9
|
Global analysis of ubiquitome in PRRSV-infected pulmonary alveolar macrophages. J Proteomics 2018; 184:16-24. [DOI: 10.1016/j.jprot.2018.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 11/18/2022]
|
10
|
Setz C, Friedrich M, Rauch P, Fraedrich K, Matthaei A, Traxdorf M, Schubert U. Inhibitors of Deubiquitinating Enzymes Block HIV-1 Replication and Augment the Presentation of Gag-Derived MHC-I Epitopes. Viruses 2017; 9:v9080222. [PMID: 28805676 PMCID: PMC5580479 DOI: 10.3390/v9080222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Abstract
In recent years it has been well established that two major constituent parts of the ubiquitin proteasome system (UPS)—the proteasome holoenzymes and a number of ubiquitin ligases—play a crucial role, not only in virus replication but also in the regulation of the immunogenicity of human immunodeficiency virus type 1 (HIV-1). However, the role in HIV-1 replication of the third major component, the deubiquitinating enzymes (DUBs), has remained largely unknown. In this study, we show that the DUB-inhibitors (DIs) P22077 and PR-619, specific for the DUBs USP7 and USP47, impair Gag processing and thereby reduce the infectivity of released virions without affecting viral protease activity. Furthermore, the replication capacity of X4- and R5-tropic HIV-1NL4-3 in human lymphatic tissue is decreased upon treatment with these inhibitors without affecting cell viability. Most strikingly, combinatory treatment with DIs and proteasome inhibitors synergistically blocks virus replication at concentrations where mono-treatment was ineffective, indicating that DIs can boost the therapeutic effect of proteasome inhibitors. In addition, P22077 and PR-619 increase the polyubiquitination of Gag and thus its entry into the UPS and the major histocompatibility complex (MHC)-I pathway. In summary, our data point towards a model in which specific inhibitors of DUBs not only interfere with virus spread but also increase the immune recognition of HIV-1 expressing cells.
Collapse
Affiliation(s)
- Christian Setz
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Melanie Friedrich
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Pia Rauch
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Kirsten Fraedrich
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Alina Matthaei
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Maximilian Traxdorf
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Ulrich Schubert
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| |
Collapse
|
11
|
Ding J, Zhao J, Sun L, Mi Z, Cen S. Citron kinase enhances ubiquitination of HIV-1 Gag protein and intracellular HIV-1 budding. Arch Virol 2016; 161:2441-8. [DOI: 10.1007/s00705-016-2933-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/12/2016] [Indexed: 11/30/2022]
|
12
|
Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag. Viruses 2016; 8:117. [PMID: 27120610 PMCID: PMC4848609 DOI: 10.3390/v8040117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (l-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane.
Collapse
|
13
|
Inhibition of HIV-1 assembly by coiled-coil domain containing protein 8 in human cells. Sci Rep 2015; 5:14724. [PMID: 26423533 PMCID: PMC4589731 DOI: 10.1038/srep14724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022] Open
Abstract
Human Immunodeficiency Virus type 1 (HIV-1) major structure protein Gag is synthesized in the cytoplasm, assembles on the plasma membrane, subsequently buds and releases. HIV-1 viral particles incorporate a number of host proteins to facilitate or inhibit HIV-1 replication. Here we identify a new host protein, coiled-coil domain containing protein 8 (CCDC8), in HIV-1 particles. Incorporation of CCDC8 into virions is dependent on the interaction between CCDC8 and Gag matrix region. Exogenous overexpression of CCDC8 can strongly inhibit HIV-1 production, up to ~30 fold. CCDC8 is a membrane-associated protein. The interaction between exogenously expressed CCDC8 and Gag on the plasma membrane changes the assembly of Gag, and redirects it into intracellular sites, or causes Gag endocytosis. CCDC8, along with cytoskeleton protein obscuring-like1 (Obsl1) and E3 ligase Cul7, induces Gag polyubiquitination and degradation. Thus we identify a new host protein and a new pathway for HIV-1 Gag polyubiquitination and degradation. This pathway presents potential therapeutic strategies against HIV infection.
Collapse
|
14
|
Mutation of the highly conserved Ser-40 of the HIV-1 p6 gag protein to Phe causes the formation of a hydrophobic patch, enhances membrane association, and polyubiquitination of Gag. Viruses 2014; 6:3738-65. [PMID: 25279819 PMCID: PMC4213559 DOI: 10.3390/v6103738] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/19/2014] [Accepted: 09/26/2014] [Indexed: 01/04/2023] Open
Abstract
The HIV-1 p6 Gag protein contains two late assembly (l-) domains that recruit proteins of the endosomal sorting complex required for transport (ESCRT) pathway to mediate membrane fission between the nascent virion and the cell membrane. It was recently demonstrated that mutation of the highly conserved Ser-40 to Phe (S40F) disturbs CA-SP1 processing, virus morphogenesis, and infectivity. It also causes the formation of filopodia-like structures, while virus release remains unaffected. Here, we show that the mutation S40F, but not the conservative mutation to Asp (S40D) or Asn (S40N), augments membrane association, K48-linked polyubiquitination, entry into the 26S proteasome, and, consequently, enhances MHC-I antigen presentation of Gag derived epitopes. Nuclear magnetic resonance (NMR) structure analyses revealed that the newly introduced Phe-40, together with Tyr-36, causes the formation of a hydrophobic patch at the C-terminal α-helix of p6, providing a molecular rationale for the enhanced membrane association of Gag observed in vitro and in HIV-1 expressing cells. The extended exposure of the S40F mutant to unidentified membrane-resident ubiquitin E3-ligases might trigger the polyubiquitination of Gag. The cumulative data support a previous model of a so far undefined property of p6, which, in addition to MA, acts as membrane targeting domain of Gag.
Collapse
|
15
|
Luttge BG, Panchal P, Puri V, Checkley MA, Freed EO. Mutations in the feline immunodeficiency virus envelope glycoprotein confer resistance to a dominant-negative fragment of Tsg101 by enhancing infectivity and cell-to-cell virus transmission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1143-52. [PMID: 24036228 DOI: 10.1016/j.bbamem.2013.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/04/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
The Pro-Ser-Ala-Pro (PSAP) motif in the p2 domain of feline immunodeficiency virus (FIV) Gag is required for efficient virus release, virus replication, and Gag binding to the ubiquitin-E2-variant (UEV) domain of Tsg101. As a result of this direct interaction, expression of an N-terminal fragment of Tsg101 containing the UEV domain (referred to as TSG-5') inhibits FIV release. In these respects, the FIV p2(Gag) PSAP motif is analogous to the PTAP motif of HIV-1 p6(Gag). To evaluate the feasibility of a late domain-targeted inhibition of virus replication, we created an enriched Crandell-Rees feline kidney (CRFK) cell line (T5'(hi)) that stably expresses high levels of TSG-5'. Here we show that mutations in either the V3 loop or the second heptad repeat (HR2) domain of the FIV envelope glycoprotein (Env) rescue FIV replication in T5'(hi) cells without increasing FIV release efficiency. TSG-5'-resistance mutations in Env enhance virion infectivity and the cell-cell spread of FIV when diffusion is limited using a semi-solid growth medium. These findings show that mutations in functional domains of Env confer TSG-5'-resistance, which we propose enhances specific infectivity and the cell-cell transmission of virus to counteract inefficient virus release. This article is part of a Special Issue entitled: Viral Membrane Proteins-Channels for Cellular Networking.
Collapse
Affiliation(s)
- Benjamin G Luttge
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Prashant Panchal
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Vinita Puri
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Mary Ann Checkley
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
16
|
Kessans SA, Linhart MD, Matoba N, Mor T. Biological and biochemical characterization of HIV-1 Gag/dgp41 virus-like particles expressed in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:681-90. [PMID: 23506331 PMCID: PMC3688661 DOI: 10.1111/pbi.12058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/10/2013] [Accepted: 01/27/2013] [Indexed: 05/29/2023]
Abstract
The transmembrane HIV-1 envelope protein gp41 has been shown to play critical roles in the viral mucosal transmission and infection of CD4⁺ cells. Gag is a structural protein configuring the enveloped viral particles and has been suggested to constitute a target of the cellular immunity that may control viral load. We hypothesized that HIV enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the membrane proximal external, transmembrane and cytoplasmic domains (dgp41) could be expressed in plants. To this end, plant-optimized HIV-1 genes were constructed and expressed in Nicotiana benthamiana by stable transformation, or transiently using a Tobamovirus-based expression system or a combination of both. Our results of biophysical, biochemical and electron microscopy characterization demonstrates that plant cells could support not only the formation of enveloped HIV-1 Gag VLPs, but also the accumulation of VLPs that incorporated dgp41. These findings provide further impetus for the journey towards a broadly efficacious and inexpensive subunit vaccine against HIV-1.
Collapse
Affiliation(s)
- Sarah A Kessans
- School of Life Sciences and The Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| | - Mark D Linhart
- School of Life Sciences and The Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| | - Nobuyuki Matoba
- School of Life Sciences and The Biodesign Institute, Arizona State UniversityTempe, AZ, USA
- Owensboro Cancer Research ProgramOwensboro, KY, USA
- James Graham Brown Cancer Center and Department of Pharmacology & Toxicology, University of Louisville School of MedicineLouisville, KY, USA
| | - Tsafrir Mor
- School of Life Sciences and The Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| |
Collapse
|
17
|
Sette P, Nagashima K, Piper RC, Bouamr F. Ubiquitin conjugation to Gag is essential for ESCRT-mediated HIV-1 budding. Retrovirology 2013; 10:79. [PMID: 23895345 PMCID: PMC3751857 DOI: 10.1186/1742-4690-10-79] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023] Open
Abstract
Background HIV-1 relies on the host ESCRTs for release from cells. HIV-1 Gag engages ESCRTs by directly binding TSG101 or Alix. ESCRTs also sort ubiquitinated membrane proteins through endosomes to facilitate their lysosomal degradation. The ability of ESCRTs to recognize and process ubiquitinated proteins suggests that ESCRT-dependent viral release may also be controlled by ubiquitination. Although both Gag and ESCRTs undergo some level of ubiquitination, definitive demonstration that ubiquitin is required for viral release is lacking. Here we suppress ubiquitination at viral budding sites by fusing the catalytic domain of the Herpes Simplex UL36 deubiquitinating enzyme (DUb) onto TSG101, Alix, or Gag. Results Expressing DUb-TSG101 suppressed Alix-independent HIV-1 release and viral particles remained tethered to the cell surface. DUb-TSG101 had no effect on budding of MoMLV or EIAV, two retroviruses that rely on the ESCRT machinery for exit. Alix-dependent virus release such as EIAV’s, and HIV-1 lacking access to TSG101, was instead dramatically blocked by co-expressing DUb-Alix. Finally, Gag-DUb was unable to support virus release and dominantly interfered with release of wild type HIV-1. Fusion of UL36 did not effect interactions with Alix, TSG101, or Gag and all of the inhibitory effects of UL36 fusion were abolished when its catalytic activity was ablated. Accordingly, Alix, TSG101 and Gag fused to inactive UL36 functionally replaced their unfused counterparts. Interestingly, coexpression of the Nedd4-2s ubiquitin ligase suppressed the ability of DUb-TSG101 to inhibit HIV-1 release while also restoring detectable Gag ubiquitination at the membrane. Similarly, incorporation of Gag-Ub fusion proteins into virions lifted DUb-ESCRT inhibitory effect. In contrast, Nedd4-2s did not suppress the inhibition mediated by Gag-DUb despite restoring robust ubiquitination of TSG101/ESCRT-I at virus budding sites. Conclusions These studies demonstrate a necessary and natural role for ubiquitin in ESCRT-dependent viral release and indicate a critical role for ubiquitination of Gag rather than ubiquitination of ESCRTs themselves.
Collapse
Affiliation(s)
- Paola Sette
- Viral Budding Unit, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Dr, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
18
|
Chukkapalli V, Inlora J, Todd GC, Ono A. Evidence in support of RNA-mediated inhibition of phosphatidylserine-dependent HIV-1 Gag membrane binding in cells. J Virol 2013; 87:7155-9. [PMID: 23552424 PMCID: PMC3676091 DOI: 10.1128/jvi.00075-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/27/2013] [Indexed: 12/11/2022] Open
Abstract
The matrix domain promotes plasma-membrane-specific binding of HIV-1 Gag through interaction with an acidic lipid phosphatidylinositol-(4,5)-bisphosphate. In in vitro systems, matrix-bound RNA suppresses Gag interactions with phosphatidylserine, an acidic lipid prevalent in various cytoplasmic membranes, thereby enhancing the lipid specificity of the matrix domain. Here we provide in vitro and cell-based evidence supporting the idea that this RNA-mediated suppression occurs in cells and hence is a physiologically relevant mechanism that prevents Gag from binding promiscuously to phosphatidylserine-containing membranes.
Collapse
Affiliation(s)
- Vineela Chukkapalli
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
19
|
Solbak SMØ, Reksten TR, Hahn F, Wray V, Henklein P, Henklein P, Halskau Ø, Schubert U, Fossen T. HIV-1 p6 - a structured to flexible multifunctional membrane-interacting protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:816-23. [PMID: 23174350 DOI: 10.1016/j.bbamem.2012.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/30/2012] [Accepted: 11/06/2012] [Indexed: 02/02/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) p6 protein has recently been recognized as a docking site for several cellular and viral binding partners and is important for the formation of infectious viruses. Most of its known functions are suggested to occur under hydrophobic conditions near the cytoplasmic membrane, where the protein is presumed to exist in its most structured state. Although p6 is involved in manifold specific interactions, the protein has previously been considered to possess a random structure in aqueous solution. We show that p6 exhibits a defined structure with N- and C-terminal helical domains, connected by a flexible hinge region in 100mM dodecylphosphocholine micelle solution at pH 7 devoid of any organic co-solvents, indicating that this is a genuine limiting structural feature of the molecule in a hydrophobic environment. Furthermore, we show that p6 directly interacts with a cytoplasmic model membrane through both N-terminal and C-terminal regions by use of surface plasmon resonance (SPR) spectroscopy. Phosphorylation of Ser-40 located in the center of the C-terminal α-helix does not alter the secondary structure of the protein but amplifies the interaction with membranes significantly, indicating that p6 binds to the polar head groups at the surface of the cytoplasmic membrane. The increased hydrophobic membrane interaction of p6(23-52) S40F correlated with the observed increased amount of the polyprotein Gag in the RIPA insoluble fraction when Ser40 of p6 was mutated with Phe indicating that p6 modulates the membrane interactions of HIV-1 Gag.
Collapse
Affiliation(s)
- Sara Marie Øie Solbak
- Department of Chemistry and Centre for Pharmacy, University of Bergen, N-5007 Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Santos S, Obukhov Y, Nekhai S, Bukrinsky M, Iordanskiy S. Virus-producing cells determine the host protein profiles of HIV-1 virion cores. Retrovirology 2012; 9:65. [PMID: 22889230 PMCID: PMC3432596 DOI: 10.1186/1742-4690-9-65] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background Upon HIV entry into target cells, viral cores are released and rearranged into reverse transcription complexes (RTCs), which support reverse transcription and also protect and transport viral cDNA to the site of integration. RTCs are composed of viral and cellular proteins that originate from both target and producer cells, the latter entering the target cell within the viral core. However, the proteome of HIV-1 viral cores in the context of the type of producer cells has not yet been characterized. Results We examined the proteomic profiles of the cores purified from HIV-1 NL4-3 virions assembled in Sup-T1 cells (T lymphocytes), PMA and vitamin D3 activated THP1 (model of macrophages, mMΦ), and non-activated THP1 cells (model of monocytes, mMN) and assessed potential involvement of identified proteins in the early stages of infection using gene ontology information and data from genome-wide screens on proteins important for HIV-1 replication. We identified 202 cellular proteins incorporated in the viral cores (T cells: 125, mMΦ: 110, mMN: 90) with the overlap between these sets limited to 42 proteins. The groups of RNA binding (29), DNA binding (17), cytoskeleton (15), cytoskeleton regulation (21), chaperone (18), vesicular trafficking-associated (12) and ubiquitin-proteasome pathway-associated proteins (9) were most numerous. Cores of the virions from SupT1 cells contained twice as many RNA binding proteins as cores of THP1-derived virus, whereas cores of virions from mMΦ and mMN were enriched in components of cytoskeleton and vesicular transport machinery, most probably due to differences in virion assembly pathways between these cells. Spectra of chaperones, cytoskeletal proteins and ubiquitin-proteasome pathway components were similar between viral cores from different cell types, whereas DNA-binding and especially RNA-binding proteins were highly diverse. Western blot analysis showed that within the group of overlapping proteins, the level of incorporation of some RNA binding (RHA and HELIC2) and DNA binding proteins (MCM5 and Ku80) in the viral cores from T cells was higher than in the cores from both mMΦ and mMN and did not correlate with the abundance of these proteins in virus producing cells. Conclusions Profiles of host proteins packaged in the cores of HIV-1 virions depend on the type of virus producing cell. The pool of proteins present in the cores of all virions is likely to contain factors important for viral functions. Incorporation ratio of certain RNA- and DNA-binding proteins suggests their more efficient, non-random packaging into virions in T cells than in mMΦ and mMN.
Collapse
Affiliation(s)
- Steven Santos
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
21
|
Dordor A, Poudevigne E, Göttlinger H, Weissenhorn W. Essential and supporting host cell factors for HIV-1 budding. Future Microbiol 2012; 6:1159-70. [PMID: 22004035 DOI: 10.2217/fmb.11.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV-1 employs its structural proteins to orchestrate assembly and budding at the plasma membrane of host cells. The Gag polyprotein is sufficient to form virus-like particles in the absence of other viral proteins and provides a platform to interact with numerous cellular factors that regulate Gag trafficking to the site of assembly and budding. Notably endosomal sorting complexes required for transport have attained much attention over the last decade because of their essential role in virion release. Here we review recent advances in understanding the role of host cell factors recruited by Gag during HIV-1 assembly and budding.
Collapse
Affiliation(s)
- Aurelien Dordor
- Unit of Virus Host Cell Interactions UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
22
|
Biard-Piechaczyk M, Borel S, Espert L, de Bettignies G, Coux O. HIV-1, ubiquitin and ubiquitin-like proteins: the dialectic interactions of a virus with a sophisticated network of post-translational modifications. Biol Cell 2012; 104:165-87. [PMID: 22188301 DOI: 10.1111/boc.201100112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022]
Abstract
The modification of intracellular proteins by ubiquitin (Ub) and ubiquitin-like (UbL) proteins is a central mechanism for regulating and fine-tuning all cellular processes. Indeed, these modifications are widely used to control the stability, activity and localisation of many key proteins and, therefore, they are instrumental in regulating cellular functions as diverse as protein degradation, cell signalling, vesicle trafficking and immune response. It is thus no surprise that pathogens in general, and viruses in particular, have developed multiple strategies to either counteract or exploit the complex mechanisms mediated by the Ub and UbL protein conjugation pathways. The aim of this review is to provide an overview on the intricate and conflicting relationships that intimately link HIV-1 and these sophisticated systems of post-translational modifications.
Collapse
Affiliation(s)
- Martine Biard-Piechaczyk
- Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé (CPBS-CNRS), Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
23
|
Engeland CE, Oberwinkler H, Schümann M, Krause E, Müller GA, Kräusslich HG. The cellular protein lyric interacts with HIV-1 Gag. J Virol 2011; 85:13322-32. [PMID: 21957284 PMCID: PMC3233182 DOI: 10.1128/jvi.00174-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 09/19/2011] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein driving assembly and release of virions from infected cells. Gag alone is capable of self-assembly in vitro, but host factors have been shown to play a role in efficient viral replication and particle morphogenesis within the living cell. In a series of affinity purification experiments, we identified the cellular protein Lyric to be an HIV-1 Gag-interacting protein. Lyric was previously described to be an HIV-inducible gene and is involved in various signaling pathways. Gag interacts with endogenous Lyric via its matrix (MA) and nucleocapsid (NC) domains. This interaction requires Gag multimerization and Lyric amino acids 101 to 289. Endogenous Lyric is incorporated into HIV-1 virions and is cleaved by the viral protease. Gag-Lyric interaction was also observed for murine leukemia virus and equine infectious anemia virus, suggesting that it represents a conserved feature among retroviruses. Expression of the Gag binding domain of Lyric increased Gag expression levels and viral infectivity, whereas expression of a Lyric mutant lacking the Gag binding site resulted in lower Gag expression and decreased viral infectivity. The results of the current study identify Lyric to be a cellular interaction partner of HIV-1 Gag and hint at a potential role in regulating infectivity. Further experiments are needed to elucidate the precise role of this interaction.
Collapse
Affiliation(s)
- Christine E. Engeland
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Heike Oberwinkler
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Michael Schümann
- Leibniz Institute for Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Gerd A. Müller
- Molecular Oncology, Department of Obstetrics and Gynecology, University of Leipzig, Semmelweisstrasse 14, D-04103 Leipzig, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| |
Collapse
|
24
|
Manohar S, Harlow M, Nguyen H, Li J, Hankins GR, Park M. Chromatin modifying protein 1A (Chmp1A) of the endosomal sorting complex required for transport (ESCRT)-III family activates ataxia telangiectasia mutated (ATM) for PanC-1 cell growth inhibition. Cell Cycle 2011; 10:2529-39. [PMID: 21705858 DOI: 10.4161/cc.10.15.15926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chromatin modifying protein 1A (Chmp1A) is a member of the Endosormal sorting complex required for transport (ESCRT)-III family whose over-expression induces growth inhibition, chromatin condensation, and p53 phosphorylation. p53 is a substrate for Ataxia telangiectasia mutated (ATM), which can be activated upon chromatin condensation. Thus, we propose that Chmp1A regulates ATM, and the nuclear localization signal (NLS) is required for ATM activation. Our data demonstrated that over-expression of full-length Chmp1A induced an increase in active, phosphorylated ATM in the nucleus, where they co-localized. It also induced an increase in phospho-p53 in the nucleus, and in vitro ATM kinase and p53 reporter activities. The intensity of phospho-p53 closely followed that of ectopically induced full-length Chmp1A, suggesting a tight correlation between Chmp1A over-expression and p53 phosphorylation. On the other hand, Chmp1A depletion (reported to promote cell growth) had minor effects on phospho-ATM and p53 expression compared to control, which had very little expression of these proteins. NLS-deleted cells showed uniform cytoplasmic-Chmp1A expression and acted like shRNA-expressing cells (cell growth promotion and minimal effect on ATM), demonstrating the significance of NLS on ATM activation and growth inhibition. C-deleted Chmp1A, detected in the cytoplasm at the enlarged vesicles, increased phospho-ATM and p53, and inhibited growth; yet it had no effect on in vitro ATM kinase or p53 reporter activities, suggesting that the C-domain is not required for ATM activation. Finally, ATM inactivation considerably reduced Chmp1A mediated growth inhibition and phosphorylation of p53, showing that Chmp1A regulates tumor growth partly through ATM signaling.
Collapse
Affiliation(s)
- Sumanth Manohar
- Department of Biology, West Virginia State University, Institute, WV, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hahn S, Setz C, Wild J, Schubert U. The PTAP sequence within the p6 domain of human immunodeficiency virus type 1 Gag regulates its ubiquitination and MHC class I antigen presentation. THE JOURNAL OF IMMUNOLOGY 2011; 186:5706-18. [PMID: 21482733 DOI: 10.4049/jimmunol.1003764] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endogenous peptides presented by MHC class I (MHC-I) molecules are mostly derived from de novo synthesized, erroneous proteins, so-called defective ribosomal products (DRiPs), which are rapidly degraded via the ubiquitin-proteasome pathway. We have previously shown that the HIV-1 Gag protein represents a bona fide substrate for the DRiP pathway and that the amount of Gag-DRiPs can be enhanced by the introduction of an N-end rule degradation signal, leading to increased MHC-I presentation and immunogenicity of Gag. Based on these findings, we sought to identify a naturally occurring sequence motif within Gag that regulates its entry into the DRiP pathway. As the PTAP late assembly domain motif in the C-terminal p6 domain of Gag has been shown to negatively regulate the ubiquitination of Gag, we analyzed the correlation between ubiquitination and MHC-I presentation of PTAP-deficient Gag. Intriguingly, mutation of PTAP not only reduces the release of virus-like particles, but also increases ubiquitination of Gag and, consistently, enhances MHC-I presentation of a Gag-derived epitope. Although the half-life of the PTAP mutant was only mildly reduced, the entry into the DRiP pathway was significantly increased, as demonstrated by short-term pulse-chase analyses under proteasome inhibition. Collectively, these results indicate that, besides driving virus release, the PTAP motif regulates the entry of Gag into the DRiP pathway and, thus, into the MHC-I pathway. Although there are no naturally occurring PTAP mutants of HIV-1, mutations of PTAP might enhance the immunogenicity of Gag and, thus, be considered for the improvement of vaccine development.
Collapse
Affiliation(s)
- Sabine Hahn
- Institute of Clinical and Molecular Virology, Friedrich Alexander University, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
26
|
Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication. EMBO J 2010; 29:3879-90. [PMID: 20924359 DOI: 10.1038/emboj.2010.250] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/14/2010] [Indexed: 11/08/2022] Open
Abstract
Influenza A virus RNA replication requires an intricate regulatory network involving viral and cellular proteins. In this study, we examined the roles of cellular ubiquitinating/deubiquitinating enzymes (DUBs). We observed that downregulation of a cellular deubiquitinating enzyme USP11 resulted in enhanced virus production, suggesting that USP11 could inhibit influenza virus replication. Conversely, overexpression of USP11 specifically inhibited viral genomic RNA replication, and this inhibition required the deubiquitinase activity. Furthermore, we showed that USP11 interacted with PB2, PA, and NP of viral RNA replication complex, and that NP is a monoubiquitinated protein and can be deubiquitinated by USP11 in vivo. Finally, we identified K184 as the ubiquitination site on NP and this residue is crucial for virus RNA replication. We propose that ubiquitination/deubiquitination of NP can be manipulated for antiviral therapeutic purposes.
Collapse
|
27
|
Abstract
The host innate immune response, including the production of type-I IFN, represents the primary line of defense against invading viral pathogens. Of the hundreds of IFN-stimulated genes (ISGs) discovered to date, ISG15 was one of the first identified and shown to encode a ubiquitin-like protein that functions, in part, as a modifier of protein function. Evidence implicating ISG15 as an innate immune protein with broad-spectrum antiviral activity continues to accumulate rapidly. This review will summarize recent findings on the innate antiviral activity of ISG15, with a focus on the interplay between ubiquitination and ISGylation pathways resulting in modulation of RNA virus assembly/budding. Indeed, ubiquitination is known to be proviral for some RNA viruses, whereas the parallel ISGylation pathway is known to be antiviral. A better understanding of the antiviral activities of ISG15 will enhance our fundamental knowledge of host innate responses to viral pathogens and may provide insight useful for the development of novel therapeutic approaches designed to enhance the immune response against such pathogens.
Collapse
Affiliation(s)
- Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
28
|
Jin J, Sturgeon T, Weisz OA, Mothes W, Montelaro RC. HIV-1 matrix dependent membrane targeting is regulated by Gag mRNA trafficking. PLoS One 2009; 4:e6551. [PMID: 19662089 PMCID: PMC2717210 DOI: 10.1371/journal.pone.0006551] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/30/2009] [Indexed: 11/30/2022] Open
Abstract
Retroviral Gag polyproteins are necessary and sufficient for virus budding. Productive HIV-1 Gag assembly takes place at the plasma membrane. However, little is known about the mechanisms by which thousands of Gag molecules are targeted to the plasma membrane. Using a bimolecular fluorescence complementation (BiFC) assay, we recently reported that the cellular sites and efficiency of HIV-1 Gag assembly depend on the precise pathway of Gag mRNA export from the nucleus, known to be mediated by Rev. Here we describe an assembly deficiency in human cells for HIV Gag whose expression depends on hepatitis B virus (HBV) post-transcriptional regulatory element (PRE) mediated-mRNA nuclear export. PRE-dependent HIV Gag expressed well in human cells, but assembled with slower kinetics, accumulated intracellularly, and failed to associate with a lipid raft compartment where the wild-type Rev-dependent HIV-1 Gag efficiently assembles. Surprisingly, assembly and budding of PRE-dependent HIV Gag in human cells could be rescued in trans by co-expression of Rev-dependent Gag that provides correct membrane targeting signals, or in cis by replacing HIV matrix (MA) with other membrane targeting domains. Taken together, our results demonstrate deficient membrane targeting of PRE-dependent HIV-1 Gag and suggest that HIV MA function is regulated by the trafficking pathway of the encoding mRNA.
Collapse
Affiliation(s)
- Jing Jin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Section of Microbial Pathogenesis, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Timothy Sturgeon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ora A. Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Walther Mothes
- Section of Microbial Pathogenesis, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Ronald C. Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
29
|
Quantitative fluorescence resonance energy transfer microscopy analysis of the human immunodeficiency virus type 1 Gag-Gag interaction: relative contributions of the CA and NC domains and membrane binding. J Virol 2009; 83:7322-36. [PMID: 19403686 DOI: 10.1128/jvi.02545-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 structural polyprotein Pr55(Gag) is necessary and sufficient for the assembly of virus-like particles on cellular membranes. Previous studies demonstrated the importance of the capsid C-terminal domain (CA-CTD), nucleocapsid (NC), and membrane association in Gag-Gag interactions, but the relationships between these factors remain unclear. In this study, we systematically altered the CA-CTD, NC, and the ability to bind membrane to determine the relative contributions of, and interplay between, these factors. To directly measure Gag-Gag interactions, we utilized chimeric Gag-fluorescent protein fusion constructs and a fluorescence resonance energy transfer (FRET) stoichiometry method. We found that the CA-CTD is essential for Gag-Gag interactions at the plasma membrane, as the disruption of the CA-CTD has severe impacts on FRET. Data from experiments in which wild-type (WT) and CA-CTD mutant Gag molecules are coexpressed support the idea that the CA-CTD dimerization interface consists of two reciprocal interactions. Mutations in NC have less-severe impacts on FRET between normally myristoylated Gag proteins than do CA-CTD mutations. Notably, when nonmyristoylated Gag interacts with WT Gag, NC is essential for FRET despite the presence of the CA-CTD. In contrast, constitutively enhanced membrane binding eliminates the need for NC to produce a WT level of FRET. These results from cell-based experiments suggest a model in which both membrane binding and NC-RNA interactions serve similar scaffolding functions so that one can functionally compensate for a defect in the other.
Collapse
|
30
|
Nishi M, Ryo A, Tsurutani N, Ohba K, Sawasaki T, Morishita R, Perrem K, Aoki I, Morikawa Y, Yamamoto N. Requirement for microtubule integrity in the SOCS1-mediated intracellular dynamics of HIV-1 Gag. FEBS Lett 2009; 583:1243-50. [PMID: 19327355 DOI: 10.1016/j.febslet.2009.03.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 11/17/2022]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is a recently identified host factor that positively regulates the intracellular trafficking and stability of HIV-1 Gag. We here examine the molecular mechanism by which SOCS1 regulates intercellular Gag trafficking and virus particle production. We find that SOCS1 colocalizes with Gag along the microtubule network and promotes microtubule stability. SOCS1 also increases the amount of Gag associated with microtubules. Both nocodazole treatment and the expression of the microtubule-destabilizing protein, stathmin, inhibit the enhancement of HIV-1 particle production by SOCS1. SOCS1 facilitates Gag ubiquitination and the co-expression of a dominant-negative ubiquitin significantly inhibits the association of Gag with microtubules. We thus propose that the microtubule network plays a role in SOCS1-mediated HIV-1 Gag transport and virus particle formation.
Collapse
Affiliation(s)
- Mayuko Nishi
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu Y, Shah SV, Xiang X, Wang J, Deng ZB, Liu C, Zhang L, Wu J, Edmonds T, Jambor C, Kappes JC, Zhang HG. COP9-associated CSN5 regulates exosomal protein deubiquitination and sorting. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1415-25. [PMID: 19246649 DOI: 10.2353/ajpath.2009.080861] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ubiquitinated endosomal proteins that are deposited into the lumens of multivesicular bodies are either sorted for lysosomal-mediated degradation or secreted as exosomes into the extracellular milieu. The mechanisms that underlie the sorting of cellular cargo proteins are currently unknown. In this study, we show that the COP9 signalosome (CSN)-associated protein CSN5 quantitatively regulated proteins that were sorted into exosomes. Western blot analysis of exosomal proteins indicated that small interfering (si)RNA knockdown of CSN5 results in increased levels of both ubiquitinated and non-ubiquitinated exosomal proteins, including heat shock protein 70, in comparison with exosomes isolated from the supernatants of 293 cells transfected with scrambled siRNA. Furthermore, 293 cells transfected with JAB1/MPN/Mov34 metalloenzyme domain-deleted CSN5 produced exosomes with higher levels of ubiquitinated heat shock protein 70, which did not affect non-ubiquitinated heat shock protein 70 levels. The loss of COP9-associated deubiquitin activity of CSN5 also led to the enhancement of HIV Gag that was sorted into exosomes as well as the promotion of HIV-1 release, suggesting that COP9-associated CSN5 regulates the sorting of a number of exosomal proteins in both a CSN5 JAB1/MPN/Mov34 metalloenzyme domain-dependent and -independent manner. We propose that COP9-associated CSN5 regulates exosomal protein sorting in both a deubiquitinating activity-dependent and -independent manner, which is contrary to the current idea of ubiquitin-dependent sorting of proteins to exosomes.
Collapse
Affiliation(s)
- Yuelong Liu
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The ubiquitin-proteasome system in spongiform degenerative disorders. Biochim Biophys Acta Mol Basis Dis 2008; 1782:700-12. [PMID: 18790052 PMCID: PMC2612938 DOI: 10.1016/j.bbadis.2008.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 12/20/2022]
Abstract
Spongiform degeneration is characterized by vacuolation in nervous tissue accompanied by neuronal death and gliosis. Although spongiform degeneration is a hallmark of prion diseases, this pathology is also present in the brains of patients suffering from Alzheimer’s disease, diffuse Lewy body disease, human immunodeficiency virus (HIV) infection, and Canavan’s spongiform leukodystrophy. The shared outcome of spongiform degeneration in these diverse diseases suggests that common cellular mechanisms must underlie the processes of spongiform change and neurodegeneration in the central nervous system. Immunohistochemical analysis of brain tissues reveals increased ubiquitin immunoreactivity in and around areas of spongiform change, suggesting the involvement of ubiquitin–proteasome system dysfunction in the pathogenesis of spongiform neurodegeneration. The link between aberrant ubiquitination and spongiform neurodegeneration has been strengthened by the discovery that a null mutation in the E3 ubiquitin–protein ligase mahogunin ring finger-1 (Mgrn1) causes an autosomal recessively inherited form of spongiform neurodegeneration in animals. Recent studies have begun to suggest that abnormal ubiquitination may alter intracellular signaling and cell functions via proteasome-dependent and proteasome-independent mechanisms, leading to spongiform degeneration and neuronal cell death. Further elucidation of the pathogenic pathways involved in spongiform neurodegeneration should facilitate the development of novel rational therapies for treating prion diseases, HIV infection, and other spongiform degenerative disorders.
Collapse
|
33
|
Votteler J, Schubert U. Ubiquitin ligases as therapeutic targets in HIV-1 infection. Expert Opin Ther Targets 2008; 12:131-43. [PMID: 18208363 DOI: 10.1517/14728222.12.2.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Introduction of highly active antiretroviral therapy has led to a profound reduction in human immunodeficiency virus (HIV) related mortality; although, the complete eradication of the virus from infected individuals has never been achieved. In addition, due to the high mutation and evolution rate, drug-resistant viruses are continuously emerging. OBJECTIVE Genetically more stable cellular pathways represent attractive targets for innovative antiviral strategies, especially the ubiquitin proteasome system, which regulates various steps in the HIV replication cycle. METHODS This review focuses on certain interactions of HIV and E3 ligases as a major player in the ubiquitin proteasome system. RESULTS/CONCLUSION Due to the importance in HIV replication, and together with the high substrate specificity, E3 ligases can be considered as bona fide targets to interfere with HIV infection.
Collapse
Affiliation(s)
- Jörg Votteler
- University of Erlangen-Nuremberg, Institute of Clinical and Molecular Virology, Schlossgarten 4, 91054 Erlangen, Germany.
| | | |
Collapse
|
34
|
Goldwich A, Hahn SSC, Schreiber S, Meier S, Kämpgen E, Wagner R, Lutz MB, Schubert U. Targeting HIV-1 Gag into the defective ribosomal product pathway enhances MHC class I antigen presentation and CD8+ T cell activation. THE JOURNAL OF IMMUNOLOGY 2008; 180:372-82. [PMID: 18097038 DOI: 10.4049/jimmunol.180.1.372] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The main source for endogenous peptides presented by the MHC class I (MHC-I) pathway are de novo-synthesized proteins which are degraded via the ubiquitin proteasome pathway. Different MHC-I Ag pools can be distinguished: first, short-lived defective ribosomal products, which are degraded in concert with or shortly after their synthesis, and, second, functional proteins that enter the standard protein life cycle. To compare the contribution of these two Ag sources to the generation of MHC-I-presented peptides, we established murine cell lines which express as a model Ag the HIV-1 Gag polyprotein fused to ubiquitin (Ub) carrying the epitope SIINFEKL (SL). Gag was expressed either in its wild-type form (UbMGagSL) or as a variant UbRGagSL harboring an N-end rule degron signal. Although UbRGagSL displayed wild-type protein stability, its inherent defective ribosomal products rate observed after proteasome shutdown was increased concomitant with enhanced presentation of the SL epitope. In addition, UbRGagSL induces enhanced T cell stimulation of SL-specific B3Z hybridoma cells as measured in vitro and of adoptively transferred TCR-transgenic OT-1 T cells in vivo. Furthermore, an elevated frequency of SL-specific T cells was detected by IFN-gamma ELISPOT after immunization of naive C57BL/6 mice with UbRGagSL/EL4 cells. These results further underline the role of the defective ribosomal product pathway in adaptive immunity.
Collapse
Affiliation(s)
- Andreas Goldwich
- Institute of Clinical and Molecular Virology, Department of Dermatology, University Hospital of Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
TULA proteins bind to ABCE-1, a host factor of HIV-1 assembly, and inhibit HIV-1 biogenesis in a UBA-dependent fashion. Virology 2008; 372:10-23. [DOI: 10.1016/j.virol.2007.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/09/2007] [Accepted: 10/11/2007] [Indexed: 11/20/2022]
|