1
|
Fiacre L, Nougairède A, Migné C, Bayet M, Cochin M, Dumarest M, Helle T, Exbrayat A, Pagès N, Vitour D, Richardson JP, Failloux AB, Vazeille M, Albina E, Lecollinet S, Gonzalez G. Different viral genes modulate virulence in model mammal hosts and Culex pipiens vector competence in Mediterranean basin lineage 1 West Nile virus strains. Front Microbiol 2024; 14:1324069. [PMID: 38298539 PMCID: PMC10828019 DOI: 10.3389/fmicb.2023.1324069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
West Nile virus (WNV) is a single-stranded positive-sense RNA virus (+ssRNA) belonging to the genus Orthoflavivirus. Its enzootic cycle involves mosquito vectors, mainly Culex, and wild birds as reservoir hosts, while mammals, such as humans and equids, are incidental dead-end hosts. It was first discovered in 1934 in Uganda, and since 1999 has been responsible for frequent outbreaks in humans, horses and wild birds, mostly in America and in Europe. Virus spread, as well as outbreak severity, can be influenced by many ecological factors, such as reservoir host availability, biodiversity, movements and competence, mosquito abundance, distribution and vector competence, by environmental factors such as temperature, land use and precipitation, as well as by virus genetic factors influencing virulence or transmission. Former studies have investigated WNV factors of virulence, but few have compared viral genetic determinants of pathogenicity in different host species, and even fewer have considered the genetic drivers of virus invasiveness and excretion in Culex vector. In this study, we characterized WNV genetic factors implicated in the difference in virulence observed in two lineage 1 WNV strains from the Mediterranean Basin, the first isolated during a significant outbreak reported in Israel in 1998, and the second from a milder outbreak in Italy in 2008. We used an innovative and powerful reverse genetic tool, e.g., ISA (infectious subgenomic amplicons) to generate chimeras between Israel 1998 and Italy 2008 strains, focusing on non-structural (NS) proteins and the 3'UTR non-coding region. We analyzed the replication of these chimeras and their progenitors in mammals, in BALB/cByJ mice, and vector competence in Culex (Cx.) pipiens mosquitoes. Results obtained in BALB/cByJ mice suggest a role of the NS2B/NS3/NS4B/NS5 genomic region in viral attenuation in mammals, while NS4B/NS5/3'UTR regions are important in Cx. pipiens infection and possibly in vector competence.
Collapse
Affiliation(s)
- Lise Fiacre
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
- UMR ASTRE, CIRAD, Petit-Bourg, Guadeloupe
| | - Antoine Nougairède
- Unité Des Virus Emergents (UVE), Aix-Marseille Université, IRD 190, INSERM 1207, Marseille, France
| | - Camille Migné
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | | | - Maxime Cochin
- Unité Des Virus Emergents (UVE), Aix-Marseille Université, IRD 190, INSERM 1207, Marseille, France
| | - Marine Dumarest
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Teheipuaura Helle
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Antoni Exbrayat
- ASTRE, CIRAD, INRAe, Université de Montpellier, Montpellier, France
| | | | - Damien Vitour
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Jennifer P. Richardson
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insects Vectors, Paris, France
| | - Marie Vazeille
- Institut Pasteur, Université Paris Cité, Arboviruses and Insects Vectors, Paris, France
| | - Emmanuel Albina
- ASTRE, CIRAD, INRAe, Université de Montpellier, Montpellier, France
| | | | - Gaëlle Gonzalez
- UMR VIRO, ANSES, ENVA, INRAE Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
2
|
Fang E, Li M, Liu X, Hu K, Liu L, Zhang Z, Li X, Peng Q, Li Y. NS1 Protein N-Linked Glycosylation Site Affects the Virulence and Pathogenesis of Dengue Virus. Vaccines (Basel) 2023; 11:vaccines11050959. [PMID: 37243063 DOI: 10.3390/vaccines11050959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Live attenuated vaccine is one of the most effective vaccines against flavivirus. Recently, site-directed mutation of the flavivirus genome using reverse genetics techniques has been used for the rapid development of attenuated vaccines. However, this technique relies on basic research of critical virulence loci of the virus. To screen the attenuated sites in dengue virus, a total of eleven dengue virus type four mutant strains with deletion of N-glycosylation sites in the NS1 protein were designed and constructed. Ten of them (except for the N207-del mutant strain) were successfully rescued. Out of the ten strains, one mutant strain (N130del+207-209QQA) was found to have significantly reduced virulence through neurovirulence assay in suckling mice, but was genetically unstable. Further purification using the plaque purification assay yielded a genetically stable attenuated strain #11-puri9 with mutations of K129T, N130K, N207Q, and T209A in the NS1 protein and E99D in the NS2A protein. Identifying the virulence loci by constructing revertant mutant and chimeric viruses revealed that five amino acid adaptive mutations in the dengue virus type four non-structural proteins NS1 and NS2A dramatically affected its neurovirulence and could be used in constructing attenuated dengue chimeric viruses. Our study is the first to obtain an attenuated dengue virus strain through the deletion of amino acid residues at the N-glycosylation site, providing a theoretical basis for understanding the pathogenesis of the dengue virus and developing its live attenuated vaccines.
Collapse
Affiliation(s)
- Enyue Fang
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Miao Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
- Vaccines R&D Department, Changchun Institute of Biological Products Co., Ltd., Changchun 130000, China
| | - Xiaohui Liu
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
- Vaccines R&D Department, Changchun Institute of Biological Products Co., Ltd., Changchun 130000, China
| | - Kongxin Hu
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Lijuan Liu
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Zelun Zhang
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xingxing Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Qinhua Peng
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yuhua Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| |
Collapse
|
3
|
Schvartz G, Karniely S, Azar R, Kabat A, Steinman A, Erster O. Detection and Analysis of West Nile Virus Structural Protein Genes in Animal or Bird Samples. Methods Mol Biol 2023; 2585:127-143. [PMID: 36331771 DOI: 10.1007/978-1-0716-2760-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
West Nile virus (WNV) is an important zoonotic pathogen, which is detected mainly by identification of its RNA using PCR. Genetic differentiation between WNV lineages is usually performed by complete genome sequencing, which is not available in many research and diagnostic laboratories. In this chapter, we describe a protocol for detection and analysis of WNV samples by sequencing the entire region of their structural genes capsid (C), preM/membrane, and envelope. The primary step is the detection of WNV RNA by quantitative PCR of the NS2A gene or the C gene regions. Next, the entire region containing the structural protein genes is amplified by PCR. The primary PCR product is then amplified again in parallel reactions, and these secondary PCR products are sequenced. Finally, bioinformatic analysis enables detection of mutations and classification of the samples of interest. This protocol is designed to be used by any laboratory equipped for endpoint and quantitative PCR. The sequencing can be performed either in-house or outsourced to a third-party service provider. This protocol may therefore be useful for rapid and affordable classification of WNV samples, obviating the need for complete genome sequencing.
Collapse
Affiliation(s)
- Gili Schvartz
- Kimron Veterinary Institute, Israel Ministry of Agriculture, Bet Dagan, Israel
- Koret School of Veterinary Medicine, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sharon Karniely
- Kimron Veterinary Institute, Israel Ministry of Agriculture, Bet Dagan, Israel
| | - Roberto Azar
- Central Virology Laboratory of Israel Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Areej Kabat
- Central Virology Laboratory of Israel Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Amir Steinman
- Koret School of Veterinary Medicine, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oran Erster
- Central Virology Laboratory of Israel Ministry of Health, Sheba Medical Center, Ramat Gan, Israel.
| |
Collapse
|
4
|
Lino A, Erickson TA, Nolan MS, Murray KO, Ronca SE. A Preliminary Study of Proinflammatory Cytokines and Depression Following West Nile Virus Infection. Pathogens 2022; 11:pathogens11060650. [PMID: 35745504 PMCID: PMC9230011 DOI: 10.3390/pathogens11060650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus that can cause acute febrile illness leading to neuroinvasive disease. Depression is a well-described outcome following infection, but the underlying pathogenic mechanisms are unknown. Proinflammatory cytokines play important roles in WNV infection, but their role in depression post-WNV remains unstudied. This research aimed to retrospectively evaluate associations between proinflammatory cytokines and new onset depression in a WNV cohort. Participants with asymptomatic WNV infection were significantly less likely to report new onset depression when compared to those with symptomatic disease. Participants with encephalitis and obesity were significantly more likely to report new onset depression post-infection. Based on univariate analysis of 15 antiviral or proinflammatory cytokines, depression was associated with elevated MCP-1 and decreased TNFα, whereas G-CSF was significantly elevated in those with a history of neuroinvasive WNV. However, no cytokines were statistically significant after adjusting for multiple comparisons using the Bonferroni method. While symptomatic WNV infection, encephalitis, and obesity were associated with new onset depression following infection, the role of proinflammatory cytokines requires additional studies. Further research involving paired acute-convalescent samples, larger sample sizes, and additional data points would provide additional insight into the impact of the inflammatory response on WNV-mediated depression.
Collapse
Affiliation(s)
- Allison Lino
- Department of Pediatrics, Section Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (A.L.); (T.A.E.)
| | - Timothy A. Erickson
- Department of Pediatrics, Section Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (A.L.); (T.A.E.)
| | - Melissa S. Nolan
- Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Kristy O. Murray
- Department of Pediatrics, Section Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (A.L.); (T.A.E.)
- Correspondence: (K.O.M.); (S.E.R.)
| | - Shannon E. Ronca
- Department of Pediatrics, Section Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (A.L.); (T.A.E.)
- Correspondence: (K.O.M.); (S.E.R.)
| |
Collapse
|
5
|
Hu T, Wu Z, Wu S, Chen S, Cheng A. The key amino acids of E protein involved in early flavivirus infection: viral entry. Virol J 2021; 18:136. [PMID: 34217298 PMCID: PMC8254458 DOI: 10.1186/s12985-021-01611-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/29/2021] [Indexed: 02/11/2023] Open
Abstract
Flaviviruses are enveloped viruses that infect multiple hosts. Envelope proteins are the outermost proteins in the structure of flaviviruses and mediate viral infection. Studies indicate that flaviviruses mainly use envelope proteins to bind to cell attachment receptors and endocytic receptors for the entry step. Here, we present current findings regarding key envelope protein amino acids that participate in the flavivirus early infection process. Among these sites, most are located in special positions of the protein structure, such as the α-helix in the stem region and the hinge region between domains I and II, motifs that potentially affect the interaction between different domains. Some of these sites are located in positions involved in conformational changes in envelope proteins. In summary, we summarize and discuss the key envelope protein residues that affect the entry process of flaviviruses, including the process of their discovery and the mechanisms that affect early infection.
Collapse
Affiliation(s)
- Tao Hu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Shaoxiong Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
6
|
Tavčar P, Potokar M, Kolenc M, Korva M, Avšič-Županc T, Zorec R, Jorgačevski J. Neurotropic Viruses, Astrocytes, and COVID-19. Front Cell Neurosci 2021; 15:662578. [PMID: 33897376 PMCID: PMC8062881 DOI: 10.3389/fncel.2021.662578] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in China, causing a new coronavirus disease, termed COVID-19 by the WHO on February 11, 2020. At the time of this paper (January 31, 2021), more than 100 million cases have been recorded, which have claimed over 2 million lives worldwide. The most important clinical presentation of COVID-19 is severe pneumonia; however, many patients present various neurological symptoms, ranging from loss of olfaction, nausea, dizziness, and headache to encephalopathy and stroke, with a high prevalence of inflammatory central nervous system (CNS) syndromes. SARS-CoV-2 may also target the respiratory center in the brainstem and cause silent hypoxemia. However, the neurotropic mechanism(s) by which SARS-CoV-2 affects the CNS remain(s) unclear. In this paper, we first address the involvement of astrocytes in COVID-19 and then elucidate the present knowledge on SARS-CoV-2 as a neurotropic virus as well as several other neurotropic flaviviruses (with a particular emphasis on the West Nile virus, tick-borne encephalitis virus, and Zika virus) to highlight the neurotropic mechanisms that target astroglial cells in the CNS. These key homeostasis-providing cells in the CNS exhibit many functions that act as a favorable milieu for virus replication and possibly a favorable environment for SARS-CoV-2 as well. The role of astrocytes in COVID-19 pathology, related to aging and neurodegenerative disorders, and environmental factors, is discussed. Understanding these mechanisms is key to better understanding the pathophysiology of COVID-19 and for developing new strategies to mitigate the neurotropic manifestations of COVID-19.
Collapse
Affiliation(s)
- Petra Tavčar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Marko Kolenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
7
|
Fiacre L, Pagès N, Albina E, Richardson J, Lecollinet S, Gonzalez G. Molecular Determinants of West Nile Virus Virulence and Pathogenesis in Vertebrate and Invertebrate Hosts. Int J Mol Sci 2020; 21:ijms21239117. [PMID: 33266206 PMCID: PMC7731113 DOI: 10.3390/ijms21239117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV), like the dengue virus (DENV) and yellow fever virus (YFV), are major arboviruses belonging to the Flavivirus genus. WNV is emerging or endemic in many countries around the world, affecting humans and other vertebrates. Since 1999, it has been considered to be a major public and veterinary health problem, causing diverse pathologies, ranging from a mild febrile state to severe neurological damage and death. WNV is transmitted in a bird–mosquito–bird cycle, and can occasionally infect humans and horses, both highly susceptible to the virus but considered dead-end hosts. Many studies have investigated the molecular determinants of WNV virulence, mainly with the ultimate objective of guiding vaccine development. Several vaccines are used in horses in different parts of the world, but there are no licensed WNV vaccines for humans, suggesting the need for greater understanding of the molecular determinants of virulence and antigenicity in different hosts. Owing to technical and economic considerations, WNV virulence factors have essentially been studied in rodent models, and the results cannot always be transported to mosquito vectors or to avian hosts. In this review, the known molecular determinants of WNV virulence, according to invertebrate (mosquitoes) or vertebrate hosts (mammalian and avian), are presented and discussed. This overview will highlight the differences and similarities found between WNV hosts and models, to provide a foundation for the prediction and anticipation of WNV re-emergence and its risk of global spread.
Collapse
Affiliation(s)
- Lise Fiacre
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Nonito Pagès
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Jennifer Richardson
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
- Correspondence: ; Tel.: +33-1-43967376
| | - Gaëlle Gonzalez
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
| |
Collapse
|