1
|
Yu J, Wang Y, Wang H, Wei Z, Pei Y. Decoding Critical Targets and Signaling Pathways in EBV-Mediated Diseases Using Large Language Models. Viruses 2024; 16:1660. [PMID: 39599775 PMCID: PMC11598986 DOI: 10.3390/v16111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Epstein-Barr virus (EBV), a member of the gamma herpesvirus, is the first identified human oncovirus and is associated with various malignancies. Understanding the intricate interactions between EBV antigens and cellular pathways is crucial to unraveling the molecular mechanisms in EBV-mediated diseases. However, fully elucidating EBV-host interactions and the associated pathogenesis remains a significant challenge. In this study, we employed large language models (LLMs) to screen 36,105 EBV-relevant scientific publications and summarize the current literature landscape on various EBV-associated diseases like Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), nasopharyngeal carcinoma (NPC), and so on. LLM-generated data indicate that the most-studied EBV-associated pathways are enriched in immune response, apoptosis, cell growth, and replication. The analyses of protein-protein interactions (PPIs) reveal three principal EBV-related protein clusters: TP53-centered apoptotic factors, EBV-associated transcription factors, and immune response elements. Utilizing our dataset and public databases, we demonstrated that BLLF3-targeted TLR2-associated factors are effective diagnostic markers for DLBCL. Next, we confirmed the co-expression of LMP1-targeted calcium pathway factors in BL. Finally, we demonstrated the correlation and co-expression of LMP1-induced PARP1, HIF1A, HK2, and key glycolysis-related factors, further suggesting that LMP1 actively regulates the glycolysis pathway. Therefore, our study presents a comprehensive functional encyclopedia of the interactions between EBV antigens and host signaling pathways across various EBV-associated diseases, providing valuable insights for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jingwen Yu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China; (J.Y.); (Y.W.); (H.W.)
| | - Yaohao Wang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China; (J.Y.); (Y.W.); (H.W.)
| | - Haidong Wang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China; (J.Y.); (Y.W.); (H.W.)
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China; (J.Y.); (Y.W.); (H.W.)
| |
Collapse
|
2
|
Wu H, Liu L, Qu J, Wang C, Shi X, Lei Y. Chronic active Epstein-Barr virus infection with reinfection of SARS-CoV-2: a case report. Virol J 2024; 21:142. [PMID: 38910238 PMCID: PMC11194969 DOI: 10.1186/s12985-024-02418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024] Open
Abstract
We describe the case of a 57-year-old male with jaundice, abdominal distension and fatigue. He was diagnosed as chronic active Epstein-Barr virus infection (CAEBV) due to intermittent elevated liver enzymes, hepatosplenomegaly and pancytopenia, with persistent positive of EBV biomarkers in blood and also positive in liver tissue. The patient was reinfected by SARS-CoV-2 within 2 months companied with CAEBV. The patient's second infection with SARS-CoV-2 led to the aggravated liver dysfunction with pneumonia and re-admission. After receiving symptomatic treatment, the patient showed significantly improvement of symptoms with partially restoration of liver function. After discharge, the patient's health status continued to deteriorate and eventually died. The instances of SARS-CoV-2 co-infection with the original chronic virus are not uncommon, but the exact mechanism of EBV and SARS-CoV-2 coinfection and the relationship between them are still unclear. Since co-infection of SARS-CoV-2 with original chronic virus might affect each other and lead disease aggravated and complicated, it is necessary to differentiate in the diagnosis of disease and it is important to be aware of the re-infection signs of SARS-CoV-2 in people with chronic virus infection diseases, as well as the risk of co-infection of SARS-CoV-2 with other viruses.
Collapse
Affiliation(s)
- Hongmei Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, No.288 Tianwen Rd., Nan Ping District, Chongqing, 400060, People's Republic of China
| | - Li Liu
- Department of Pathology, The Second Affiliated Hospital, Chongqing Medical University, No.288 Tianwen Rd., Nan Ping District, Chongqing, 400060, People's Republic of China
| | - Jialin Qu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, No.288 Tianwen Rd., Nan Ping District, Chongqing, 400060, People's Republic of China
| | - Chunrui Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, No.288 Tianwen Rd., Nan Ping District, Chongqing, 400060, People's Republic of China
| | - Xiaofeng Shi
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, No.288 Tianwen Rd., Nan Ping District, Chongqing, 400060, People's Republic of China
| | - Yu Lei
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, No.288 Tianwen Rd., Nan Ping District, Chongqing, 400060, People's Republic of China.
| |
Collapse
|
3
|
Rurek M. Mitochondria in COVID-19: from cellular and molecular perspective. Front Physiol 2024; 15:1406635. [PMID: 38974521 PMCID: PMC11224649 DOI: 10.3389/fphys.2024.1406635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during β-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Möller M, Borg K, Janson C, Lerm M, Normark J, Niward K. Cognitive dysfunction in post-COVID-19 condition: Mechanisms, management, and rehabilitation. J Intern Med 2023; 294:563-581. [PMID: 37766515 DOI: 10.1111/joim.13720] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The long-term effects of COVID-19 on cognitive function have become an area of increasing concern. This paper provides an overview of characteristics, risk factors, possible mechanisms, and management strategies for cognitive dysfunction in post-COVID-19 condition (PCC). Prolonged cognitive dysfunction is one of the most common impairments in PCC, affecting between 17% and 28% of the individuals more than 12 weeks after the infection and persisting in some cases for several years. Cognitive dysfunctions can be manifested as a wide range of symptoms including memory impairment, attention deficit, executive dysfunction, and reduced processing speed. Risk factors for developing PCC, with or without cognitive impairments, include advanced age, preexisting medical conditions, and the severity of acute illness. The underlying mechanisms remain unclear, but proposed contributors include neuroinflammation, hypoxia, vascular damage, and latent virus reactivation not excluding the possibility of direct viral invasion of the central nervous system, illustrating complex viral pathology. As the individual variation of the cognitive impairments is large, a neuropsychological examination and a person-centered multidimensional approach are required. According to the World Health Organization, limited evidence on COVID-19-related cognitive impairments necessitates implementing rehabilitation interventions from established practices of similar conditions. Psychoeducation and compensatory skills training are recommended. Assistive products and environmental modifications adapted to individual needs might be helpful. In specific attention- and working memory dysfunctions, cognitive training-carefully monitored for intensity-might be effective for people who do not suffer from post-exertional malaise. Further research is crucial for evidence-based interventions specific to COVID-19-related cognitive impairments.
Collapse
Affiliation(s)
- Marika Möller
- Department of Clinical Sciences, Division of Rehabilitation Medicine, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Kristian Borg
- Department of Clinical Sciences, Division of Rehabilitation Medicine, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Maria Lerm
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| | - Johan Normark
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Katarina Niward
- Department of Infectious Diseases, and Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Gyöngyösi M, Lukovic D, Mester-Tonczar J, Zlabinger K, Einzinger P, Spannbauer A, Schweiger V, Schefberger K, Samaha E, Bergler-Klein J, Riesenhuber M, Nitsche C, Hengstenberg C, Mucher P, Haslacher H, Breuer M, Strassl R, Puchhammer-Stöckl E, Loewe C, Beitzke D, Hasimbegovic E, Zelniker TA. Effect of monovalent COVID-19 vaccines on viral interference between SARS-CoV-2 and several DNA viruses in patients with long-COVID syndrome. NPJ Vaccines 2023; 8:145. [PMID: 37773184 PMCID: PMC10541897 DOI: 10.1038/s41541-023-00739-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Epstein-Barr virus (EBV) reactivation may be involved in long-COVID symptoms, but reactivation of other viruses as a factor has received less attention. Here we evaluated the reactivation of parvovirus-B19 and several members of the Herpesviridae family (DNA viruses) in patients with long-COVID syndrome. We hypothesized that monovalent COVID-19 vaccines inhibit viral interference between SARS-CoV-2 and several DNA viruses in patients with long-COVID syndrome, thereby reducing clinical symptoms. Clinical and laboratory data for 252 consecutive patients with PCR-verified past SARS-CoV-2 infection and long-COVID syndrome (155 vaccinated and 97 non-vaccinated) were recorded during April 2021-May 2022 (median 243 days post-COVID-19 infection). DNA virus-related IgG and IgM titers were compared between vaccinated and non-vaccinated long-COVID patients and with age- and sex-matched non-infected, unvaccinated (pan-negative for spike-antibody) controls. Vaccination with monovalent COVID-19 vaccines was associated with significantly less frequent fatigue and multiorgan symptoms (p < 0.001), significantly less cumulative DNA virus-related IgM positivity, significantly lower levels of plasma IgG subfractions 2 and 4, and significantly lower quantitative cytomegalovirus IgG and IgM and EBV IgM titers. These results indicate that anti-SARS-CoV-2 vaccination may interrupt viral cross-talk in patients with long-COVID syndrome (ClinicalTrials.gov Identifier: NCT05398952).
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Julia Mester-Tonczar
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Katrin Zlabinger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Patrick Einzinger
- Institute of Information Systems Engineering, Research Unit of Information and Software Engineering, Vienna University of Technology, 1040, Vienna, Austria
| | - Andreas Spannbauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Victor Schweiger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Katharina Schefberger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Eslam Samaha
- Department of Internal Medicine I, Klinik Donaustadt, Vienna, Austria
| | - Jutta Bergler-Klein
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Martin Riesenhuber
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Nitsche
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Patrick Mucher
- Biobank, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Biobank, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Monika Breuer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Robert Strassl
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Christian Loewe
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ena Hasimbegovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Thomas A Zelniker
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Bernal KDE, Whitehurst CB. Incidence of Epstein-Barr virus reactivation is elevated in COVID-19 patients. Virus Res 2023; 334:199157. [PMID: 37364815 PMCID: PMC10292739 DOI: 10.1016/j.virusres.2023.199157] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
COVID-19, an infectious respiratory illness, is caused by infection with the SARS-CoV-2 virus. Individuals with underlying medical conditions are at increased risk of developing serious illnesses such as long COVID. Recent studies have observed Epstein-Barr virus (EBV) reactivation in patients with severe illness or long COVID, which may contribute to associated symptoms. We determined the frequency of EBV reactivation in COVID-19 positive patients compared to COVID-19 negative patients. 106 blood plasma samples were collected from COVID-19 positive and negative patients and EBV reactivation was determined by detection of EBV DNA and antibodies against EBV lytic genes in individuals with previous EBV infection. 27.1% (13/48) of EBV reactivations, based on qPCR detection of EBV genomes, are from the COVID positive group while only 12.5% (6/48) of reactivations belonged to the negative group. 20/52 (42.30%) of the COVID PCR negative group had detectable antibodies against SARS-CoV-2 nucleoprotein (Np); indicative of past infection. A significantly higher SARS-CoV-2 Np protein level was found in the COVID-19 positive group. In conclusion, COVID-19 patients experienced increased reactivation of EBV in comparison to COVID negative patients.
Collapse
Affiliation(s)
- Keishanne Danielle E Bernal
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Basic Medical Sciences Building, 15 Dana Rd. Valhalla, NY 10595; Westlake High School, 825 Westlake Dr., Thornwood, NY 10594
| | - Christopher B Whitehurst
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Basic Medical Sciences Building, 15 Dana Rd. Valhalla, NY 10595.
| |
Collapse
|
7
|
Chinna P, Bratl K, Lambarey H, Blumenthal MJ, Schäfer G. The Impact of Co-Infections for Human Gammaherpesvirus Infection and Associated Pathologies. Int J Mol Sci 2023; 24:13066. [PMID: 37685871 PMCID: PMC10487760 DOI: 10.3390/ijms241713066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The two oncogenic human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause significant disease burden, particularly in immunosuppressed individuals. Both viruses display latent and lytic phases of their life cycle with different outcomes for their associated pathologies. The high prevalence of infectious diseases in Sub-Saharan Africa (SSA), particularly HIV/AIDS, tuberculosis, malaria, and more recently, COVID-19, as well as their associated inflammatory responses, could potentially impact either virus' infectious course. However, acute or lytically active EBV and/or KSHV infections often present with symptoms mimicking these predominant diseases leading to misdiagnosis or underdiagnosis of oncogenic herpesvirus-associated pathologies. EBV and/or KSHV infections are generally acquired early in life and remain latent until lytic reactivation is triggered by various stimuli. This review summarizes known associations between infectious agents prevalent in SSA and underlying EBV and/or KSHV infection. While presenting an overview of both viruses' biphasic life cycles, this review aims to highlight the importance of co-infections in the correct identification of risk factors for and diagnoses of EBV- and/or KSHV-associated pathologies, particularly in SSA, where both oncogenic herpesviruses as well as other infectious agents are highly pervasive and can lead to substantial morbidity and mortality.
Collapse
Affiliation(s)
- Prishanta Chinna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Katrin Bratl
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Humaira Lambarey
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Melissa J. Blumenthal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
8
|
Rousseau BA, Bhaduri-McIntosh S. Inflammation and Epstein-Barr Virus at the Crossroads of Multiple Sclerosis and Post-Acute Sequelae of COVID-19 Infection. Viruses 2023; 15:949. [PMID: 37112929 PMCID: PMC10141000 DOI: 10.3390/v15040949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Recent studies have strengthened the evidence for Epstein-Barr Virus (EBV) as an important contributing factor in the development of multiple sclerosis (MS). Chronic inflammation is a key feature of MS. EBV+ B cells can express cytokines and exosomes that promote inflammation, and EBV is known to be reactivated through the upregulation of cellular inflammasomes. Inflammation is a possible cause of the breakdown of the blood-brain barrier (BBB), which allows the infiltration of lymphocytes into the central nervous system. Once resident, EBV+ or EBV-specific B cells could both plausibly exacerbate MS plaques through continued inflammatory processes, EBV reactivation, T cell exhaustion, and/or molecular mimicry. Another virus, SARS-CoV-2, the cause of COVID-19, is known to elicit a strong inflammatory response in infected and immune cells. COVID-19 is also associated with EBV reactivation, particularly in severely ill patients. Following viral clearance, continued inflammation may be a contributor to post-acute sequelae of COVID-19 infection (PASC). Evidence of aberrant cytokine activation in patients with PASC supports this hypothesis. If unaddressed, long-term inflammation could put patients at risk for reactivation of EBV. Determining mechanisms by which viruses can cause inflammation and finding treatments for reducing that inflammation may help reduce the disease burden for patients suffering from PASC, MS, and EBV diseases.
Collapse
Affiliation(s)
- Beth A. Rousseau
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
COVID-19 infection and vaccines: potential triggers of Herpesviridae reactivation. An Bras Dermatol 2023; 98:347-354. [PMID: 36803914 PMCID: PMC9915050 DOI: 10.1016/j.abd.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/14/2022] [Accepted: 09/17/2022] [Indexed: 02/12/2023] Open
Abstract
Since the onset of the COVID-19 outbreak, numerous articles have highlighted a possible link between COVID-19 vaccination or infection and Herpesviridae co-infection or reactivation. The authors conducted an exhaustive literature review on this topic, the results of which are presented individually for each member of the Herpesviridae family: Herpes Simplex Virus (HSV) types-1 (HSV-1) and 2 (HSV-2); Varicella-Zoster Virus (VZV); Epstein-Barr Virus (EBV); Cytomegalovirus (CMV); HHV-6; HHV-7; and HHV-8. These human herpesviruses can serve as prognostic markers for the COVID-19 infection and may even underlie some of the clinical manifestations initially attributed to SARS-CoV-2. In addition to SARS-CoV-2 infection, all corresponding vaccines approved to date in Europe appear capable of inducing herpesvirus reactivation. It is important to consider all viruses of the Herpesviridae family when managing patients infected with or recently vaccinated against COVID-19.
Collapse
|
10
|
Vojdani A, Vojdani E, Saidara E, Maes M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID. Viruses 2023; 15:v15020400. [PMID: 36851614 PMCID: PMC9967513 DOI: 10.3390/v15020400] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
A novel syndrome called long-haul COVID or long COVID is increasingly recognized in a significant percentage of individuals within a few months after infection with SARS-CoV-2. This disorder is characterized by a wide range of persisting, returning or even new but related symptoms that involve different tissues and organs, including respiratory, cardiac, vascular, gastrointestinal, musculo-skeletal, neurological, endocrine and systemic. Some overlapping symptomatologies exist between long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Very much like with long ME/CFS, infections with herpes family viruses, immune dysregulation, and the persistence of inflammation have been reported as the most common pattern for the development of long COVID. This review describes several factors and determinants of long COVID that have been proposed, elaborating mainly on viral persistence, reactivation of latent viruses such as Epstein-Barr virus and human herpesvirus 6 which are also associated with the pathology of ME/CFS, viral superantigen activation of the immune system, disturbance in the gut microbiome, and multiple tissue damage and autoimmunity. Based on these factors, we propose diagnostic strategies such as the measurement of IgG and IgM antibodies against SARS-CoV-2, EBV, HHV-6, viral superantigens, gut microbiota, and biomarkers of autoimmunity to better understand and manage this multi-factorial disorder that continues to affect millions of people in the world.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
- Correspondence: ; Tel.: +1-310-657-1077
| | | | - Evan Saidara
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Khaliullina SV, Anokhin VA, Khaertynov KS, Khoder MA, Pozdnyak VA, Raimova YA. Acute hepatitis as an independent form of mixed (herpetic and new coronavirus) infections in a child. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2022. [DOI: 10.21508/1027-4065-2022-67-5-188-193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, the association of SARS-CoV-2 infection with the reactivation of herpes viruses has been determined. This has been proven not only by the results of laboratory studies, but also by a clinically confirmed subsequent manifestation of the herpetic process. The article describes a clinical case of Epstein–Barr viral and cytomegalovirus infections reactivation after COVID-19. The child was diagnosed with anicteric form of hepatitis of herpetic etiology. Hepatitis, moderate anicteric form. During treatment, the patient’s condition improved. Complete clinical recovery with normalization of the activity of alanine and aspartate aminotransaminases occurred 1 month after the onset of the disease, but the level of lymphocytes and gamma-glutamyl transpeptidase still remained moderately elevated. According to the ultrasound of the abdominal organs, the size of the liver returned to normal. The presented case illustrates that mixed infections are a quite possible situation during the COVID-19 pandemic, which must be taken into account when working with such patients.
Collapse
|
12
|
Chen J, Song J, Dai L, Post SR, Qin Z. SARS-CoV-2 infection and lytic reactivation of herpesviruses: A potential threat in the postpandemic era? J Med Virol 2022; 94:5103-5111. [PMID: 35819034 PMCID: PMC9350099 DOI: 10.1002/jmv.27994] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023]
Abstract
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative pathogen for the coronavirus disease 2019 (COVID-19) pandemic, has greatly stressed our healthcare system. In addition to severe respiratory and systematic symptoms, several comorbidities increase the risk of fatal disease outcomes, including chronic viral infections. Increasing cases of lytic reactivation of human herpesviruses in COVID-19 patients and vaccinated people have been reported recently. SARS-CoV2 coinfection, COVID-19 treatments, and vaccination may aggravate those herpesvirus-associated diseases by reactivating the viruses in latently infected host cells. In this review, we summarize recent clinical findings and limited mechanistic studies regarding the relationship between SARS-CoV-2 and different human herpesviruses that suggest an ongoing potential threat to human health in the postpandemic era.
Collapse
Affiliation(s)
- Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Jiao Song
- Department of Pathology, Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Steven R. Post
- Department of Pathology, Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
13
|
Vojdani A, Vojdani E, Melgar AL, Redd J. Reaction of SARS-CoV-2 antibodies with other pathogens, vaccines, and food antigens. Front Immunol 2022; 13:1003094. [PMID: 36211404 PMCID: PMC9537454 DOI: 10.3389/fimmu.2022.1003094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
It has been shown that SARS-CoV-2 shares homology and cross-reacts with vaccines, other viruses, common bacteria and many human tissues. We were inspired by these findings, firstly, to investigate the reaction of SARS-CoV-2 monoclonal antibody with different pathogens and vaccines, particularly DTaP. Additionally, since our earlier studies have shown immune reactivity by antibodies made against pathogens and autoantigens towards different food antigens, we also studied cross-reaction between SARS-CoV-2 and common foods. For this, we reacted monoclonal and polyclonal antibodies against SARS-CoV-2 spike protein and nucleoprotein with 15 different bacterial and viral antigens and 2 different vaccines, BCG and DTaP, as well as with 180 different food peptides and proteins. The strongest reaction by SARS-CoV-2 antibodies were with DTaP vaccine antigen, E. faecalis, roasted almond, broccoli, soy, cashew, α+β casein and milk, pork, rice endochitinase, pineapple bromelain, and lentil lectin. Because the immune system tends to form immune responses towards the original version of an antigen that it has encountered, this cross-reactivity may have its advantages with regards to immunity against SARS-CoV-2, where the SARS-CoV-2 virus may elicit a “remembered” immune response because of its structural similarity to a pathogen or food antigen to which the immune system was previously exposed. Our findings indicate that cross-reactivity elicited by DTaP vaccines in combination with common herpesviruses, bacteria that are part of our normal flora such as E. faecalis, and foods that we consume on a daily basis should be investigated for possible cross-protection against COVID-19. Additional experiments would be needed to clarify whether or not this cross-protection is due to cross-reactive antibodies or long-term memory T and B cells in the blood.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Los Angeles, CA, United States
- Cyrex Laboratories, Limited Liability Company (LLC), Phoenix, AZ, United States
- *Correspondence: Aristo Vojdani,
| | | | | | - Joshua Redd
- RedRiver Health and Wellness, South Jordan, UT, United States
| |
Collapse
|
14
|
Zubchenko S, Kril I, Nadizhko O, Matsyura O, Chopyak V. Herpesvirus infections and post-COVID-19 manifestations: a pilot observational study. Rheumatol Int 2022; 42:1523-1530. [PMID: 35650445 PMCID: PMC9159383 DOI: 10.1007/s00296-022-05146-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 01/22/2023]
Abstract
The global spread of SARS-CoV-2 points to unrivaled mutational variation of the virus, contributing to a variety of post-COVID sequelae in immunocompromised subjects and high mortality. Numerous studies have reported the reactivation of "sluggish" herpes virus infections in COVID-19, which exaggerate the course of the disease and complicate with lasting post-COVID manifestations CMV, EBV, HHV6). This study aimed to describe clinical and laboratory features of post-COVID manifestations accompanied by the reactivation of herpes virus infections (CMV, EBV, HHV6). 88 patients were recruited for this study, including subjects with reactivation of herpes viruses, 68 (72.3%) (main group) and 20 (27.7%) subjects without detectable DNA of herpesviruses (control group): 46 (52.3%) female and 42 (47.7%) male; median age was 41.4 ± 6.7 years. Patients with post-COVID manifestations presented with reactivation of EBV in 42.6%, HHV6 in 25.0%, and EBV plus HHV6 in 32.4%. Compared with controls, patients with herpes virus infections presented with more frequent slight fever temperature, headache, psycho-neurological disorders, pulmonary abnormalities and myalgia (p < 0.01), activation of liver enzymes, elevated CRP and D-dimer, and suppressed cellular immune response (p ≤ 0.05). Preliminary results indicate a likely involvement of reactivated herpes virus infections, primarily EBV infections in severe COVID-19 and the formation of the post-COVID syndrome. Patients with the post-COVID syndrome and reactivation of EBV and HHV6 infections are at high risk of developing various pathologies, including rheumatologic diseases.
Collapse
Affiliation(s)
- Svitlana Zubchenko
- Department of Clinical Immunology and Allergology, Danylo Halytsky Lviv National Medical University, Pekarska Street, 69, Lviv, 79010, Ukraine.
| | - Iryna Kril
- Department of Clinical Immunology and Allergology, Danylo Halytsky Lviv National Medical University, Pekarska Street, 69, Lviv, 79010, Ukraine
| | - Olena Nadizhko
- Department of Clinical Immunology and Allergology, Danylo Halytsky Lviv National Medical University, Pekarska Street, 69, Lviv, 79010, Ukraine
| | - Oksana Matsyura
- Department of Clinical Immunology and Allergology, Danylo Halytsky Lviv National Medical University, Pekarska Street, 69, Lviv, 79010, Ukraine
| | - Valentyna Chopyak
- Department of Clinical Immunology and Allergology, Danylo Halytsky Lviv National Medical University, Pekarska Street, 69, Lviv, 79010, Ukraine
| |
Collapse
|
15
|
Ferrari D, Rubini M, Burns JS. The Potential of Purinergic Signaling to Thwart Viruses Including SARS-CoV-2. Front Immunol 2022; 13:904419. [PMID: 35784277 PMCID: PMC9248768 DOI: 10.3389/fimmu.2022.904419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 01/18/2023] Open
Abstract
A long-shared evolutionary history is congruent with the multiple roles played by purinergic signaling in viral infection, replication and host responses that can assist or hinder viral functions. An overview of the involvement of purinergic signaling among a range of viruses is compared and contrasted with what is currently understood for SARS-CoV-2. In particular, we focus on the inflammatory and antiviral responses of infected cells mediated by purinergic receptor activation. Although there is considerable variation in a patient's response to SARS-CoV-2 infection, a principle immediate concern in Coronavirus disease (COVID-19) is the possibility of an aberrant inflammatory activation causing diffuse lung oedema and respiratory failure. We discuss the most promising potential interventions modulating purinergic signaling that may attenuate the more serious repercussions of SARS-CoV-2 infection and aspects of their implementation.
Collapse
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Michele Rubini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Jorge S. Burns
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Blumenthal MJ, Lambarey H, Chetram A, Riou C, Wilkinson RJ, Schäfer G. Kaposi's Sarcoma-Associated Herpesvirus, but Not Epstein-Barr Virus, Co-infection Associates With Coronavirus Disease 2019 Severity and Outcome in South African Patients. Front Microbiol 2022; 12:795555. [PMID: 35069495 PMCID: PMC8770866 DOI: 10.3389/fmicb.2021.795555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
In South Africa, the Coronavirus Disease 2019 (COVID-19) pandemic is occurring against the backdrop of high Human Immunodeficiency Virus (HIV), tuberculosis and non-communicable disease burdens as well as prevalent herpesviruses infections such as Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV). As part of an observational study of adults admitted to Groote Schuur Hospital, Cape Town, South Africa during the period June–August 2020 and assessed for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, we measured KSHV serology and KSHV and EBV viral load (VL) in peripheral blood in relation to COVID-19 severity and outcome. A total of 104 patients with PCR-confirmed SARS-CoV-2 infection were included in this study. 61% were men and 39% women with a median age of 53 years (range 21–86). 29.8% (95% CI: 21.7–39.1%) of the cohort was HIV positive and 41.1% (95% CI: 31.6–51.1%) were KSHV seropositive. EBV VL was detectable in 84.4% (95% CI: 76.1–84.4%) of the cohort while KSHV DNA was detected in 20.6% (95% CI: 13.6–29.2%), with dual EBV/KSHV infection in 17.7% (95% CI: 11.1–26.2%). On enrollment, 48 [46.2% (95% CI: 36.8–55.7%)] COVID-19 patients were classified as severe on the WHO ordinal scale reflecting oxygen therapy and supportive care requirements and 30 of these patients [28.8% (95% CI: 20.8–38.0%)] later died. In COVID-19 patients, detectable KSHV VL was associated with death after adjusting for age, sex, HIV status and detectable EBV VL [p = 0.036, adjusted OR = 3.17 (95% CI: 1.08–9.32)]. Furthermore, in HIV negative COVID-19 patients, there was a trend indicating that KSHV VL may be related to COVID-19 disease severity [p = 0.054, unstandardized co-efficient 0.86 (95% CI: –0.015–1.74)] in addition to death [p = 0.008, adjusted OR = 7.34 (95% CI: 1.69–31.49)]. While the design of our study cannot distinguish if disease synergy exists between COVID-19 and KSHV nor if either viral infection is indeed fueling the other, these data point to a potential contribution of KSHV infection to COVID-19 outcome, or SARS-CoV-2 infection to KSHV reactivation, particularly in the South African context of high disease burden, that warrants further investigation.
Collapse
Affiliation(s)
- Melissa J Blumenthal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Humaira Lambarey
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Abeen Chetram
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa.,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa.,Department of Infectious Diseases, Imperial College London, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Salazar-García M, Acosta-Contreras S, Rodríguez-Martínez G, Cruz-Rangel A, Flores-Alanis A, Patiño-López G, Luna-Pineda VM. Pseudotyped Vesicular Stomatitis Virus-Severe Acute Respiratory Syndrome-Coronavirus-2 Spike for the Study of Variants, Vaccines, and Therapeutics Against Coronavirus Disease 2019. Front Microbiol 2022; 12:817200. [PMID: 35095820 PMCID: PMC8795712 DOI: 10.3389/fmicb.2021.817200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
World Health Organization (WHO) has prioritized the infectious emerging diseases such as Coronavirus Disease (COVID-19) in terms of research and development of effective tests, vaccines, antivirals, and other treatments. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), the etiological causative agent of COVID-19, is a virus belonging to risk group 3 that requires Biosafety Level (BSL)-3 laboratories and the corresponding facilities for handling. An alternative to these BSL-3/-4 laboratories is to use a pseudotyped virus that can be handled in a BSL-2 laboratory for study purposes. Recombinant Vesicular Stomatitis Virus (VSV) can be generated with complementary DNA from complete negative-stranded genomic RNA, with deleted G glycoprotein and, instead, incorporation of other fusion protein, like SARS-CoV-2 Spike (S protein). Accordingly, it is called pseudotyped VSV-SARS-CoV-2 S. In this review, we have described the generation of pseudotyped VSV with a focus on the optimization and application of pseudotyped VSV-SARS-CoV-2 S. The application of this pseudovirus has been addressed by its use in neutralizing antibody assays in order to evaluate a new vaccine, emergent SARS-CoV-2 variants (delta and omicron), and approved vaccine efficacy against variants of concern as well as in viral fusion-focused treatment analysis that can be performed under BSL-2 conditions.
Collapse
Affiliation(s)
- Marcela Salazar-García
- Laboratorio de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Samyr Acosta-Contreras
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | | | - Armando Cruz-Rangel
- Laboratorio de Bioquímica de Enfermedades Crónicas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alejandro Flores-Alanis
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Genaro Patiño-López
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Victor M. Luna-Pineda
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| |
Collapse
|
18
|
Blanco R, Carrillo-Beltrán D, Corvalán AH, Aguayo F. High-Risk Human Papillomavirus and Epstein-Barr Virus Coinfection: A Potential Role in Head and Neck Carcinogenesis. BIOLOGY 2021; 10:biology10121232. [PMID: 34943147 PMCID: PMC8698839 DOI: 10.3390/biology10121232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary A subset of carcinomas that arise in the head and neck region show a viral etiology. In fact, a subgroup of oropharyngeal cancers are caused by some types of human papillomavirus (HPV), so-called high-risk (HR)-HPVs, whereas undifferentiated nasopharyngeal carcinomas are etiologically related to Epstein–Barr virus (EBV). However, studies have reported the presence of both HR-HPV and EBV in some types of head and neck cancers. In this review, we discuss the potential contribution and role of HR-HPV/EBV coinfection in head and neck carcinogenesis, as well as the mechanisms that are potentially involved. In addition, HR-HPV/EBV interaction models are proposed. Abstract High-risk human papillomaviruses (HR-HPVs) and Epstein–Barr virus (EBV) are recognized oncogenic viruses involved in the development of a subset of head and neck cancers (HNCs). HR-HPVs are etiologically associated with a subset of oropharyngeal carcinomas (OPCs), whereas EBV is a recognized etiological agent of undifferentiated nasopharyngeal carcinomas (NPCs). In this review, we address epidemiological and mechanistic evidence regarding a potential cooperation between HR-HPV and EBV for HNC development. Considering that: (1) both HR-HPV and EBV infections require cofactors for carcinogenesis; and (2) both oropharyngeal and oral epithelium can be directly exposed to carcinogens, such as alcohol or tobacco smoke, we hypothesize possible interaction mechanisms. The epidemiological and experimental evidence suggests that HR-HPV/EBV cooperation for developing a subset of HNCs is plausible and warrants further investigation.
Collapse
Affiliation(s)
- Rancés Blanco
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (R.B.); (D.C.-B.)
| | - Diego Carrillo-Beltrán
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (R.B.); (D.C.-B.)
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | | |
Collapse
|
19
|
Csekes E, Račková L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int J Mol Sci 2021; 22:12641. [PMID: 34884444 PMCID: PMC8657738 DOI: 10.3390/ijms222312641] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
The skin, being the barrier organ of the body, is constitutively exposed to various stimuli impacting its morphology and function. Senescent cells have been found to accumulate with age and may contribute to age-related skin changes and pathologies. Natural polyphenols exert many health benefits, including ameliorative effects on skin aging. By affecting molecular pathways of senescence, polyphenols are able to prevent or delay the senescence formation and, consequently, avoid or ameliorate aging and age-associated pathologies of the skin. This review aims to provide an overview of the current state of knowledge in skin aging and cellular senescence, and to summarize the recent in vitro studies related to the anti-senescent mechanisms of natural polyphenols carried out on keratinocytes, melanocytes and fibroblasts. Aged skin in the context of the COVID-19 pandemic will be also discussed.
Collapse
Affiliation(s)
- Erika Csekes
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
20
|
Nunn AVW, Guy GW, Botchway SW, Bell JD. SARS-CoV-2 and EBV; the cost of a second mitochondrial "whammy"? Immun Ageing 2021; 18:40. [PMID: 34717676 PMCID: PMC8556816 DOI: 10.1186/s12979-021-00252-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022]
Abstract
We, and others, have suggested that as the SARS-CoV-2 virus may modulate mitochondrial function, good mitochondrial reserve and health could be key in determining disease severity when exposed to this virus, as the immune system itself is dependent on this organelle's function. With the recent publication of a paper showing that long COVID could be associated with the reactivation of the Epstein Barr Virus, which is well known to manipulate mitochondria, we suggest that this could represent a second mitochondrial "whammy" that might support the mitochondrial hypothesis underlying COVID-19 severity and potentially, the occurrence of longer-term symptoms. As mitochondrial function declines with age, this could be an important factor in why older populations are more susceptible. Key factors which ensure optimal mitochondrial health are generally those that ensure healthy ageing, such as a good lifestyle with plenty of physical activity. The ability of viruses to manipulate mitochondrial function is well described, and it is now also thought that for evolutionary reasons, they also manipulate the ageing process. Given that slowing the ageing process could well be linked to better economic outcomes, the link between mitochondrial health, economics, COVID-19 and other viruses, as well as lifestyle, needs to be considered.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, W1W 6UW, London, UK.
| | | | - Stanley W Botchway
- Department of Biological and Medical Sciences, UKRI, STFC, Central Laser Facility, Oxford Brookes University, OX1 10QX, Oxford, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, W1W 6UW, London, UK
| |
Collapse
|
21
|
Bellucci G, Rinaldi V, Buscarinu MC, Reniè R, Bigi R, Pellicciari G, Morena E, Romano C, Marrone A, Mechelli R, Salvetti M, Ristori G. Multiple Sclerosis and SARS-CoV-2: Has the Interplay Started? Front Immunol 2021; 12:755333. [PMID: 34646278 PMCID: PMC8503550 DOI: 10.3389/fimmu.2021.755333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Current knowledge on Multiple Sclerosis (MS) etiopathogenesis encompasses complex interactions between the host's genetic background and several environmental factors that result in dysimmunity against the central nervous system. An old-aged association exists between MS and viral infections, capable of triggering and sustaining neuroinflammation through direct and indirect mechanisms. The novel Coronavirus, SARS-CoV-2, has a remarkable, and still not fully understood, impact on the immune system: the occurrence and severity of both acute COVID-19 and post-infectious chronic illness (long COVID-19) largely depends on the host's response to the infection, that echoes several aspects of MS pathobiology. Furthermore, other MS-associated viruses, such as the Epstein-Barr Virus (EBV) and Human Endogenous Retroviruses (HERVs), may enhance a mechanistic interplay with the novel Coronavirus, with the potential to interfere in MS natural history. Studies on COVID-19 in people with MS have helped clinicians in adjusting therapeutic strategies during the pandemic; similar efforts are being made for SARS-CoV-2 vaccination campaigns. In this Review, we look over 18 months of SARS-CoV-2 pandemic from the perspective of MS: we dissect neuroinflammatory and demyelinating mechanisms associated with COVID-19, summarize pathophysiological crossroads between MS and SARS-CoV-2 infection, and discuss present evidence on COVID-19 and its vaccination in people with MS.
Collapse
Affiliation(s)
- Gianmarco Bellucci
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Virginia Rinaldi
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Buscarinu
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Roberta Reniè
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Rachele Bigi
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Giulia Pellicciari
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Emanuele Morena
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Carmela Romano
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Antonio Marrone
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Rosella Mechelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Pisana, Rome, Italy
- San Raffaele Roma Open University, Rome, Italy
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Giovanni Ristori
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
22
|
An efficient metatranscriptomic approach for capturing RNA virome and its application to SARS-CoV-2. J Genet Genomics 2021; 48:860-862. [PMID: 34438048 PMCID: PMC8380547 DOI: 10.1016/j.jgg.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022]
|