1
|
Jia Q, Fu Y. microRNA-34-5p encoded by Spodoptera frugiperda regulates the replication and infection of Autographa californica multiple nucleopolyhedrovirus by targeting odv-e66, ac78 and ie2. PEST MANAGEMENT SCIENCE 2022; 78:5379-5389. [PMID: 36057111 DOI: 10.1002/ps.7160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/12/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Spodoptera frugiperda is one of the significant migratory pests in the Global Alert issued by the Food and Agriculture Organization of the United Nations. As an insect-specific microbial insecticide, baculovirus has been used to control various pests. MicroRNA-34-5p (miR-34-5p) is involved in regulating growth, reproduction and innate immunity to pathogens in insects, playing an essential role in host-virus interactions. In this study, we explored the critical function of miR-34-5p encoded by S. frugiperda in the anti-Autographa californica multiple nucleopolyhedrovirus (AcMNPV), providing a reference for the design of a miR-34-5p target biopesticide against S. frugiperda and a theoretical basis for the wide application of microRNAs (miRNAs) in green pest control technology. RESULTS We focused on miR-34-5p identified as downregulated in Sf9 cells and S. frugiperda larvae infected by AcMNPV. The regulatory function of miR-34-5p in AcMNPV-S. frugiperda interactions was studied by transfecting synthetic mimics and inhibitors, and constructing recombinant bacmids with miR-34-5p overexpression. miR-34-5p inhibited the production of infectious budded virions at the cellular and insect levels, inhibited the replication of the viral DNA and glucose metabolism, and increased the transcription of the antimicrobial peptide gloverin. Furthermore, the virus genes odv-e66, ac78 and ie2 were shown to be direct targets. CONCLUSION We systematically revealed the mechanism by which miR-34-5p is involved in the insect antiviral process. miR-34-5p inhibited the replication and infection of AcMNPV by directly targeting AcMNPV genes, especially ac78 and ie2. Our study provides a new direction and thinking for the prevention and green control of lepidopteran pests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiaojin Jia
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, People's Republic of China
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, People's Republic of China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, People's Republic of China
| |
Collapse
|
2
|
Hsu WT, Chang CY, Tsai CH, Wei SC, Lo HR, Lamis RJS, Chang HW, Chao YC. PEDV Infection Generates Conformation-Specific Antibodies That Can Be Effectively Detected by a Cell-Based ELISA. Viruses 2021; 13:v13020303. [PMID: 33671997 PMCID: PMC7919263 DOI: 10.3390/v13020303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus that causes serious and highly contagious enteric disease in swine worldwide. In this study, we constructed a recombinant baculovirus (S-Bac) expressing full-length spike protein of the virulent epidemic genotype 2b (G2b) PEDV strain for serological studies of infected pigs. We found that most spike-specific antibodies produced upon PEDV infection in pigs are conformation-specific and they could be detected on S-Bac-infected insect cells by immunofluorescent assay, but they were insensitive to Western blot analysis, the typical method for antiserum analysis. These results indicated that spike conformation is crucial for serum recognition. Since it is difficult to purify trimeric spike membrane protein for conventional enzyme-linked immunosorbent assay (ELISA), we used S-Bac to generate a novel cell-based ELISA for convenient PEDV detection. We analyzed 100 pig serum samples, and our cell-based ELISA exhibited a sensitivity of 100%, a specificity of 97%, and almost perfect agreement [Cohen’s kappa coefficient value (κ) = 0.98] with immunocytochemical staining results. Our cell-based ELISA rapidly presented antigen for proper detection of conformation-specific antibodies, making PEDV detection more convenient, and it will be useful for detecting many viral diseases in the future.
Collapse
Affiliation(s)
- Wei-Ting Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Yu Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (C.-Y.C.); (H.-W.C.)
| | - Chih-Hsuan Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
| | - Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
| | - Huei-Ru Lo
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
| | - Robert John S. Lamis
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (C.-Y.C.); (H.-W.C.)
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan
- Department of Entomology, National Chung Hsing University, Taichung 402, Taiwan
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan
- Correspondence:
| |
Collapse
|
3
|
Tsai CH, Wei SC, Jan JT, Liao LL, Chang CJ, Chao YC. Generation of Stable Influenza Virus Hemagglutinin through Structure-Guided Recombination. ACS Synth Biol 2019; 8:2472-2482. [PMID: 31565926 DOI: 10.1021/acssynbio.9b00094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hemagglutinin (HA) is the major surface antigen of influenza virus and the most promising influenza vaccine immunogen. In 2013, the devastating H7N9 influenza virus was identified in China, which induced high mortality. The HA of this virus (H7) is relatively unstable, making it challenging to produce an effective vaccine. To improve the stability of HA protein from H7N9 influenza virus for better vaccine antigens without impairing immunogenicity, we recombined the HA from H7N9 (H7) with a more stable HA from H3N2 (H3) by structure-guided recombination, resulting in six chimeric HAs, FrA-FrF. Two of these chimeric HAs, FrB and FrC, exhibited proper hemagglutination activity and presented improved thermal stability compared to the original H7. Mice immunized with FrB and FrC elicited H7-specific antibodies comparable to those induced by parental H7, and the antisera collected from these immunized mice successfully inhibited H7N9 infection in a microneutralization assay. These results suggest that our structural-recombination approach can create stabilizing chimeric antigens while maintaining proper immunogenicity, which may not only benefit the construction of more stable HA vaccines to fight against H7N9 infection, but also facilitate effective vaccine improvements for other influenza viruses or infectious pathogens. In addition, this study also demonstrates the potential for better engineering of multimeric protein complexes like HA to achieve improved function, which are often immunologically or pharmaceutically important but difficult to modify.
Collapse
Affiliation(s)
- Chih-Hsuan Tsai
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan, ROC
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC
| | - Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Lin-Li Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Chia-Jung Chang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Yu-Chan Chao
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan, ROC
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan, ROC
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, ROC
| |
Collapse
|