1
|
Oncolytic viruses: A novel treatment strategy for breast cancer. Genes Dis 2021; 10:430-446. [DOI: 10.1016/j.gendis.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
|
2
|
Karami K, Anbari K. Breast Cancer: A Review of Risk Factors and New Insights into Treatment. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717999210120195208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Today, despite significant advances in cancer treatment have been made, breast cancer
remains one of the main health problems and considered a top biomedical investigation urgency.
The present study reviewed the common conventional chemotherapy agents and also some alternative
and complementary approaches such as oncolytic virotherapy, bacteriotherapy, nanotherapy,
immunotherapy, and natural products, which are recommended for breast cancer treatment. In addition
to current surgery approaches such as mastectomy, in recent years, a number of novel techniques
such as robotic mastectomies, nipple-sparing mastectomy, skin-sparing mastectomy, daycase
mastectomy were used in breast cancer surgery. In this review, we summarize new insights
into risk factors, surgical and non-surgical treatments for breast cancer.
Collapse
Affiliation(s)
- Kimia Karami
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Khatereh Anbari
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
3
|
Lei MML, Lee TKW. Cancer Stem Cells: Emerging Key Players in Immune Evasion of Cancers. Front Cell Dev Biol 2021; 9:692940. [PMID: 34235155 PMCID: PMC8257022 DOI: 10.3389/fcell.2021.692940] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are subpopulations of undifferentiated cancer cells within the tumor bulk that are responsible for tumor initiation, recurrence and therapeutic resistance. The enhanced ability of CSCs to give rise to new tumors suggests potential roles of these cells in the evasion of immune surveillance. A growing body of evidence has described the interplay between CSCs and immune cells within the tumor microenvironment (TME). Recent data have shown the pivotal role of some major immune cells in driving the expansion of CSCs, which concurrently elicit evasion of the detection and destruction of various immune cells through a number of distinct mechanisms. Here, we will discuss the role of immune cells in driving the stemness of cancer cells and provide evidence of how CSCs evade immune surveillance by exerting their effects on tumor-associated macrophages (TAMs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), T-regulatory (Treg) cells, natural killer (NK) cells, and tumor-infiltrating lymphocytes (TILs). The knowledge gained from the interaction between CSCs and various immune cells will provide insight into the mechanisms by which tumors evade immune surveillance. In conclusion, CSC-targeted immunotherapy emerges as a novel immunotherapy strategy against cancer by disrupting the interaction between immune cells and CSCs in the TME.
Collapse
Affiliation(s)
- Martina Mang Leng Lei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
4
|
Cha YJ, Koo JS. Role of Tumor-Associated Myeloid Cells in Breast Cancer. Cells 2020; 9:E1785. [PMID: 32726950 PMCID: PMC7464644 DOI: 10.3390/cells9081785] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Stromal immune cells constitute the tumor microenvironment. These immune cell subsets include myeloid cells, the so-called tumor-associated myeloid cells (TAMCs), which are of two types: tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). Breast tumors, particularly those in human epidermal growth factor receptor 2 (HER-2)-positive breast cancer and triple-negative breast cancer, are solid tumors containing immune cell stroma. TAMCs drive breast cancer progression via immune mediated, nonimmune-mediated, and metabolic interactions, thus serving as a potential therapeutic target for breast cancer. TAMC-associated breast cancer treatment approaches potentially involve the inhibition of TAM recruitment, modulation of TAM polarization/differentiation, reduction of TAM products, elimination of MDSCs, and reduction of MDSC products. Furthermore, TAMCs can enhance or restore immune responses during cancer immunotherapy. This review describes the role of TAMs and MDSCs in breast cancer and elucidates the clinical implications of TAMs and MDSCs as potential targets for breast cancer treatment.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea;
| |
Collapse
|
5
|
Ajina A, Maher J. Synergistic combination of oncolytic virotherapy with CAR T-cell therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:217-292. [PMID: 31383406 DOI: 10.1016/bs.pmbts.2019.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For patients with advanced hematological malignancies the therapeutic landscape has been transformed by the emergence of adoptive cell transfer utilizing autologous chimeric antigen receptor (CAR)-redirected T-cells. However, solid tumors have proved far more resistant to this approach. Here, we summarize the numerous challenges faced by CAR T-cells designed to target solid tumors, highlighting, in particular, issues related to impaired trafficking, expansion, and persistence. In parallel, we draw attention to exciting developments in the burgeoning field of oncolytic virotherapy and posit strategies for the synergistic combination of oncolytic viruses with CAR T-cells to improve outcomes for patients with advanced solid tumors.
Collapse
Affiliation(s)
- Adam Ajina
- King's College London, Division of Cancer Studies, Guy's Hospital, London, United Kingdom.
| | - John Maher
- King's College London, Division of Cancer Studies, Guy's Hospital, London, United Kingdom; Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Immunology, Eastbourne Hospital, East Sussex, United Kingdom
| |
Collapse
|
6
|
Progress in gene therapy using oncolytic vaccinia virus as vectors. J Cancer Res Clin Oncol 2018; 144:2433-2440. [DOI: 10.1007/s00432-018-2762-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/28/2018] [Indexed: 01/06/2023]
|
7
|
Ebrahimi S, Ghorbani E, Shafiee M, Ryzhikov M, Hassanian SM, Azadmanesh K. Therapeutic potency of oncolytic virotherapy in breast cancer targeting, current status and perspective. J Cell Biochem 2018; 120:2801-2809. [PMID: 30260014 DOI: 10.1002/jcb.27725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022]
Abstract
Breast cancer is the most common cause of cancer death in women and presents a serious therapeutic challenge worldwide. Traditional treatments are less successful at targeting cancer tumors, leading to recurrent treatment-resistant secondary malignancies. Oncolytic virotherapy (OV) is a novel anticancer strategy with therapeutic implications at targeting cancer cells by using mechanisms that differ from conventional therapies. Administration of OVs either alone or in combination with standard therapies provide new insights regarding the effectiveness and improvement of treatment responses for breast cancer patients. This review summarizes cellular, animal and clinical studies investigating therapeutic potency of oncolytic virotherapy in breast cancer treatment for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Al-Zahra University, Tehran, Iran
| | - Mojtaba Shafiee
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, Missouri
| | - Seyed M Hassanian
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
8
|
O’Bryan SM, Mathis JM. Oncolytic Virotherapy for Breast Cancer Treatment. Curr Gene Ther 2018; 18:192-205. [PMID: 30207220 PMCID: PMC7499349 DOI: 10.2174/1566523218666180910163805] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/20/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Abstract
Breast cancer continues to be a leading cause of mortality among women. While at an early stage, localized breast cancer is easily treated; however, advanced stages of disease continue to carry a high mortality rate. The discrepancy in treatment success highlights that current treatments are insufficient to treat advanced-stage breast cancer. As new and improved treatments have been sought, one therapeutic approach has gained considerable attention. Oncolytic viruses are uniquely capable of targeting cancer cells through intrinsic or engineered means. They come in many forms, mainly from four major virus groups as defined by the Baltimore classification system. These vectors can target and kill cancer cells, and even stimulate immunotherapeutic effects in patients. This review discusses not only individual oncolytic viruses pursued in the context of breast cancer treatment but also the emergence of combination therapies with current or new therapies, which has become a particularly promising strategy for treatment of breast cancer. Overall, oncolytic virotherapy is a promising strategy for increased treatment efficacy for advanced breast cancer and consequently provides a unique platform for personalized treatments in patients.
Collapse
Affiliation(s)
- Samia M. O’Bryan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - J. Michael Mathis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
9
|
Ajina A, Maher J. Prospects for combined use of oncolytic viruses and CAR T-cells. J Immunother Cancer 2017; 5:90. [PMID: 29157300 PMCID: PMC5696728 DOI: 10.1186/s40425-017-0294-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022] Open
Abstract
With the approval of talimogene laherparepvec (T-VEC) for inoperable locally advanced or metastatic malignant melanoma in the USA and Europe, oncolytic virotherapy is now emerging as a viable therapeutic option for cancer patients. In parallel, following the favourable results of several clinical trials, adoptive cell transfer using chimeric antigen receptor (CAR)-redirected T-cells is anticipated to enter routine clinical practice for the management of chemotherapy-refractory B-cell malignancies. However, CAR T-cell therapy for patients with advanced solid tumours has proved far less successful. This Review draws upon recent advances in the design of novel oncolytic viruses and CAR T-cells and provides a comprehensive overview of the synergistic potential of combination oncolytic virotherapy with CAR T-cell adoptive cell transfer for the management of solid tumours, drawing particular attention to the methods by which recombinant oncolytic viruses may augment CAR T-cell trafficking into the tumour microenvironment, mitigate or reverse local immunosuppression and enhance CAR T-cell effector function and persistence.
Collapse
Affiliation(s)
- Adam Ajina
- Department of Oncology, Royal Free London NHS Foundation Trust, London, UK
| | - John Maher
- King’s College London, CAR Mechanics Group, School of Cancer and Pharmaceutical Sciences, Guy’s Hospital Campus, Great Maze Pond, London, SE1 9RT UK
- Department of Clinical Immunology and Allergy, King’s College Hospital NHS Foundation Trust, London, UK
- Department of Immunology, Eastbourne Hospital, East Sussex, UK
| |
Collapse
|
10
|
Guo ZS, Liu Z, Kowalsky S, Feist M, Kalinski P, Lu B, Storkus WJ, Bartlett DL. Oncolytic Immunotherapy: Conceptual Evolution, Current Strategies, and Future Perspectives. Front Immunol 2017; 8:555. [PMID: 28555136 PMCID: PMC5430078 DOI: 10.3389/fimmu.2017.00555] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
The concept of oncolytic virus (OV)-mediated cancer therapy has been shifted from an operational virotherapy paradigm to an immunotherapy. OVs often induce immunogenic cell death (ICD) of cancer cells, and they may interact directly with immune cells as well to prime antitumor immunity. We and others have developed a number of strategies to further stimulate antitumor immunity and to productively modulate the tumor microenvironment (TME) for potent and sustained antitumor immune cell activity. First, OVs have been engineered or combined with other ICD inducers to promote more effective T cell cross-priming, and in many cases, the breaking of functional immune tolerance. Second, OVs may be armed to express Th1-stimulatory cytokines/chemokines or costimulators to recruit and sustain the potent antitumor immunity into the TME to focus their therapeutic activity within the sites of disease. Third, combinations of OV with immunomodulatory drugs or antibodies that recondition the TME have proven to be highly promising in early studies. Fourth, combinations of OVs with other immunotherapeutic regimens (such as prime-boost cancer vaccines, CAR T cells; armed with bispecific T-cell engagers) have also yielded promising preliminary findings. Finally, OVs have been combined with immune checkpoint blockade, with robust antitumor efficacy being observed in pilot evaluations. Despite some expected hurdles for the rapid translation of OV-based state-of-the-art protocols, we believe that a cohort of these novel approaches will join the repertoire of standard cancer treatment options in the near future.
Collapse
Affiliation(s)
- Zong Sheng Guo
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zuqiang Liu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacy Kowalsky
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Surgery, CCM/CVK, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Pawel Kalinski
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J. Storkus
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L. Bartlett
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Sander WJ, O'Neill HG, Pohl CH. Prostaglandin E 2 As a Modulator of Viral Infections. Front Physiol 2017; 8:89. [PMID: 28261111 PMCID: PMC5306375 DOI: 10.3389/fphys.2017.00089] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
Viral infections are a major cause of infectious diseases worldwide. Inflammation and the immune system are the major host defenses against these viral infection. Prostaglandin E2 (PGE2), an eicosanoid generated by cyclooxygenases, has been shown to modulate inflammation and the immune system by regulating the expression/concentration of cytokines. The effect of PGE2 on viral infection and replication is cell type- and virus-family-dependent. The host immune system can be modulated by PGE2, with regards to immunosuppression, inhibition of nitrogen oxide (NO) production, inhibition of interferon (IFN) and apoptotic pathways, and inhibition of viral receptor expression. Furthermore, PGE2 can play a role in viral infection directly by increasing the production and release of virions, inhibiting viral binding and replication, and/or stimulating viral gene expression. PGE2 may also have a regulatory role in the induction of autoimmunity and in signaling via Toll-like receptors. In this review the known effects of PGE2 on the pathogenesis of various infections caused by herpes simplex virus, rotavirus, influenza A virus and human immunodeficiency virus as well the therapeutic potential of PGE2 are discussed.
Collapse
Affiliation(s)
| | | | - Carolina H. Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| |
Collapse
|
12
|
Taking a Stab at Cancer; Oncolytic Virus-Mediated Anti-Cancer Vaccination Strategies. Biomedicines 2017; 5:biomedicines5010003. [PMID: 28536346 PMCID: PMC5423491 DOI: 10.3390/biomedicines5010003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Vaccines have classically been used for disease prevention. Modern clinical vaccines are continuously being developed for both traditional use as well as for new applications. Typically thought of in terms of infectious disease control, vaccination approaches can alternatively be adapted as a cancer therapy. Vaccines targeting cancer antigens can be used to induce anti-tumour immunity and have demonstrated therapeutic efficacy both pre-clinically and clinically. Various approaches now exist and further establish the tremendous potential and adaptability of anti-cancer vaccination. Classical strategies include ex vivo-loaded immune cells, RNA- or DNA-based vaccines and tumour cell lysates. Recent oncolytic virus development has resulted in a surge of novel viruses engineered to induce powerful tumour-specific immune responses. In addition to their use as cancer vaccines, oncolytic viruses have the added benefit of being directly cytolytic to cancer cells and thus promote antigen recognition within a highly immune-stimulating tumour microenvironment. While oncolytic viruses are perfectly equipped for efficient immunization, this complicates their use upon previous exposure. Indeed, the host's anti-viral counter-attacks often impair multiple-dosing regimens. In this review we will focus on the use of oncolytic viruses for anti-tumour vaccination. We will explore different strategies as well as ways to circumvent some of their limitations.
Collapse
|
13
|
Rastad JL, Green WR. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β. Virology 2016; 499:9-22. [PMID: 27632561 DOI: 10.1016/j.virol.2016.08.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 12/17/2022]
Abstract
Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression.
Collapse
Affiliation(s)
- Jessica L Rastad
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - William R Green
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States.
| |
Collapse
|
14
|
Nikiforova ZN, Taipov MA, Kudryavcev IA, Shevchenko VE. [The connection of miR-21 and miR-155 with regulation of 15-HPGDH mRNA in human breast cancer cells]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:265-71. [PMID: 27420617 DOI: 10.18097/pbmc20166203265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Breast cancer is the most frequent cancer and the leading cause of cancer-related deaths in women worldwide. We determined the expression of COX2, COX1, 15-HPGDH mRNA and miRNAs (miR-21, miR-155) in three estrogen positive human breast cancer cell lines (MCF-7, BT-474, ZR-75-1). According to the results of three independent experiments the amount of COX1 and COX2 mRNA was significantly higher in the ZR-75-1 than in MCF-7 and BT-474 cells. Levels of total 15-HPGDH; functional 15-HPGDH mRNA in BT-474 cell line were lower than in MCF-7 and ZR-75-1 ones. The synthesis of 15-HPGDH enzyme in BT-474 line was blocked at the nuclear immature pre-mRNA processing level. miR-155 expression level was significantly lower than miR-21 in breast cancer cell lines. Correlations between the dysregulation of miR-21, miR-155 and 15-HPGDH, COX-1, COX-2 mRNA were identified. Expression of miR-21 was high in MCF-7, ZR-75-1 and BT-474 cell lines. Our results show that miR-21 and miR-155 regulate activity of several genes in cancer cells, their effect on the individual genes was in some cases cumulative. Based on our results, we concluded that miR-21, miR-155 suppress the work of tumor suppressor gene 15-HPGDH and induce potential oncogene COX-2 that promotes cell malignancy and metastasis of breast cancer.
Collapse
Affiliation(s)
| | - M A Taipov
- Blokhin Russian Cancer Research Center, Moscow, Russia
| | | | | |
Collapse
|
15
|
Selective Involvement of the Checkpoint Regulator VISTA in Suppression of B-Cell, but Not T-Cell, Responsiveness by Monocytic Myeloid-Derived Suppressor Cells from Mice Infected with an Immunodeficiency-Causing Retrovirus. J Virol 2015; 89:9693-8. [PMID: 26157131 DOI: 10.1128/jvi.00888-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
Inhibition of T-cell responses in tumor microenvironments by myeloid-derived suppressor cells (MDSCs) is widely accepted. We demonstrated augmentation of monocytic MDSCs whose suppression of not only T-cell, but also B-cell, responsiveness paralleled the immunodeficiency during LP-BM5 retrovirus infection. MDSCs inhibited T cells by inducible nitric oxide synthase (iNOS)/nitric oxide (NO), but uniquely, inhibition of B cells was ~50% dependent each on iNOS/NO and the MDSC-expressed negative-checkpoint regulator VISTA. Blockade with a combination of iNOS/NO and VISTA caused additive or synergistic abrogation of MDSC-mediated suppression of B-cell responsiveness.
Collapse
|
16
|
Abstract
New therapies for metastatic breast cancer patients are urgently needed. The long-term survival rates remain unacceptably low for patients with recurrent disease or disseminated metastases. In addition, existing therapies often cause a variety of debilitating side effects that severely impact quality of life. Oncolytic viruses constitute a developing therapeutic modality in which interest continues to build due to their ability to spare normal tissue while selectively destroying tumor cells. A number of different viruses have been used to develop oncolytic agents for breast cancer, including herpes simplex virus, adenovirus, vaccinia virus, measles virus, reovirus, and others. In general, clinical trials for several cancers have demonstrated excellent safety records and evidence of efficacy. However, the impressive tumor responses often observed in preclinical studies have yet to be realized in the clinic. In order for the promise of oncolytic virotherapy to be fully realized for breast cancer patients, effectiveness must be demonstrated in metastatic disease. This review provides a summary of oncolytic virotherapy strategies being developed to target metastatic breast cancer.
Collapse
Affiliation(s)
| | - Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Roth JC, Cassady KA, Cody JJ, Parker JN, Price KH, Coleman JM, Peggins JO, Noker PE, Powers NW, Grimes SD, Carroll SL, Gillespie GY, Whitley RJ, Markert JM. Evaluation of the safety and biodistribution of M032, an attenuated herpes simplex virus type 1 expressing hIL-12, after intracerebral administration to aotus nonhuman primates. HUM GENE THER CL DEV 2014; 25:16-27. [PMID: 24649838 DOI: 10.1089/humc.2013.201] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) mutants lacking the γ(1)34.5 neurovirulence loci are promising agents for treating malignant glioma. Arming oncolytic HSV-1 to express immunostimulatory genes may potentiate therapeutic efficacy. We have previously demonstrated improved preclinical efficacy, biodistribution, and safety of M002, a γ(1)34.5-deleted HSV-1 engineered to express murine IL-12. Herein, we describe the safety and biodistribution of M032, a γ(1)34.5-deleted HSV-1 virus that expresses human IL-12 after intracerebral administration to nonhuman primates, Aotus nancymae. Cohorts were administered vehicle, 10(6), or 10(8) pfu of M032 on day 1 and subjected to detailed clinical observations performed serially over a 92-day trial. Animals were sacrificed on days 3, 31, and 91 for detailed histopathologic assessments of all organs and to isolate and quantify virus in all organs. With the possible exception of one animal euthanized on day 16, neither adverse clinical signs nor sex- or dose-related differences were attributed to M032. Elevated white blood cell and neutrophil counts were observed in virus-injected groups on day 3, but no other significant changes were noted in clinical chemistry or coagulation parameters. Minimal to mild inflammation and fibrosis detected, primarily in meningeal tissues, in M032-injected animals on days 3 and 31 had mostly resolved by day 91. The highest viral DNA levels were detected at the injection site and motor cortex on day 3 but decreased in central nervous system tissues over time. These data demonstrate the requisite safety of intracerebral M032 administration for consideration as a therapeutic for treating malignant brain tumors.
Collapse
Affiliation(s)
- Justin C Roth
- 1 Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham , Birmingham, AL 35294
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Garijo R, Hernández-Alonso P, Rivas C, Diallo JS, Sanjuán R. Experimental evolution of an oncolytic vesicular stomatitis virus with increased selectivity for p53-deficient cells. PLoS One 2014; 9:e102365. [PMID: 25010337 PMCID: PMC4092128 DOI: 10.1371/journal.pone.0102365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/18/2014] [Indexed: 12/17/2022] Open
Abstract
Experimental evolution has been used for various biotechnological applications including protein and microbial cell engineering, but less commonly in the field of oncolytic virotherapy. Here, we sought to adapt a rapidly evolving RNA virus to cells deficient for the tumor suppressor gene p53, a hallmark of cancer cells. To achieve this goal, we established four independent evolution lines of the vesicular stomatitis virus (VSV) in p53-knockout mouse embryonic fibroblasts (p53-/- MEFs) under conditions favoring the action of natural selection. We found that some evolved viruses showed increased fitness and cytotoxicity in p53-/- cells but not in isogenic p53+/+ cells, indicating gene-specific adaptation. However, full-length sequencing revealed no obvious or previously described genetic changes associated with oncolytic activity. Half-maximal effective dose (EC50) assays in mouse p53-positive colon cancer (CT26) and p53-deficient breast cancer (4T1) cells indicated that the evolved viruses were more effective against 4T1 cells than the parental virus or a reference oncolytic VSV (MΔ51), but showed no increased efficacy against CT26 cells. In vivo assays using 4T1 syngeneic tumor models showed that one of the evolved lines significantly delayed tumor growth compared to mice treated with the parental virus or untreated controls, and was able to induce transient tumor suppression. Our results show that RNA viruses can be specifically adapted typical cancer features such as p53 inactivation, and illustrate the usefulness of experimental evolution for oncolytic virotherapy.
Collapse
Affiliation(s)
- Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pablo Hernández-Alonso
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
| | - Carmen Rivas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Madrid, Spain
- Centro de Investigación en Medicina Molecular (CIMUS) and Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
- Department of Genetics, Universidad de Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
19
|
Thorne SH. Immunotherapeutic potential of oncolytic vaccinia virus. Front Oncol 2014; 4:155. [PMID: 24987615 PMCID: PMC4060052 DOI: 10.3389/fonc.2014.00155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022] Open
Abstract
The concept of oncolytic viral therapy was based on the hypothesis that engineering tumor-selectivity into the replication potential of viruses would permit direct destruction of tumor cells as a result of viral-mediated lysis, resulting in amplification of the therapy exclusively within the tumor environment. The immune response raised by the virus was not only considered to be necessary for the safety of the approach, but also something of a hindrance to optimal therapeutic activity and repeat dosing. However, the pre-clinical and subsequent clinical success of several oncolytic viruses expressing selected cytokines has demonstrated the potential for harnessing the immune response as an additional and beneficial mechanism of therapeutic activity within the platform. Over the last few years, a variety of novel approaches have been incorporated to try to enhance this immunotherapeutic activity. Several innovative and subtle approaches have moved far beyond the expression of a single cytokine transgene, with the hope of optimizing anti-tumor immunity while having minimal detrimental impact on viral oncolytic activity.
Collapse
Affiliation(s)
- Steve H. Thorne
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, Hillman Cancer Center, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Roth JC, Cassady KA, Cody JJ, Parker JN, Price KH, Coleman JM, Peggins JO, Noker PE, Powers N, Grimes S, Carroll SL, Gillespie GY, Whitley R, Markert J. Evaluation of the Safety and Biodistribution of M032, an Attenuated HSV-1 Virus Expressing hIL-12, After Intracerebral Administration to Aotus Non-Human Primates. HUM GENE THER CL DEV 2014. [DOI: 10.1089/hum.2013.201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
21
|
Markowitz J, Wesolowski R, Papenfuss T, Brooks TR, Carson WE. Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res Treat 2013; 140:13-21. [PMID: 23828498 DOI: 10.1007/s10549-013-2618-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/20/2013] [Indexed: 12/19/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells defined by their suppressive actions on immune cells such as T cells, dendritic cells, and natural killer cells. MDSCs typically are positive for the markers CD33 and CD11b but express low levels of HLADR in humans. In mice, MDSCs are typically positive for both CD11b and Gr1. These cells exert their suppressive activity on the immune system via the production of reactive oxygen species, arginase, and cytokines. These factors subsequently inhibit the activity of multiple protein targets such as the T cell receptor, STAT1, and indoleamine-pyrrole 2,3-dioxygenase. The numbers of MDSCs tend to increase with cancer burden while inhibiting MDSCs improves disease outcome in murine models. MDSCs also inhibit immune cancer therapeutics. In light of the poor prognosis of metastatic breast cancer in women and the correlation of increasing levels of MDSCs with increasing disease burden, the purposes of this review are to (1) discuss why MDSCs may be important in breast cancer, (2) describe model systems used to study MDSCs in vitro and in vivo, (3) discuss mechanisms involved in MDSC induction/function in breast cancer, and (4) present pre-clinical and clinical studies that explore modulation of the MDSC-immune system interaction in breast cancer. MDSCs inhibit the host immune response in breast cancer patients and diminishing MDSC actions may improve therapeutic outcomes.
Collapse
Affiliation(s)
- Joseph Markowitz
- Division of Medical Oncology, The Ohio State University, 320 W. 10th Ave., Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
22
|
Advance in herpes simplex viruses for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2013; 56:298-305. [PMID: 23564184 DOI: 10.1007/s11427-013-4466-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/27/2013] [Indexed: 02/07/2023]
Abstract
Oncolytic virotherapy is an attractive approach that uses live viruses to selectively kill cancer cells. Oncolytic viruses can be genetically engineered to induce cell lyses through virus replication and cytotoxic protein expression. Herpes simplex virus (HSV) has become one of the most widely clinically used oncolytic agent. Various types of HSV have been studied in basic or clinical research. Combining oncolytic virotherapy with chemotherapy or radiotherapy generally produces synergic action with unclear molecular mechanisms. Arming HSV with therapeutic transgenes is a promising strategy and can be used to complement conventional therapies. As an efficient gene delivery system, HSV has been successfully used to deliver various immunomodulatory molecules. Arming HSV with therapeutic genes merits further investigation for potential clinical application.
Collapse
|
23
|
Zhang B, Ma X, Li Z, Gao X, Wang F, Liu L, Shen G, Sang Y, Li M, Li Y, Zhao J, Wei Y. Celecoxib enhances the efficacy of 15-hydroxyprostaglandin dehydrogenase gene therapy in treating murine breast cancer. J Cancer Res Clin Oncol 2013; 139:797-807. [PMID: 23385883 DOI: 10.1007/s00432-013-1381-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/18/2013] [Indexed: 02/05/2023]
Abstract
PURPOSE The overexpression of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) has been proved to inhibit tumor growth and metastasis through degradation of prostaglandin E2 (PGE2), which is often overexpressed in various cancers and accelerates tumor progression. Cyclooxygenase-2 (COX-2), a synthase of PGE2, actively produces much PGE2 to counteract the 15-PGDH-induced antitumor efficacy. Here, we investigated the combinational effect by using pcDNA3.1(+) encoding mouse 15-PGDH gene therapy and celecoxib, a COX-2 inhibitor, in mouse breast cancers. METHODS Mice bearing 4T1 were treated with short-term administration of the COX-2 inhibitor celecoxib (40 mg/kg/day) plus liposome-encapsulated mouse 15-PGDH in order to determine their synergistic antitumor activity in vivo. And the possible mechanisms were investigated. RESULTS We observed that the combination treatment of 15-PGDH and celecoxib significantly inhibited tumor growth and lung metastases than monotherapy or controls. Moreover, the effect of combination treatment was associated with significant reduction of PGE2 in serum, which resulted from increased 15-PDGH and decreased COX-2 in tumor tissues. The tumor tissues in combination treatment presented more apoptotic cells and less microvessel density. Notably, the number of myeloid-derived suppressor cells in the spleen was also significantly decreased in the combination treatment than others. CONCLUSIONS Our findings suggested that celecoxib increased the antitumor activity of 15-PGDH by synergistically blocking PGE2 pathway, which might be a new feasible way for cancer therapy.
Collapse
Affiliation(s)
- Binglan Zhang
- The Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Myeloid-derived suppressor cells in murine retrovirus-induced AIDS inhibit T- and B-cell responses in vitro that are used to define the immunodeficiency. J Virol 2012; 87:2058-71. [PMID: 23221564 DOI: 10.1128/jvi.01547-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have been characterized in several disease settings, especially in many tumor systems. Compared to their involvement in tumor microenvironments, however, MDSCs have been less well studied in their responses to infectious disease processes, in particular to retroviruses that induce immunodeficiency. Here, we demonstrate for the first time the development of a highly immunosuppressive MDSC population that is dependent on infection by the LP-BM5 retrovirus, which causes murine acquired immunodeficiency. These MDSCs express a cell surface marker signature (CD11b(+) Gr-1(+) Ly6C(+)) characteristic of monocyte-type MDSCs. Such MDSCs profoundly inhibit immune responsiveness by a cell dose- and substantially inducible nitric oxide synthase (iNOS)-dependent mechanism that is independent of arginase activity, PD-1-PD-L1 expression, and interleukin 10 (IL-10) production. These MDSCs display levels of immunosuppressive function in parallel with the extent of disease in LP-BM5-infected wild-type (w.t.) versus knockout mouse strains that are differentially susceptible to pathogenesis. These MDSCs suppressed not only T-cell but also B-cell responses, which are an understudied target for MDSC inhibition. The MDSC immunosuppression of B-cell responses was confirmed by the use of purified B responder cells, multiple B-cell stimuli, and independent assays measuring B-cell expansion. Retroviral load measurements indicated that the suppressive Ly6G(low/±) Ly6C(+) CD11b(+)-enriched MDSC subset was positive for LP-BM5, albeit at a significantly lower level than that of nonfractionated splenocytes from LP-BM5-infected mice. These results, including the strong direct MDSC inhibition of B-cell responsiveness, are novel for murine retrovirus-induced immunosuppression and, as this broadly suppressive function mirrors that of the LP-BM5-induced disease syndrome, support a possible pathogenic effector role for these retrovirus-induced MDSCs.
Collapse
|
25
|
Zhuang X, Zhang W, Chen Y, Han X, Li J, Zhang Y, Zhang Y, Zhang S, Liu B. Doxorubicin-enriched, ALDH(br) mouse breast cancer stem cells are treatable to oncolytic herpes simplex virus type 1. BMC Cancer 2012; 12:549. [PMID: 23176143 PMCID: PMC3541265 DOI: 10.1186/1471-2407-12-549] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/18/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The primary objective of this study was to test whether oncolytic herpes simplex virus type 1 (HSV1) could eradicate chemoresistant cancer stem cells (CSCs). METHODS The fluorescent aldefluor reagent-based technique was used to identify and isolate ALDH(br) cells as CSCs from the 4T1 murine breast cancer cell line. The presence of ALDH(br) 4T1 cells was also examined in 4T1 breast cancer transplanted in immune-competent syngeneic mice. RESULTS Compared with ALDH(lo) cells, ALDH(br) cells had a markedly higher ability to form tumor spheres in vitro and a higher tumorigenic potential in vivo. ALDH(br) cells also exhibited increased doxorubicin resistance in vitro, which correlated with a selective increase in the percentage of ALDH(br) cells after doxorubicin treatment and an increased expression of P-glycoprotein (P-gp), a known chemoresistance factor. In contrast, oncolytic HSV1 was able to kill ALDH(br) cells in vitro and even more markedly in vivo. Furthermore, in in vivo studies, systemic administration of doxorubicin followed by intratumoral injection of oncolytic HSV1 resulted in much more significant suppression of tumor growth with increased median survival period compared with each treatment given alone (p<0.05). Though more CD8(+) T lymphocytes were induced by oncolytic HSV1, no significant specific T cell response against CSCs was detected in vivo. CONCLUSIONS These results suggested that the use of oncolytic HSV1 following doxorubicin treatment may help eradicate residual chemoresistant CSCs in vivo.
Collapse
Affiliation(s)
- Xiufen Zhuang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | | | | | | | | | | | | | | | | |
Collapse
|