1
|
Bohannon DG, Zablocki-Thomas LD, Leung ES, Dupont JK, Hattler JB, Kowalewska J, Zhao M, Luo J, Salemi M, Amedee AM, Li Q, Kuroda MJ, Kim WK. CSF1R inhibition depletes brain macrophages and reduces brain virus burden in SIV-infected macaques. Brain 2024; 147:3059-3069. [PMID: 39049445 PMCID: PMC11370798 DOI: 10.1093/brain/awae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 07/27/2024] Open
Abstract
Perivascular macrophages (PVMs) and, to a lesser degree, microglia are targets and reservoirs of HIV and simian immunodeficiency virus (SIV) in the brain. Previously, we demonstrated that colony-stimulating factor 1 receptor (CSF1R) in PVMs was upregulated and activated in chronically SIV-infected rhesus macaques with encephalitis, correlating with SIV infection of PVMs. Herein, we investigated the role of CSF1R in the brain during acute SIV infection using BLZ945, a brain-penetrant CSF1R kinase inhibitor. Apart from three uninfected historic controls, nine Indian rhesus macaques were infected acutely with SIVmac251 and divided into three groups (n = 3 each): an untreated control and two groups treated for 20-30 days with low- (10 mg/kg/day) or high- (30 mg/kg/day) dose BLZ945. With the high-dose BLZ945 treatment, there was a significant reduction in cells expressing CD163 and CD206 across all four brain areas examined, compared with the low-dose treatment and control groups. In 9 of 11 tested regions, tissue viral DNA (vDNA) loads were reduced by 95%-99% following at least one of the two doses, and even to undetectable levels in some instances. Decreased numbers of CD163+ and CD206+ cells correlated significantly with lower levels of vDNA in all four corresponding brain areas. In contrast, BLZ945 treatment did not significantly affect the number of microglia. Our results indicate that doses as low as 10 mg/kg/day of BLZ945 are sufficient to reduce the tissue vDNA loads in the brain with no apparent adverse effect. This study provides evidence that infected PVMs are highly sensitive to CSF1R inhibition, opening new possibilities to achieve viral clearance.
Collapse
Affiliation(s)
- Diana G Bohannon
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Laurent D Zablocki-Thomas
- Department of Anatomy, Physiology & Cell Biology, University California, Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Evan S Leung
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Jinbum K Dupont
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Julian B Hattler
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Jolanta Kowalewska
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Miaoyun Zhao
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jiangtao Luo
- Department of Health Systems and Population Health Sciences, the Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204, USA
| | - Marco Salemi
- Department of Epidemiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Angela M Amedee
- Department of Microbiology, Immunology & Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Marcelo J Kuroda
- Department of Anatomy, Physiology & Cell Biology, University California, Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Altomonte S, Pike VW. Candidate Tracers for Imaging Colony-Stimulating Factor 1 Receptor in Neuroinflammation with Positron Emission Tomography: Issues and Progress. ACS Pharmacol Transl Sci 2023; 6:1632-1650. [PMID: 37974622 PMCID: PMC10644394 DOI: 10.1021/acsptsci.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 11/19/2023]
Abstract
The tyrosine kinase, colony-stimulating factor 1 receptor (CSF1R), has attracted attention as a potential biomarker of neuroinflammation for imaging studies with positron emission tomography (PET), especially because of its location on microglia and its role in microglia proliferation. The development of an effective radiotracer for specifically imaging and quantifying brain CSF1R is highly challenging. Here we review the progress that has been made on PET tracer development and discuss issues that have arisen and which remain to be addressed and resolved.
Collapse
Affiliation(s)
- Stefano Altomonte
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Joseph J, Daley W, Lawrence D, Lorenzo E, Perrin P, Rao VR, Tsai SY, Varthakavi V. Role of macrophages in HIV pathogenesis and cure: NIH perspectives. J Leukoc Biol 2022; 112:1233-1243. [PMID: 36073341 DOI: 10.1002/jlb.4mr0722-619r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophages play a significant role in HIV infection and contribute to pathogenesis of comorbidities as well as establishment of the viral reservoir in people living with HIV. While CD4+ T cells are considered the main targets of HIV infection, infected macrophages resist the cytopathic effects of infection, contributing to the persistent HIV reservoir. Furthermore, activated macrophages drive inflammation and contribute to the development of comorbidities, including HIV-associated CNS dysfunction. Better understanding the role of macrophages in HIV infection, persistence, and comorbidities can lead to development of innovative therapeutic strategies to address HIV-related outcomes in people living with HIV. In October 2021, the National Institute of Mental Health and the Ragon Institute of MGH, MIT, and Harvard conducted a virtual meeting on role of macrophages in HIV infection, pathogenesis, and cure. This review article captures the key highlights from this meeting and provides an overview of interests and activities of various NIH institutes involved in supporting research on macrophages and HIV.
Collapse
Affiliation(s)
- Jeymohan Joseph
- Division of AIDS Research, National Institute of Mental Health, 5601 Fishers Lane, Bethesda, MD, USA
| | - William Daley
- Neuroscience Center, National Institute of Neurological Disorders and Stroke, Room 6001 Executive Blvd., Bethesda, MD, 20892-9521, USA.,Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, Bethesda, MD, 20892, USA
| | - Diane Lawrence
- National Institute of Allergy and Infectious Diseases, 5601 Fishers Lane, Bethesda, MD, 20892, USA
| | - Eric Lorenzo
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, Bethesda, MD, 20892, USA
| | - Peter Perrin
- National Institute of Diabetes and Digestive and Kidney Diseases, 6707 Democracy Boulevard, Bethesda, MD, 20892, USA
| | - Vasudev R Rao
- Division of AIDS Research, National Institute of Mental Health, 5601 Fishers Lane, Bethesda, MD, USA
| | - Shang-Yi Tsai
- National Institute on Drug Abuse, 3WFN, 11601 Landsdown Street, North Bethesda, MD, 20852, USA
| | - Vasundhara Varthakavi
- National Institute on Drug Abuse, 3WFN, 11601 Landsdown Street, North Bethesda, MD, 20852, USA
| |
Collapse
|
4
|
Caballero RE, Dong SXM, Gajanayaka N, Ali H, Cassol E, Cameron WD, Korneluk R, Tremblay MJ, Angel JB, Kumar A. Role of RIPK1 in SMAC mimetics-induced apoptosis in primary human HIV-infected macrophages. Sci Rep 2021; 11:22901. [PMID: 34824340 PMCID: PMC8617210 DOI: 10.1038/s41598-021-02146-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
Macrophages serve as viral reservoirs due to their resistance to apoptosis and HIV-cytopathic effects. We have previously shown that inhibitor of apoptosis proteins (IAPs) confer resistance to HIV-Vpr-induced apoptosis in normal macrophages. Herein, we show that second mitochondrial activator of caspases (SMAC) mimetics (SM) induce apoptosis of monocyte-derived macrophages (MDMs) infected in vitro with a R5-tropic laboratory strain expressing heat stable antigen, chronically infected U1 cells, and ex-vivo derived MDMs from HIV-infected individuals. To understand the mechanism governing SM-induced cell death, we show that SM-induced cell death of primary HIV-infected macrophages was independent of the acquisition of M1 phenotype following HIV infection of macrophages. Instead, SM-induced cell death was found to be mediated by IAPs as downregulation of IAPs by siRNAs induced cell death of HIV-infected macrophages. Moreover, HIV infection caused receptor interacting protein kinase-1 (RIPK1) degradation which in concert with IAP1/2 downregulation following SM treatment may result in apoptosis of macrophages. Altogether, our results show that SM selectively induce apoptosis in primary human macrophages infected in vitro with HIV possibly through RIPK1. Moreover, modulation of the IAP pathways may be a potential strategy for selective killing of HIV-infected macrophages in vivo.
Collapse
Affiliation(s)
- Ramon Edwin Caballero
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada.
| | - Simon Xin Min Dong
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Niranjala Gajanayaka
- Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Hamza Ali
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - William D Cameron
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Infectious Diseases, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Robert Korneluk
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Michel J Tremblay
- Centre de recherche du CHU de Québec-Université Laval, Université Laval, Québec City, QC, Canada
| | - Jonathan B Angel
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Infectious Diseases, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ashok Kumar
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada. .,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Dong SXM, Vizeacoumar FS, Bhanumathy KK, Alli N, Gonzalez-Lopez C, Gajanayaka N, Caballero R, Ali H, Freywald A, Cassol E, Angel JB, Vizeacoumar FJ, Kumar A. Identification of novel genes involved in apoptosis of HIV-infected macrophages using unbiased genome-wide screening. BMC Infect Dis 2021; 21:655. [PMID: 34233649 PMCID: PMC8261936 DOI: 10.1186/s12879-021-06346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/15/2021] [Indexed: 12/01/2022] Open
Abstract
Background Macrophages, besides resting latently infected CD4+ T cells, constitute the predominant stable, major non-T cell HIV reservoirs. Therefore, it is essential to eliminate both latently infected CD4+ T cells and tissue macrophages to completely eradicate HIV in patients. Until now, most of the research focus is directed towards eliminating latently infected CD4+ T cells. However, few approaches have been directed at killing of HIV-infected macrophages either in vitro or in vivo. HIV infection dysregulates the expression of many host genes essential for the survival of infected cells. We postulated that exploiting this alteration may yield novel targets for the selective killing of infected macrophages. Methods We applied a pooled shRNA-based genome-wide approach by employing a lentivirus-based library of shRNAs to screen novel gene targets whose inhibition should selectively induce apoptosis in HIV-infected macrophages. Primary human MDMs were infected with HIV-eGFP and HIV-HSA viruses. Infected MDMs were transfected with siRNAs specific for the promising genes followed by analysis of apoptosis by flow cytometry using labelled Annexin-V in HIV-infected, HIV-exposed but uninfected bystander MDMs and uninfected MDMs. The results were analyzed using student’s t-test from at least four independent experiments. Results We validated 28 top hits in two independent HIV infection models. This culminated in the identification of four target genes, Cox7a2, Znf484, Cstf2t, and Cdk2, whose loss-of-function induced apoptosis preferentially in HIV-infected macrophages. Silencing these single genes killed significantly higher number of HIV-HSA-infected MDMs compared to the HIV-HSA-exposed, uninfected bystander macrophages, indicating the specificity in the killing of HIV-infected macrophages. The mechanism governing Cox7a2-mediated apoptosis of HIV-infected macrophages revealed that targeting respiratory chain complex II and IV genes also selectively induced apoptosis of HIV-infected macrophages possibly through enhanced ROS production. Conclusions We have identified above-mentioned novel genes and specifically the respiratory chain complex II and IV genes whose silencing may cause selective elimination of HIV-infected macrophages and eventually the HIV-macrophage reservoirs. The results highlight the potential of the identified genes as targets for eliminating HIV-infected macrophages in physiological environment as part of an HIV cure strategy. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06346-7.
Collapse
Affiliation(s)
- Simon X M Dong
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kalpana K Bhanumathy
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nezeka Alli
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Niranjala Gajanayaka
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ramon Caballero
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hamza Ali
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Jonathan B Angel
- Department of Medicine, the Ottawa Health Research Institute, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Franco J Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada. .,Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK, Canada.
| | - Ashok Kumar
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Campbell GR, To RK, Zhang G, Spector SA. SMAC mimetics induce autophagy-dependent apoptosis of HIV-1-infected macrophages. Cell Death Dis 2020; 11:590. [PMID: 32719312 PMCID: PMC7385130 DOI: 10.1038/s41419-020-02761-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Human immunodeficiency type 1 (HIV)-infected macrophages (HIV-Mφ) are a reservoir for latent HIV infection and a barrier to HIV eradication. In contrast to CD4+ T cells, HIV-Mφ are resistant to the cytopathic effects of acute HIV infection and have increased expression of cell survival factors, including X-linked inhibitor of apoptosis (XIAP), baculoviral IAP repeat containing (BIRC) 2/cIAP1, beclin-1, BCL2, BCL-xl, triggering receptor expressed on myeloid cells 1, mitofusin (MFN) 1, and MFN2. DIABLO/SMAC mimetics are therapeutic agents that affect cancer cell survival and induce cell death. We found that DIABLO/SMAC mimetics (LCL-161, AT-406 (also known as SM-406 or Debio 1143), and birinapant) selectively kill HIV-Mφ without increasing bystander cell death. DIABLO/SMAC mimetic treatment of HIV-Mφ-induced XIAP and BIRC2 degradation, leading to the induction of autophagy and the formation of a death-inducing signaling complex on phagophore membranes that includes both pro-apoptotic or necroptotic (FADD, receptor-interacting protein kinase (RIPK) 1, RIPK3, caspase 8, and MLKL) and autophagy (ATG5, ATG7, and SQSTM1) proteins. Genetic or pharmacologic inhibition of early stages of autophagy, but not late stages of autophagy, ablated this interaction and inhibited apoptosis. Furthermore, DIABLO/SMAC mimetic-mediated apoptosis of HIV-Mφ is dependent upon tumor necrosis factor signaling. Our findings thus demonstrate that DIABLO/SMAC mimetics selectively induce autophagy-dependent apoptosis in HIV-Mφ.
Collapse
Affiliation(s)
- Grant R Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| | - Rachel K To
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gang Zhang
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Stephen A Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
7
|
Xun Q, Wang Z, Hu X, Ding K, Lu X. Small-Molecule CSF1R Inhibitors as Anticancer Agents. Curr Med Chem 2020; 27:3944-3966. [PMID: 31215373 DOI: 10.2174/1573394715666190618121649] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
Persuasive evidence has been presented linking the infiltration of Tumor-Associated Macrophages (TAMs) with the driving force of tumorigenesis and in the suppression of antitumor immunity. In this context CSF1R, the cellular receptor for Colony Stimulating Factor-1 (CSF1) and Interleukin 34 (IL-34), occupies a central role in manipulating the behavior of TAMs and the dysregulation of CSF1R signaling has been implicated in cancer progression and immunosuppression in many specific cancers. Consequently, CSF1R kinase has been a target of great interest in cancer treatment and significant research efforts have focused on the development of smallmolecule CSF1R inhibitors. In this review, we highlight current progress on the development of these small molecule CSF1R inhibitors as anticancer agents. Special attention is paid to the compounds available in advanced clinical trials.
Collapse
Affiliation(s)
- Qiuju Xun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhen Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xianglong Hu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
8
|
Deng YT, Wang JW, Chu H, Wang J, Hu Y, lin Y, Shu M, Lin ZH. 3D-QSAR and Docking Studies on Pyrimidine Derivatives as CSF-1R Inhibitors. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190329224946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Colony Stimulating Factor-1 Receptor (CSF-1R) is associated with
malignancy, invasiveness and poor prognosis of tumors, and pyrimidine derivatives are considered as
a novel class of CSF-1R inhibitor.
Methods:
To explore the relationship between the structures of substituted pyrimidine derivatives
and their inhibitory activities against CSF-1R, CoMFA and CoMSIA analyses, and molecular
docking studies were performed on a dataset of forty-four compounds.
Results:
We found in CoMFA model including steric and electrostatic fields for the training set, the
cross-validated q2 value was 0.617 and the non-cross-validated r2 value was 0.983. While, the crossvalidated
q2 value was 0.637 and the non-cross-validated r2 value was 0.984 in CoMSIA Model
which include steric, electrostatic and hydrophobic fields. 3D equipotential maps generated from
CoMFA and CoMSIA along with the docking binding structures provided enough information about
the structural requirements for better activity.
Conclusion:
The data generated from the present study helped us to predict the activity of new
inhibitors and further design some novel and potent CSF-1R inhibitors.
Collapse
Affiliation(s)
- Ya-ting Deng
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| | - Jun-wei Wang
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| | - Han Chu
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| | - Juan Wang
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| | - Yong Hu
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| | - Yong lin
- Department of Chemical Engineering, Chongqing University of Technology, Chongqing 400055, China
| | - Mao Shu
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| | - Zhi-hua Lin
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400055, China
| |
Collapse
|
9
|
Trus E, Basta S, Gee K. Who's in charge here? Macrophage colony stimulating factor and granulocyte macrophage colony stimulating factor: Competing factors in macrophage polarization. Cytokine 2019; 127:154939. [PMID: 31786501 DOI: 10.1016/j.cyto.2019.154939] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022]
Abstract
Macrophages make up a crucial aspect of the immune system, carrying out a variety of functions ranging from clearing cellular debris to their well-recognized roles as innate immune cells. These cells exist along a spectrum of phenotypes but can be generally divided into proinflammatory (M1) and anti-inflammatory (M2) groups, representing different states of polarization. Due to their diverse functions, macrophages are implicated in a variety of diseases such as atherosclerosis, lupus nephritis, or infection with HIV. Throughout their lifetime, macrophages can be influenced by a wide variety of signals that influence their polarization states, which can affect their function and influence their effects on disease progression. This review seeks to provide a summary of how GM-CSF and M-CSF influence macrophage activity during disease, and provide examples of in vitro research that indicate competition between the two cytokines in governing macrophage polarization. Gaining a greater understanding of the relationship between GM-CSF and M-CSF, along with how these cytokines fit into the larger context of diseases, will inform their use as treatments or targets for treatment in various diseases.
Collapse
Affiliation(s)
- Evan Trus
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
10
|
Irons DL, Meinhardt T, Allers C, Kuroda MJ, Kim WK. Overexpression and activation of colony-stimulating factor 1 receptor in the SIV/macaque model of HIV infection and neuroHIV. Brain Pathol 2019; 29:826-836. [PMID: 31033097 DOI: 10.1111/bpa.12731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/19/2019] [Indexed: 01/09/2023] Open
Abstract
In the present study, we investigated whether colony-stimulating factor 1 receptor (CSF1R) is expressed on brain macrophages and microglia in the human and macaque brain and whether it is upregulated and activated after lentivirus infection in vivo and contributes to development of encephalitic lesions. We examined, using multi-label and semi-quantitative immunofluorescence microscopy, the protein expression level and cellular localization of CSF1R in brain tissues from uninfected controls and SIV-infected adult macaques with or without encephalitis and also from uninfected controls, HIV-infected encephalitic subjects and virally suppressed subjects. In the normal uninfected brain, CSF1R protein was detected only on microglia and brain macrophages but not on neurons, astrocytes or oligodendrocytes. Microglia constitutively expressed CSF1R at low levels, and its expression was largely unchanged in non-encephalitic and encephalitic animals. Brain macrophages, including perivascular macrophages (PVMs), expressed higher levels of CSF1R compared to microglia. Interestingly, we found significantly increased expression of CSF1R on the infected PVMs and lesional macrophages in the brains of encephalitic macaques. Moreover, the per cell expression of CSF1R determined by its mean pixel intensity (MPI) correlated positively with the MPI of SIV Gag p28 in SIV-infected PVMs. Using phosphorylated CSF1R at tyrosine residue 723 and phosphorylated signal transducer and activator of transcription 5 at tyrosine reside 694 as markers for CSF1R activation, we found selective activation of CSF1R signaling in infected brain macrophages in encephalitis. We also found colocalization of CSF1R and its ligand CSF1 in PVMs and lesional macrophages in the brains of encephalitic macaques and humans. Notably, elevated brain CSF1R expression was found in virally suppressed subjects. These findings point to opportunities for developing a specific approach targeting infected brain macrophages, with several brain-penetrant CSF1R inhibitors that are available now, in order to eliminate central nervous system macrophage reservoirs, while not affecting resting uninfected microglia and PVMs that show no CSF1R activation.
Collapse
Affiliation(s)
- Derek L Irons
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Timothy Meinhardt
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Carolina Allers
- The Division of Immunology, Tulane National Primate Research Center, Covington, LA
| | - Marcelo J Kuroda
- The Division of Immunology, Tulane National Primate Research Center, Covington, LA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
11
|
Peterson TA, MacLean AG. Current and Future Therapeutic Strategies for Lentiviral Eradication from Macrophage Reservoirs. J Neuroimmune Pharmacol 2018; 14:68-93. [PMID: 30317409 DOI: 10.1007/s11481-018-9814-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Macrophages, one of the most abundant populations of leukocytes in the body, function as the first line of defense against pathogen invaders. Human Immunodeficiency virus 1 (HIV-1) remains to date one of the most extensively studied viral infections. Naturally occurring lentiviruses in domestic and primate species serve as valuable models to investigate lentiviral pathogenesis and novel therapeutics. Better understanding of the role macrophages play in HIV pathogenesis will aid in the advancement towards a cure. Even with current efficacy of first- and second-line Antiretroviral Therapy (ART) guidelines and future efficacy of Long Acting Slow Effective Release-ART (LASER-ART); ART alone does not lead to a cure. The major challenge of HIV eradication is viral latency. Latency Reversal Agents (LRAs) show promise as a possible means to eradicate HIV-1 from the body. It has become evident that complete eradication will need to include combinations of various effective therapeutic strategies such as LASER-ART, LRAs, and gene editing. Review of the current literature indicates the most promising HIV eradication strategy appears to be LASER-ART in conjunction with viral and receptor gene modifications via the CRISPR/Cas9 system. Graphical abstract A multimodal approach to HIV treatment including gene editing, LASER-ART, and latency reversal agents may provide a means to achieve HIV eradication.
Collapse
Affiliation(s)
- Tiffany A Peterson
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - Andrew G MacLean
- Department of Microbiology & Immunology, Division of Comparative Pathology, Tulane National Primate Research Center, Tulane Center for Aging, Tulane Brain Institute, 18703 Three Rivers Road, Covington, LA, 70433, USA.
| |
Collapse
|
12
|
Nissen JC, Thompson KK, West BL, Tsirka SE. Csf1R inhibition attenuates experimental autoimmune encephalomyelitis and promotes recovery. Exp Neurol 2018; 307:24-36. [PMID: 29803827 DOI: 10.1016/j.expneurol.2018.05.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/26/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by progressive neuronal demyelination and degeneration. Much of this damage can be attributed to microglia, the resident innate immune cells of the CNS, as well as monocyte-derived macrophages, which breach the blood-brain barrier in this inflammatory state. Upon activation, both microglia and macrophages release a variety of factors that greatly contribute to disease progression, and thus therapeutic approaches in MS focus on diminishing their activity. We use the CSF1R inhibitor PLX5622, administered in mouse chow, to ablate microglia and macrophages during the course of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Here, we show that ablation of these cells significantly improves animal mobility and weight gain in EAE. Further, we show that this treatment addresses the pathological hallmarks of MS, as it reduces demyelination and immune activation. White matter lesion areas in microglia/macrophage-depleted animals show substantial preservation of mature, myelinating oligodendrocytes in comparison to control animals. Taken together, these findings suggest that ablation of microglia/macrophages during the symptomatic phase of EAE reduces CNS inflammation and may also promote a more permissive environment for remyelination and recovery. This microglia and macrophage-targeted therapy could be a promising avenue for treatment of MS.
Collapse
Affiliation(s)
- Jillian C Nissen
- Programe in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, NY 11794-8651, United States; Department of Biological Sciences, State University of New York, College at Old Westbury, Old Westbury, NY 11568, United States
| | - Kaitlyn K Thompson
- Programe in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, NY 11794-8651, United States
| | - Brian L West
- Plexxikon Inc, Berkeley, CA 94710, United States
| | - Stella E Tsirka
- Programe in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, NY 11794-8651, United States.
| |
Collapse
|
13
|
Asahchop EL, Meziane O, Mamik MK, Chan WF, Branton WG, Resch L, Gill MJ, Haddad E, Guimond JV, Wainberg MA, Baker GB, Cohen EA, Power C. Reduced antiretroviral drug efficacy and concentration in HIV-infected microglia contributes to viral persistence in brain. Retrovirology 2017; 14:47. [PMID: 29037245 PMCID: PMC5644262 DOI: 10.1186/s12977-017-0370-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/01/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In patients with HIV/AIDS receiving antiretroviral therapy (ART), HIV-1 persistence in brain tissue is a vital and unanswered question. HIV-1 infects and replicates in resident microglia and trafficking macrophages within the brain although the impact of individual ART drugs on viral infection within these brain myeloid cells is unknown. Herein, the effects of contemporary ART drugs were investigated using in vitro and in vivo models of HIV-1 brain infection. RESULTS The EC50 values for specific ART drugs in HIV-infected human microglia were significantly higher compared to bone marrow-derived macrophages and peripheral blood mononuclear cells. Intracellular ART drug concentrations in microglia were significantly lower than in human lymphocytes. In vivo brain concentrations of ART drugs in mice were 10 to 100-fold less in brain tissues compared with plasma and liver levels. In brain tissues from untreated HIV-infected BLT mice, HIV-encoded RNA, DNA and p24 were present in human leukocytes while ART eradicated viral RNA and DNA in both brain and plasma. Interruption of ART resulted in detectable viral RNA and DNA and increased human CD68 expression in brains of HIV-infected BLT mice. In aviremic HIV/AIDS patients receiving effective ART, brain tissues that were collected within hours of last ART dosing showed HIV-encoded RNA and DNA with associated neuroinflammatory responses. CONCLUSIONS ART drugs show variable concentrations and efficacies in brain myeloid cells and tissues in drug-specific manner. Despite low drug concentrations in brain, experimental ART suppressed HIV-1 infection in brain although HIV/AIDS patients receiving effective ART had detectable HIV-1 in brain. These findings suggest that viral suppression in brain is feasible but new approaches to enhancing ART efficacy and concentrations in brain are required for sustained HIV-1 eradication from brain.
Collapse
Affiliation(s)
- Eugene L Asahchop
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | | | - Manmeet K Mamik
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Wing F Chan
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Lothar Resch
- Department of Pathology, University of Calgary, Calgary, AB, Canada
| | - M John Gill
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elie Haddad
- CHU Sainte-Justine, Montréal, Canada.,Department of Pediatrics, Université de Montréal, Montréal, Canada
| | - Jean V Guimond
- CIUSSS du Centre-Sud-de-l'ile-Montréal, CLSC des Faubourgs, Montréal, QC, Canada
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Eric A Cohen
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada.,Montreal Clinical Research Institute, Montréal, Canada
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada. .,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada. .,Department of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|