1
|
Muñoz-Suárez H, Ruiz-Padilla A, Donaire L, Benito EP, Ayllón MA. Reexamining the Mycovirome of Botrytis spp. Viruses 2024; 16:1640. [PMID: 39459972 PMCID: PMC11512270 DOI: 10.3390/v16101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Botrytis species cause gray mold disease in more than 200 crops worldwide. To control this disease, chemical fungicides are usually applied. However, more sustainable control alternatives should be explored, such as the use of hypovirulent mycovirus-infected fungal strains. To determine the mycovirome of two Botrytis species, B. cinerea and B. prunorum, we reanalyzed RNA-Seq and small RNA-Seq data using different assembly programs and an updated viral database, aiming to identify new mycoviruses that were previously not described in the same dataset. New mycoviruses were identified, including those previously reported to infect or be associated with B. cinerea and Plasmopara viticola, such as Botrytis cinerea alpha-like virus 1 and Plasmopara viticola lesion-associated ourmia-like virus 80. Additionally, two novel narnaviruses, not previously identified infecting Botrytis species, have been characterized, tentatively named Botrytis cinerea narnavirus 1 and Botrytis narnavirus 1. The analysis of small RNAs suggested that all identified mycoviruses were targeted by the antiviral fungal mechanism, regardless of the viral genome type. In conclusion, the enlarged list of newly found viruses and the application of different bioinformatics approaches have enabled the identification of novel mycoviruses not previously described in Botrytis species, expanding the already extensive list.
Collapse
Affiliation(s)
- Hugo Muñoz-Suárez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain; (H.M.-S.); (A.R.-P.)
| | - Ana Ruiz-Padilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain; (H.M.-S.); (A.R.-P.)
| | - Livia Donaire
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, 30100 Murcia, Spain;
| | - Ernesto Pérez Benito
- Instituto de Investigación en Agrobiotecnología (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, C/Río Duero, 12, Villamayor, 37185 Salamanca, Spain;
| | - María A. Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain; (H.M.-S.); (A.R.-P.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|
2
|
Ma X, Zhou Y, Wu L, Moffett P. Resistance gene Ty-1 restricts TYLCV infection in tomato by increasing RNA silencing. Virol J 2024; 21:256. [PMID: 39415211 PMCID: PMC11483987 DOI: 10.1186/s12985-024-02508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024] Open
Abstract
A major antiviral mechanism in plants is mediated by RNA silencing through the action of DICER-like (DCL) proteins, which cleave dsRNA into discrete small RNA fragments, and ARGONAUTE (AGO) proteins, which use the small RNAs to target single-stranded RNA. RNA silencing can also be amplified through the action of RNA-dependent RNA polymerases (RDRs), which use single stranded RNA to generate dsRNA that in turn is targeted by DCL proteins. As a counter-defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different components in the RNA silencing pathway. The tomato Ty-1 gene confers resistance to the DNA virus tomato yellow leaf curl virus (TYLCV) and has been reported to encode an RDRγ protein. However, the molecular mechanisms by which Ty-1 controls TYLCV infection, including whether Ty-1 is involved in RNA silencing, are unknown. Here, by using a transient expression assay, we have confirmed that Ty-1 shows antiviral activity against TYLCV in Nicotiana benthamiana. Also, in transient expression-based silencing assays, Ty-1 augmented systemic transgene silencing in GFP transgenic N. benthamiana plants. Furthermore, co-expression of Ty-1 or other RDRγ proteins from N. benthamiana or Arabidopsis with various proteins resulted in lower protein expression. These results are consistent with a model wherein Ty-1-mediated resistance to TYLCV is due, at least in part, to an increase in RNA silencing activity.
Collapse
Affiliation(s)
- Xiaofang Ma
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, People's Republic of China.
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China.
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Blvd.de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Liming Wu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, People's Republic of China
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Blvd.de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
3
|
Lan HH, Lu LM. Characterization of Hibiscus Chlorotic Ringspot Virus-Derived vsiRNAs from Infected Hibiscus rosa-sinensis in China. THE PLANT PATHOLOGY JOURNAL 2024; 40:415-424. [PMID: 39397297 PMCID: PMC11471928 DOI: 10.5423/ppj.oa.06.2024.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 10/15/2024]
Abstract
Lots of progress have been made about pathogen system of Hibiscus rosa-sinensis and hibiscus chlorotic ringspot virus (HCRSV), however, interactions between H. rosa-sinensis and HCRSV remain largely unknown. Hereon, firstly, HCRSV infection in H. rosa-sinensis from Zhangzhou city of China was confirmed by traditional electron microscopy, modern reverse transcription polymerase chain reaction and RNA-seq methods. Secondly, sequence feature analysis showed the full-length sequence of HCRSV-ZZ was 3,909 nucleotides (nt) in length and had a similar genomic structure with other carmovirus. It contains a 5' untranslated region (UTR), followed by seven open reading frames encoding for P28, P23, P81, P8, P9, P38, and P25, and the last a 3-terminal UTR. Thirdly, HCRSV- ZZ-derived vsiRNAs were identified and characterized for the first time from disease H. rosa-sinensis through sRNA-seq to reveal interactions between pathogen ant plant host. It was shown that the majority of HCRSV-ZZ-derived vsiRNAs were 21 nt, 22 nt, and 20 nt, with 21 nt being most abundant. The 5'-terminal nucleotide of HCRSV-ZZ vsiRNAs preferred U and C. HCRSV-ZZ vsiRNAs derived predominantly (72%) from the viral genome positive-strand RNA. The distribution of HCRSV-ZZ vsiRNAs along the viral genome is generally even, with some hot spots and cold spots forming in local regions. These hot spots and cold spots could be corresponded to the regions of stem loop secondary structures forming in HCRSV-ZZ genome by nucleotide paring. Taken together, our findings certify HCRSV infection in H. rosa-sinensis and provide an insight into interaction between HCRSV and H. rosa-sinensis and contribute to the prevention and treatment of this virus.
Collapse
Affiliation(s)
- Han-hong Lan
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Luan-mei Lu
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
4
|
Li X, Tao N, Xu B, Xu J, Yang Z, Jiang C, Zhou Y, Deng M, Lv J, Zhao K. Establishment and application of a root wounding-immersion method for efficient virus-induced gene silencing in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1336726. [PMID: 38708388 PMCID: PMC11066161 DOI: 10.3389/fpls.2024.1336726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/15/2024] [Indexed: 05/07/2024]
Abstract
In the post-genomic era, virus-induced gene silencing (VIGS) has played an important role in research on reverse genetics in plants. Commonly used Agrobacterium-mediated VIGS inoculation methods include stem scratching, leaf infiltration, use of agrodrench, and air-brush spraying. In this study, we developed a root wounding-immersion method in which 1/3 of the plant root (length) was cut and immersed in a tobacco rattle virus (TRV)1:TRV2 mixed solution for 30 min. We optimized the procedure in Nicotiana benthamiana and successfully silenced N. benthamiana, tomato (Solanum lycopersicum), pepper (Capsicum annuum L.), eggplant (Solanum melongena), and Arabidopsis thaliana phytoene desaturase (PDS), and we observed the movement of green fluorescent protein (GFP) from the roots to the stem and leaves. The silencing rate of PDS in N. benthamiana and tomato was 95-100%. In addition, we successfully silenced two disease-resistance genes, SITL5 and SITL6, to decrease disease resistance in tomatoes (CLN2037E). The root wounding-immersion method can be used to inoculate large batches of plants in a short time and with high efficiency, and fresh bacterial infusions can be reused several times. The most important aspect of the root wounding-immersion method is its application to plant species susceptible to root inoculation, as well as its ability to inoculate seedlings from early growth stages. This method offers a means to conduct large-scale functional genome screening in plants.
Collapse
Affiliation(s)
- Xinyun Li
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Na Tao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Bin Xu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junqiang Xu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhengan Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Caiqian Jiang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ying Zhou
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Minghua Deng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junheng Lv
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Kai Zhao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Vaucheret H, Voinnet O. The plant siRNA landscape. THE PLANT CELL 2024; 36:246-275. [PMID: 37772967 PMCID: PMC10827316 DOI: 10.1093/plcell/koad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Whereas micro (mi)RNAs are considered the clean, noble side of the small RNA world, small interfering (si)RNAs are often seen as a noisy set of molecules whose barbarian acronyms reflect a large diversity of often elusive origins and functions. Twenty-five years after their discovery in plants, however, new classes of siRNAs are still being identified, sometimes in discrete tissues or at particular developmental stages, making the plant siRNA world substantially more complex and subtle than originally anticipated. Focusing primarily on the model Arabidopsis, we review here the plant siRNA landscape, including transposable elements (TE)-derived siRNAs, a vast array of non-TE-derived endogenous siRNAs, as well as exogenous siRNAs produced in response to invading nucleic acids such as viruses or transgenes. We primarily emphasize the extraordinary sophistication and diversity of their biogenesis and, secondarily, the variety of their known or presumed functions, including via non-cell autonomous activities, in the sporophyte, gametophyte, and shortly after fertilization.
Collapse
Affiliation(s)
- Hervé Vaucheret
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zurich), 8092 Zürich, Switzerland
| |
Collapse
|
6
|
Ontiveros I, Fernández-Pozo N, Esteve-Codina A, López-Moya JJ, Díaz-Pendón JA. Enhanced Susceptibility to Tomato Chlorosis Virus (ToCV) in Hsp90- and Sgt1-Silenced Plants: Insights from Gene Expression Dynamics. Viruses 2023; 15:2370. [PMID: 38140611 PMCID: PMC10747942 DOI: 10.3390/v15122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The emerging whitefly-transmitted crinivirus tomato chlorosis virus (ToCV) causes substantial economic losses by inducing yellow leaf disorder in tomato crops. This study explores potential resistance mechanisms by examining early-stage molecular responses to ToCV. A time-course transcriptome analysis compared naïve, mock, and ToCV-infected plants at 2, 7, and 14 days post-infection (dpi). Gene expression changes were most notable at 2 and 14 dpi, likely corresponding to whitefly feeding and viral infection. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed key genes and pathways associated with ToCV infection, including those related to plant immunity, flavonoid and steroid biosynthesis, photosynthesis, and hormone signaling. Additionally, virus-derived small interfering RNAs (vsRNAs) originating from ToCV predominantly came from RNA2 and were 22 nucleotides in length. Furthermore, two genes involved in plant immunity, Hsp90 (heat shock protein 90) and its co-chaperone Sgt1 (suppressor of the G2 allele of Skp1) were targeted through viral-induced gene silencing (VIGS), showing a potential contribution to basal resistance against viral infections since their reduction correlated with increased ToCV accumulation. This study provides insights into tomato plant responses to ToCV, with potential implications for developing effective disease control strategies.
Collapse
Affiliation(s)
- Irene Ontiveros
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Noé Fernández-Pozo
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain;
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Juan Antonio Díaz-Pendón
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| |
Collapse
|
7
|
Samarskaya VO, Spechenkova N, Ilina I, Suprunova TP, Kalinina NO, Love AJ, Taliansky ME. A Non-Canonical Pathway Induced by Externally Applied Virus-Specific dsRNA in Potato Plants. Int J Mol Sci 2023; 24:15769. [PMID: 37958754 PMCID: PMC10650801 DOI: 10.3390/ijms242115769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The external application of double-stranded RNA (dsRNA) has recently been developed as a non-transgenic approach for crop protection against pests and pathogens. This novel and emerging approach has come to prominence due to its safety and environmental benefits. It is generally assumed that the mechanism of dsRNA-mediated antivirus RNA silencing is similar to that of natural RNA interference (RNAi)-based defence against RNA-containing viruses. There is, however, no direct evidence to support this idea. Here, we provide data on the high-throughput sequencing (HTS) analysis of small non-coding RNAs (sRNA) as hallmarks of RNAi induced by infection with the RNA-containing potato virus Y (PVY) and also by exogenous application of dsRNA which corresponds to a fragment of the PVY genome. Intriguingly, in contrast to PVY-induced production of discrete 21 and 22 nt sRNA species, the externally administered PVY dsRNA fragment led to generation of a non-canonical pool of sRNAs, which were present as ladders of ~18-30 nt in length; suggestive of an unexpected sRNA biogenesis pathway. Interestingly, these non-canonical sRNAs are unable to move systemically and also do not induce transitive amplification. These findings may have significant implications for further developments in dsRNA-mediated crop protection.
Collapse
Affiliation(s)
- Viktoriya O. Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
| | | | - Natalia O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrew J. Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Michael E. Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| |
Collapse
|
8
|
Noris E, Pegoraro M, Palzhoff S, Urrejola C, Wochner N, Kober S, Ruoff K, Matić S, Schnepf V, Weisshaar N, Wege C. Differential Effects of RNA-Dependent RNA Polymerase 6 (RDR6) Silencing on New and Old World Begomoviruses in Nicotiana benthamiana. Viruses 2023; 15:v15040919. [PMID: 37112899 PMCID: PMC10143181 DOI: 10.3390/v15040919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
RNA-dependent RNA polymerases (RDRs) are key players in the antiviral defence mediated by RNA silencing in plants. RDR6 is one of the major components of the process, regulating the infection of certain RNA viruses. To better clarify its function against DNA viruses, we analyzed the effect of RDR6 inactivation (RDR6i) in N. benthamiana plants on two phloem-limited begomoviruses, the bipartite Abutilon mosaic virus (AbMV) and the monopartite tomato yellow leaf curl Sardinia virus (TYLCSV). We observed exacerbated symptoms and DNA accumulation for the New World virus AbMV in RDR6i plants, varying with the plant growth temperature (ranging from 16 °C to 33 °C). However, for the TYLCSV of Old World origin, RDR6 depletion only affected symptom expression at elevated temperatures and to a minor extent; it did not affect the viral titre. The accumulation of viral siRNA differed between the two begomoviruses, being increased in RDR6i plants infected by AbMV but decreased in those infected by TYLCSV compared to wild-type plants. In situ hybridization revealed a 6.5-fold increase in the number of AbMV-infected nuclei in RDR6i plants but without egress from the phloem tissues. These results support the concept that begomoviruses adopt different strategies to counteract plant defences and that TYLCSV evades the functions exerted by RDR6 in this host.
Collapse
Affiliation(s)
- Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy
| | - Mattia Pegoraro
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy
| | - Sandra Palzhoff
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Catalina Urrejola
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Nicolai Wochner
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Sigi Kober
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Kerstin Ruoff
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy
| | - Vera Schnepf
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Nina Weisshaar
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|
9
|
Ding SW. Transgene Silencing, RNA Interference, and the Antiviral Defense Mechanism Directed by Small Interfering RNAs. PHYTOPATHOLOGY 2023; 113:616-625. [PMID: 36441873 DOI: 10.1094/phyto-10-22-0358-ia] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One important discovery in plant pathology over recent decades is the natural antiviral defense mechanism mediated by RNA interference (RNAi). In antiviral RNAi, virus infection triggers Dicer processing of virus-specific double-stranded RNA into small interfering RNAs (siRNAs). Frequently, further amplified by host enzyme and cofactors, these virus-derived siRNAs direct specific virus clearance in an Argonaute protein-containing effector complex. The siRNAs derived from viruses and viroids accumulate to very high levels during infection. Because they overlap extensively in nucleotide sequence, this allows for deep sequencing and bioinformatics assembly of total small RNAs for rapid discovery and identification of viruses and viroids. Antiviral RNAi acts as the primary defense mechanism against both RNA and DNA viruses in plants, yet viruses still successfully infect plants. They do so because all currently recognized plant viruses combat the RNAi response by encoding at least one protein as a viral suppressor of RNAi (VSR) required for infection, even though plant viruses have small genome sizes with a limited coding capacity. This review article will recapitulate the key findings that have revealed the genetic pathway for the biogenesis and antiviral activity of viral siRNAs and the specific role of VSRs in infection by antiviral RNAi suppression. Moreover, early pioneering studies on transgene silencing, RNAi, and virus-plant/virus-virus interactions paved the road to the discovery of antiviral RNAi.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA
| |
Collapse
|
10
|
Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics. Int J Mol Sci 2023; 24:ijms24065608. [PMID: 36982682 PMCID: PMC10057534 DOI: 10.3390/ijms24065608] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/17/2023] Open
Abstract
Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technology that has evolved into an indispensable approach for analyzing the function of genes. It downregulates endogenous genes by utilizing the posttranscriptional gene silencing (PTGS) machinery of plants to prevent systemic viral infections. Based on recent advances, VIGS can now be used as a high-throughput tool that induces heritable epigenetic modifications in plants through the viral genome by transiently knocking down targeted gene expression. As a result of the progression of DNA methylation induced by VIGS, new stable genotypes with desired traits are being developed in plants. In plants, RNA-directed DNA methylation (RdDM) is a mechanism where epigenetic modifiers are guided to target loci by small RNAs, which play a major role in the silencing of the target gene. In this review, we described the molecular mechanisms of DNA and RNA-based viral vectors and the knowledge obtained through altering the genes in the studied plants that are not usually accessible to transgenic techniques. We showed how VIGS-induced gene silencing can be used to characterize transgenerational gene function(s) and altered epigenetic marks, which can improve future plant breeding programs.
Collapse
|
11
|
Sehki H, Yu A, Elmayan T, Vaucheret H. TYMV and TRV infect Arabidopsis thaliana by expressing weak suppressors of RNA silencing and inducing host RNASE THREE LIKE1. PLoS Pathog 2023; 19:e1010482. [PMID: 36696453 PMCID: PMC9901757 DOI: 10.1371/journal.ppat.1010482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 02/06/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Post-Transcriptional Gene Silencing (PTGS) is a defense mechanism that targets invading nucleic acids of endogenous (transposons) or exogenous (pathogens, transgenes) origins. During plant infection by viruses, virus-derived primary siRNAs target viral RNAs, resulting in both destruction of single-stranded viral RNAs (execution step) and production of secondary siRNAs (amplification step), which maximizes the plant defense. As a counter-defense, viruses express proteins referred to as Viral Suppressor of RNA silencing (VSR). Some viruses express VSRs that totally inhibit PTGS, whereas other viruses express VSRs that have limited effect. Here we show that infection with the Turnip yellow mosaic virus (TYMV) is enhanced in Arabidopsis ago1, ago2 and dcl4 mutants, which are impaired in the execution of PTGS, but not in dcl2, rdr1 and rdr6 mutants, which are impaired in the amplification of PTGS. Consistently, we show that the TYMV VSR P69 localizes in siRNA-bodies, which are the site of production of secondary siRNAs, and limits PTGS amplification. Moreover, TYMV induces the production of the host enzyme RNASE THREE-LIKE 1 (RTL1) to further reduce siRNA accumulation. Infection with the Tobacco rattle virus (TRV), which also encodes a VSR limiting PTGS amplification, induces RTL1 as well to reduce siRNA accumulation and promote infection. Together, these results suggest that RTL1 could be considered as a host susceptibility gene that is induced by viruses as a strategy to further limit the plant PTGS defense when VSRs are insufficient.
Collapse
Affiliation(s)
- Hayat Sehki
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Agnès Yu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Taline Elmayan
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- * E-mail:
| |
Collapse
|
12
|
Minow MAA, Coneva V, Lesy V, Misyura M, Colasanti J. Plant gene silencing signals move from the phloem to influence gene expression in shoot apical meristems. BMC PLANT BIOLOGY 2022; 22:606. [PMID: 36550422 PMCID: PMC9783409 DOI: 10.1186/s12870-022-03998-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Small RNAs (sRNA) are potent regulators of gene expression that can diffuse short distances between cells and move long distances through plant vasculature. However, the degree to which sRNA silencing signals can move from the phloem to the shoot apical meristem (SAM) remains unclear. RESULTS Two independent transgenic approaches were used to examine whether phloem sRNA silencing can reach different domains of the SAM and silence SAM-expressed genes. First, the phloem companion-cell specific SUCROSE-PROTON SYMPORTER2 (SUC2) promoter was used to drive expression of an inverted repeat to target the FD gene, an exclusively SAM-localized floral regulator. Second, the SUC2 promoter was used to express an artificial microRNA (aMiR) designed to target a synthetic CLAVATA3 (CLV3) transgene in SAM stem cells. Both phloem silencing signals phenocopied the loss of function of their targets and altered target gene expression suggesting that a phloem-to-SAM silencing communication axis exists, connecting distal regions of the plant to SAM stem cells. CONCLUSIONS Demonstration of phloem-to-SAM silencing reveals a regulatory link between somatic sRNA expressed in distal regions of the plant and the growing shoot. Since the SAM stem cells ultimately produce the gametes, we discuss the intriguing possibility that phloem-to-SAM sRNA trafficking could allow transient somatic sRNA expression to manifest stable, transgenerational epigenetic changes.
Collapse
Affiliation(s)
- Mark A. A. Minow
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| | - Viktoriya Coneva
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| | - Victoria Lesy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| | - Max Misyura
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| |
Collapse
|
13
|
Alcaide C, Donaire L, Aranda MA. Transcriptome analyses unveiled differential regulation of AGO and DCL genes by pepino mosaic virus strains. MOLECULAR PLANT PATHOLOGY 2022; 23:1592-1607. [PMID: 35852033 PMCID: PMC9562736 DOI: 10.1111/mpp.13249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Pepino mosaic virus (PepMV) is a single-stranded (ss), positive-sense (+) RNA potexvirus that affects tomato crops worldwide. We have described an in planta antagonistic interaction between PepMV isolates of two strains in which the EU isolate represses the accumulation of the CH2 isolate during mixed infections. Reports describing transcriptomic responses to mixed infections are scant. We carried out transcriptomic analyses of tomato plants singly and mixed-infected with two PepMV isolates of both strains. Comparison of the transcriptomes of singly infected plants showed that deeper transcriptomic alterations occurred at early infection times, and also that each of the viral strains modulated the host transcriptome differentially. Mixed infections caused transcriptomic alterations similar to those for the sum of single infections at early infection times, but clearly differing at later times postinfection. We next tested the hypothesis that PepMV-EU, in either single or mixed infections, deregulates host gene expression differentially so that virus accumulation of both strains gets repressed. That seemed to be the case for the genes AGO1a, DCL2d, AGO2a, and DCL2b, which are involved in the antiviral silencing pathway and were upregulated by PepMV-EU but not by PepMV-CH2 at early times postinfection. The pattern of AGO2a expression was validated by reverse transcription-quantitative PCR in tomato and Nicotiana benthamiana plants. Using an N. benthamiana ago2 mutant line, we showed that AGO2 indeed plays an important role in the antiviral defence against PepMV, but it is not the primary determinant of the outcome of the antagonistic interaction between the two PepMV strains.
Collapse
Affiliation(s)
- Cristina Alcaide
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura‐CSICMurciaSpain
| | - Livia Donaire
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura‐CSICMurciaSpain
| | - Miguel A. Aranda
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura‐CSICMurciaSpain
| |
Collapse
|
14
|
Zhang H, Gao J, Chen J, Peng Y, Han Z. RNA-dependent RNA polymerase could extend the lasting validity period of exogenous dsRNA. PEST MANAGEMENT SCIENCE 2022; 78:4569-4578. [PMID: 35831266 DOI: 10.1002/ps.7076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previous studies have found that pesticide double-stranded (ds)RNA usually has a long-lasting validity period in plants. However, it is uncertain if any factors in plants could extend dsRNA duration. It has been reported that RNA-dependent RNA polymerases (RdRP) in plants and some other eukaryotes could catalyze RNA amplification and be involved in RNAi (interference). Thus, this study evaluated the effect of RdRP on the tissue content, activity, and duration of exogenous dsRNA. RESULTS We found that RdRP knockdown in Arabidopsis thaliana had no significant effect on tissue contents of reporter dsRNA parent molecules (8.91% reduction), but it caused significant decrease in the tissue contents of derived short fragments of 200, 120 and 59 bp tested (51.22%, 52.83% and 59.35%, respectively). Aphid inoculation tests showed that the same dose of insecticidal dsAgZFP exhibited a significantly lower lethal effect (mortality 58.8%) in the plants with RdRP knockdown than in the control plants with normal RdRP (86.0%). For Caenorhabditis elegans, the worms treated simultaneously with dsRdRP and reporter dsRNA had similar body contents to reporter dsRNA parent molecules and its long-fragment derivative (200 bp) as the control (1.28- and 1.07-fold greater, respectively). However, 120- and 59-bp short-fragment derivatives were significantly reduced by 28.78% and 59.84%, respectively, which also diminished faster in the descendants. CONCLUSIONS We conclude that RdRP could significantly enhance the tissue content of dsRNA derivatives by catalyzing amplification, thus improving dsRNA activity and extending its lasting validity period. Otherwise, RNAi by exogenous dsRNA was proven to be noninheritable in A. thaliana. This work confirmed the merit of dsRNA as a plant protectant. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hainan Zhang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jing Gao
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jiasheng Chen
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yue Peng
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Han
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Wang P, Liu J, Lyu Y, Huang Z, Zhang X, Sun B, Li P, Jing X, Li H, Zhang C. A Review of Vector-Borne Rice Viruses. Viruses 2022; 14:v14102258. [PMID: 36298813 PMCID: PMC9609659 DOI: 10.3390/v14102258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the major staple foods for global consumption. A major roadblock to global rice production is persistent loss of crops caused by plant diseases, including rice blast, sheath blight, bacterial blight, and particularly various vector-borne rice viral diseases. Since the late 19th century, 19 species of rice viruses have been recorded in rice-producing areas worldwide and cause varying degrees of damage on the rice production. Among them, southern rice black-streaked dwarf virus (SRBSDV) and rice black-streaked dwarf virus (RBSDV) in Asia, rice yellow mottle virus (RYMV) in Africa, and rice stripe necrosis virus (RSNV) in America currently pose serious threats to rice yields. This review systematizes the emergence and damage of rice viral diseases, the symptomatology and transmission biology of rice viruses, the arm races between viruses and rice plants as well as their insect vectors, and the strategies for the prevention and control of rice viral diseases.
Collapse
Affiliation(s)
- Pengyue Wang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianjian Liu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agronomy, Yangtze University, Jingzhou 434025, China
| | - Yajing Lyu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Ziting Huang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoli Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjian Sun
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengbai Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinxin Jing
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Honglian Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
16
|
Leibman D, Pashkovsky E, Shnaider Y, Shtarkman M, Gaba V, Gal-On A. Analysis of the RNA-Dependent RNA Polymerase 1 (RDR1) Gene Family in Melon. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11141795. [PMID: 35890429 PMCID: PMC9320487 DOI: 10.3390/plants11141795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 05/14/2023]
Abstract
RNA-dependent RNA polymerase 1 (RDR1) plays a crucial defense role against plant viruses by secondary amplification of viral double-stranded RNA in the gene-silencing pathway. In this study, it was found that melon (Cucumis melo) encodes four RDR1 genes (CmRDR1a, b, c1 and c2) similar to the CsRDR1 gene family of cucumber (C. sativus). However, in contrast to cucumber, melon harbors a truncated CmRDR1b gene. In healthy plants, CmRDR1a was expressed, whereas the expression of CmRDR1c1/c2 was not detected. CmRDR1a expression level increased 20-fold upon cucumber mosaic virus (CMV) infection and was not increased in melon plants infected with zucchini yellow mosaic virus (ZYMV), cucumber vein yellowing virus (CVYV) and cucumber green mottle mosaic virus (CGMMV). The expression of CmRDR1c1/c2 genes was induced differentially by infection with viruses from different families: high levels of ~340-, 172- and 115-fold increases were induced by CMV, CVYV and CGMMV, respectively, and relatively low-level increases by potyvirus infection (4- to 6-fold). CMV mutants lacking the viral silencing suppressor 2b protein did not cause increased CmRDR1c/c2 expression; knockout of CmRDR1c1/c2 by CRISPR/Cas9 increased susceptibility to CMV but not to ZYMV. Therefore, it is suggested that the sensitivity of melon to viruses from different families is a result of the loss of function of CmRDR1b.
Collapse
|
17
|
Rabuma T, Gupta OP, Chhokar V. Recent advances and potential applications of cross-kingdom movement of miRNAs in modulating plant's disease response. RNA Biol 2022; 19:519-532. [PMID: 35442163 PMCID: PMC9037536 DOI: 10.1080/15476286.2022.2062172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the recent past, cross-kingdom movement of miRNAs, small (20–25 bases), and endogenous regulatory RNA molecules has emerged as one of the major research areas to understand the potential implications in modulating the plant’s biotic stress response. The current review discussed the recent developments in the mechanism of cross-kingdom movement (long and short distance) and critical cross-talk between host’s miRNAs in regulating gene function in bacteria, fungi, viruses, insects, and nematodes, and vice-versa during host-pathogen interaction and their potential implications in crop protection. Moreover, cross-kingdom movement during symbiotic interaction, the emerging role of plant’s miRNAs in modulating animal’s gene function, and feasibility of spray-induced gene silencing (SIGS) in combating biotic stresses in plants are also critically evaluated. The current review article analysed the horizontal transfer of miRNAs among plants, animals, and microbes that regulates gene expression in the host or pathogenic organisms, contributing to crop protection. Further, it highlighted the challenges and opportunities to harness the full potential of this emerging approach to mitigate biotic stress efficiently.
Collapse
Affiliation(s)
- Tilahun Rabuma
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, INDIA.,Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
| | - Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, INDIA
| | - Vinod Chhokar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, INDIA
| |
Collapse
|
18
|
Tsai WA, Shafiei-Peters JR, Mitter N, Dietzgen RG. Effects of Elevated Temperature on the Susceptibility of Capsicum Plants to Capsicum Chlorosis Virus Infection. Pathogens 2022; 11:pathogens11020200. [PMID: 35215143 PMCID: PMC8879237 DOI: 10.3390/pathogens11020200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Capsicum, an important vegetable crop in Queensland, Australia, is vulnerable to both elevated temperatures and capsicum chlorosis virus (CaCV). Thus, it is imperative to understand the genetic responses of capsicum plants (Capsicum annuum) to CaCV under elevated temperature conditions. Here, we challenged susceptible plants (cv. Yolo Wonder) with CaCV and investigated the effects of elevated temperature on symptom expression, the accumulation of virus-derived short interfering RNA (vsiRNA) and viral RNA, and the expression of plant defense-associated genes. CaCV-inoculated plants initially showed more severe symptoms and higher viral concentrations at a higher temperature (HT, 35 °C) than at ambient temperature (AT, 25 °C). However, symptom recovery and reduced viral RNA accumulation were seen in the CaCV-infected plants grown at HT at later stages of infection. We also observed that HT enhanced the accumulation of vsiRNAs and that, concurrently, RNA interference (RNAi)-related genes, including Dicer-like2 (DCL2), DCL4, RNA-dependent RNA polymerase 1 (RdRp1), RdRp6, and Argonaute2 (AGO2), were upregulated early during infection. Moreover, continuous high levels of vsiRNAs were observed during later stages of CaCV infection at HT. Overall, our investigation suggests that HT facilitates CaCV replication during early infection stages. However, this appears to lead to an early onset of antiviral RNA silencing, resulting in a subsequent recovery from CaCV in systemic leaves.
Collapse
|
19
|
Voorburg CM, Bai Y, Kormelink R. Small RNA Profiling of Susceptible and Resistant Ty-1 Encoding Tomato Plants Upon Tomato Yellow Leaf Curl Virus Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:757165. [PMID: 34868151 PMCID: PMC8637622 DOI: 10.3389/fpls.2021.757165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Ty-1 presents an atypical dominant resistance gene that codes for an RNA-dependent RNA polymerase (RDR) of the gamma class and confers resistance to tomato yellow leaf curl virus (TYLCV) and other geminiviruses. Tomato lines bearing Ty-1 not only produce relatively higher amounts of viral small interfering (vsi)RNAs, but viral DNA also exhibits a higher amount of cytosine methylation. Whether Ty-1 specifically enhances posttranscriptional gene silencing (PTGS), leading to a degradation of RNA target molecules and primarily relying on 21-22 nucleotides (nts) siRNAs, and/or transcriptional gene silencing (TGS), leading to the methylation of cytosines within DNA target sequences and relying on 24-nts siRNAs, was unknown. In this study, small RNAs were isolated from systemically TYLCV-infected leaves of Ty-1 encoding tomato plants and susceptible tomato Moneymaker (MM) and sequence analyzed. While in susceptible tomato plants vsiRNAs of the 21-nt size class were predominant, their amount was drastically reduced in tomato containing Ty-1. The latter, instead, revealed elevated levels of vsiRNAs of the 22- and 24-nt size classes. In addition, the genomic distribution profiles of the vsiRNAs were changed in Ty-1 plants compared with those from susceptible MM. In MM three clear hotspots were seen, but these were less pronounced in Ty-1 plants, likely due to enhanced transitive silencing to neighboring viral genomic sequences. The largest increase in the amount of vsiRNAs was observed in the intergenic region and the V1 viral gene. The results suggest that Ty-1 enhances an antiviral TGS response. Whether the elevated levels of 22 nts vsiRNAs contribute to an enhanced PTGS response or an additional TGS response involving a noncanonical pathway of RNA dependent DNA methylation remains to be investigated.
Collapse
Affiliation(s)
- Corien M. Voorburg
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Yuling Bai
- Plant Breeding, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
20
|
Clavel M, Lechner E, Incarbone M, Vincent T, Cognat V, Smirnova E, Lecorbeiller M, Brault V, Ziegler-Graff V, Genschik P. Atypical molecular features of RNA silencing against the phloem-restricted polerovirus TuYV. Nucleic Acids Res 2021; 49:11274-11293. [PMID: 34614168 PMCID: PMC8565345 DOI: 10.1093/nar/gkab802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022] Open
Abstract
In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Moreover, we identify vascular secondary siRNA produced from plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA. Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection.
Collapse
Affiliation(s)
- Marion Clavel
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Esther Lechner
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Marco Incarbone
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Timothée Vincent
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Valerie Cognat
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Ekaterina Smirnova
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Maxime Lecorbeiller
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
Pérez-Cañamás M, Hevia E, Katsarou K, Hernández C. Genetic evidence for the involvement of Dicer-like 2 and 4 as well as Argonaute 2 in the Nicotiana benthamiana response against Pelargonium line pattern virus. J Gen Virol 2021; 102:001656. [PMID: 34623234 PMCID: PMC8604191 DOI: 10.1099/jgv.0.001656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
In plants, RNA silencing functions as a potent antiviral mechanism. Virus-derived double-stranded RNAs (dsRNAs) trigger this mechanism, being cleaved by Dicer-like (DCL) enzymes into virus small RNAs (vsRNAs). These vsRNAs guide sequence-specific RNA degradation upon their incorporation into an RNA-induced silencing complex (RISC) that contains a slicer of the Argonaute (AGO) family. Host RNA dependent-RNA polymerases, particularly RDR6, strengthen antiviral silencing by generating more dsRNA templates from RISC-cleavage products that, in turn, are converted into secondary vsRNAs by DCLs. Previous work showed that Pelargonium line pattern virus (PLPV) is a very efficient inducer and target of RNA silencing as PLPV-infected Nicotiana benthamiana plants accumulate extraordinarily high amounts of vsRNAs that, strikingly, are independent of RDR6 activity. Several scenarios may explain these observations including a major contribution of dicing versus slicing for defence against PLPV, as the dicing step would not be affected by the RNA silencing suppressor encoded by the virus, a protein that acts via vsRNA sequestration. Taking advantage of the availability of lines of N. benthamiana with DCL or AGO2 functions impaired, here we have tried to get further insights into the components of the silencing machinery that are involved in anti-PLPV-silencing. Results have shown that DCL4 and, to lesser extent, DCL2 contribute to restrict viral infection. Interestingly, AGO2 apparently makes even a higher contribution in the defence against PLPV, extending the number of viruses that are affected by this particular slicer. The data support that both dicing and slicing activities participate in the host race against PLPV.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Elizabeth Hevia
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, GR-7110 Heraklion, Crete, Greece
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
22
|
Cui W, Wang S, Han K, Zheng E, Ji M, Chen B, Wang X, Chen J, Yan F. Ferredoxin 1 is downregulated by the accumulation of abscisic acid in an ABI5-dependent manner to facilitate rice stripe virus infection in Nicotiana benthamiana and rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1183-1197. [PMID: 34153146 DOI: 10.1111/tpj.15377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/14/2021] [Indexed: 05/07/2023]
Abstract
Ferredoxin 1 (FD1) accepts and distributes electrons in the electron transfer chain of plants. Its expression is universally downregulated by viruses and its roles in plant immunity have been brought into focus over the past decade. However, the mechanism by which viruses regulate FD1 remains to be defined. In a previous report, we found that the expression of Nicotiana benthamiana FD1 (NbFD1) was downregulated following infection with potato virus X (PVX) and that NbFD1 regulates callose deposition at plasmodesmata to play a role in defense against PVX infection. We now report that NbFD1 is downregulated by rice stripe virus (RSV) infection and that silencing of NbFD1 also facilitates RSV infection, while viral infection was inhibited in a transgenic line overexpressing NbFD1, indicating that NbFD1 also functions in defense against RSV infection. Next, a RSV-derived small interfering RNA was identified that contributes to the downregulation of FD1 transcripts. Further analysis showed that the abscisic acid (ABA) which accumulates in RSV-infected plants also represses NbFD1 transcription. It does this by stimulating expression of ABA insensitive 5 (ABI5), which binds the ABA response element motifs in the NbFD1 promoter, resulting in negative regulation. Regulation of FD1 by ABA was also confirmed in RSV-infected plants of the natural host rice. The results therefore suggest a mechanism by which virus regulates chloroplast-related genes to suppress their defense roles.
Collapse
Affiliation(s)
- Weijun Cui
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shu Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Nebraska, NE 68583, USA
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ersong Zheng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mengfei Ji
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Binghua Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xuming Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
23
|
Yin H, Dong Z, Wang X, Lu S, Xia F, Abuduwaili A, Bi Y, Li Y. Metagenomic Analysis of Marigold: Mixed Infection Including Two New Viruses. Viruses 2021; 13:1254. [PMID: 34203118 PMCID: PMC8310094 DOI: 10.3390/v13071254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Marigold plants with symptoms of mosaic, crinkle, leaf curl and necrosis were observed and small RNA and ribo-depleted total RNA deep sequencing were conducted to identify the associated viruses. Broad bean wilt virus 2, cucumber mosaic virus, turnip mosaic virus, a new potyvirus tentatively named marigold mosaic virus (MMV) and a new partitivirus named as marigold cryptic virus (MCV) were finally identified. Complete genome sequence analysis showed MMV was 9811 nt in length, encoding a large polyprotein with highest aa sequence identity (57%) with the putative potyvirus polygonatumkingianum virus 1. Phylogenetic analysis with the definite potyviruses based on the polyprotein sequence showed MMV clustered closest to plum pox virus. The complete genome of MCV comprised of dsRNA1 (1583 bp) and dsRNA2 (1459 bp), encoding the RNA-dependent RNA polymerase (RdRp), and coat protein (CP), respectively. MCV RdRp shared the highest (75.7%) aa sequence identity with the unclassified partitivirus ambrosia cryptic virus 2, and 59.0%, 57.1%, 56.1%, 54.5% and 33.7% with the corresponding region of the definite delta-partitiviruses, pepper cryptic virus 2, beet cryptic virus 3, beet cryptic virus 2, pepper cryptic virus 1 and fig cryptic virus, respectively. Phylogenetic analysis based on the RdRp aa sequence showed MCV clustered into the delta-partitivirus group. These findings enriched our knowledge of viruses infecting marigold, but the association of the observed symptom and the identified viruses and the biological characterization of the new viruses should be further investigated.
Collapse
Affiliation(s)
- Hang Yin
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| | - Zheng Dong
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| | - Xulong Wang
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| | - Shuhao Lu
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| | - Fei Xia
- Beijing Institute of Landscape Architecture, Beijing 100102, China;
| | - Annihaer Abuduwaili
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| | - Yang Bi
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| | - Yongqiang Li
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
24
|
Global Analysis of RNA-Dependent RNA Polymerase-Dependent Small RNAs Reveals New Substrates and Functions for These Proteins and SGS3 in Arabidopsis. Noncoding RNA 2021; 7:ncrna7020028. [PMID: 33925339 PMCID: PMC8167712 DOI: 10.3390/ncrna7020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
RNA silencing pathways control eukaryotic gene expression transcriptionally or posttranscriptionally in a sequence-specific manner. In RNA silencing, the production of double-stranded RNA (dsRNA) gives rise to various classes of 20-24 nucleotide (nt) small RNAs (smRNAs). In Arabidopsis thaliana, smRNAs are often derived from long dsRNA molecules synthesized by one of the six genomically encoded RNA-dependent RNA Polymerase (RDR) proteins. However, the full complement of the RDR-dependent smRNAs and functions that these proteins and their RNA-binding cofactors play in plant RNA silencing has not been fully uncovered. To address this gap, we performed a global genomic analysis of all six RDRs and two of their cofactors to find new substrates for RDRs and targets of the resulting RDR-derived siRNAs to uncover new functions for these proteins in plants. Based on these analyses, we identified substrates for the three RDRγ clade proteins (RDR3-5), which had not been well-characterized previously. We also identified new substrates for the other three RDRs (RDR1, RDR2, and RDR6) as well as the RDR2 cofactor RNA-directed DNA methylation 12 (RDM12) and the RDR6 cofactor suppressor of gene silencing 3 (SGS3). These findings revealed that the target substrates of SGS3 are not limited to those solely utilized by RDR6, but that this protein seems to be a more general cofactor for the RDR family of proteins. Additionally, we found that RDR6 and SGS3 are involved in the production of smRNAs that target transcripts related to abiotic stresses, including water deprivation, salt stress, and ABA response, and as expected the levels of these mRNAs are increased in rdr6 and sgs3 mutant plants. Correspondingly, plants that lack these proteins (rdr6 and sgs3 mutants) are hypersensitive to ABA treatment, tolerant to high levels of PEG8000, and have a higher survival rate under salt treatment in comparison to wild-type plants. In total, our analyses have provided an extremely data-rich resource for uncovering new functions of RDR-dependent RNA silencing in plants, while also revealing a previously unexplored link between the RDR6/SGS3-dependent pathway and plant abiotic stress responses.
Collapse
|
25
|
Topical Application of Escherichia coli-Encapsulated dsRNA Induces Resistance in Nicotiana benthamiana to Potato Viruses and Involves RDR6 and Combined Activities of DCL2 and DCL4. PLANTS 2021; 10:plants10040644. [PMID: 33805277 PMCID: PMC8067229 DOI: 10.3390/plants10040644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
Exogenous application of double-stranded RNAs (dsRNAs) for inducing virus resistance in plants represents an attractive alternative to transgene-based silencing approaches. However, improvement of dsRNA stability in natural conditions is required in order to provide long-term protection against the targeted virus. Here, we tested the protective effect of topical application of Escherichia coli-encapsulated dsRNA compared to naked dsRNA against single and dual infection by Potato virus X expressing the green fluorescent protein (PVX-GFP) and Potato virus Y (PVY) in Nicotiana benthamiana. We found that, in our conditions, the effectiveness of E. coli-encapsulated dsRNA in providing RNAi-mediated protection did not differ from that of naked dsRNA. dsRNA vaccination was partly effective against a dual infection by PVX-GFP and PVY, manifested by a delay in the expression of the synergistic symptoms at early times after inoculation. Using PVX-GFP as a reporter virus together with a suite of RNAi knockdown transgenic lines, we have also shown that RNA-directed RNA polymerase 6 and the combined activities of DICER-like 2 (DCL2) and DCL4 act to promote efficient resistance to virus infection conferred by topical application of dsRNA in N. benthamiana. Our results provide evidence that exogenous dsRNA molecules are processed by the RNA silencing pathways commonly used by the host in response to virus infection.
Collapse
|
26
|
Jiang Z, Zhao Q, Bai R, Yu R, Diao P, Yan T, Duan H, Ma X, Zhou Z, Fan Y, Wuriyanghan H. Host sunflower-induced silencing of parasitism-related genes confers resistance to invading Orobanche cumana. PLANT PHYSIOLOGY 2021; 185:424-440. [PMID: 33721890 PMCID: PMC8133596 DOI: 10.1093/plphys/kiaa018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/08/2020] [Indexed: 05/04/2023]
Abstract
Orobanche cumana is a holoparasitic plant that attaches to host-plant roots and seriously reduces the yield of sunflower (Helianthus annuus L.). Effective control methods are lacking with only a few known sources of genetic resistance. In this study, a seed-soak agroinoculation (SSA) method was established, and recombinant tobacco rattle virus vectors were constructed to express RNA interference (RNAi) inducers to cause virus-induced gene silencing (VIGS) in sunflower. A host target gene HaTubulin was systemically silenced in both leaf and root tissues by the SSA-VIGS approach. Trans-species silencing of O. cumana genes were confirmed for 10 out of 11 target genes with silencing efficiency of 23.43%-92.67%. Knockdown of target OcQR1, OcCKX5, and OcWRI1 genes reduced the haustoria number, and silencing of OcEXPA6 caused further phenotypic abnormalities such as shorter tubercles and necrosis. Overexpression of OcEXPA6 caused retarded root growth in alfalfa (Medicago sativa). The results demonstrate that these genes play an important role in the processes of O. cumana parasitism. High-throughput small RNA (sRNA) sequencing and bioinformatics analyses unveiled the distinct features of target gene-derived siRNAs in O. cumana such as siRNA transitivity, strand polarity, hotspot region, and 21/22-nt siRNA predominance, the latter of which was confirmed by Northern blot experiments. The possible RNAi mechanism is also discussed by analyzing RNAi machinery genes in O. cumana. Taken together, we established an efficient host-induced gene silencing technology for both functional genetics studies and potential control of O. cumana. The ease and effectiveness of this strategy could potentially be useful for other species provided they are amenable to SSA.
Collapse
Affiliation(s)
- Zhengqiang Jiang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Qiqi Zhao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Runyao Bai
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Ting Yan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Huimin Duan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Xuesong Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Yanyan Fan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P. R. China
- Author for communication:
| |
Collapse
|
27
|
Basu S, Singh AK, Singh D, Sahu SK, Chakraborty S. Role of viral suppressors governing asymmetric synergism between tomato-infecting begomoviruses. Appl Microbiol Biotechnol 2021; 105:1107-1121. [PMID: 33417040 DOI: 10.1007/s00253-020-11070-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022]
Abstract
Mixed viral infections are common in fields and frequently exacerbate disease severity via synergistic interactions among individual viral genomic components leading to major crop loss. Two predominant species of tomato-infecting begomoviruses, Tomato leaf curl New Delhi virus (ToLCNDV) and Tomato leaf curl Gujarat virus (ToLCGuV), are known to cause severe leaf curl disease of tomato in India. Previously, we have demonstrated asymmetric synergism between these two distinct begomovirus species during mixed infection in solanaceous hosts. In the present study, we have identified the underlying proteins that positively regulate asymmetric synergism and their effect on plant defense machinery. During co-infection, the AC2 and AV2 of ToLCGuV enhanced ToLCNDV DNA accumulation in Nicotiana benthamiana as well as in their natural host, tomato. Furthermore, we found that AC2 and AV2 of ToLCNDV and AV2 of ToLCGuV play a critical role in suppression of post transcriptional gene silencing (PTGS) machinery. Taken together, AC2 and AV2 encoded proteins of ToLCGuV are the crucial viral factors promoting asymmetric synergism with ToLCNDV. KEY POINTS: • Begomoviral suppressors play vital roles in viral synergism. • AC2 and AV2 of ToLCGuV asymmetrically enhance ToLCNDV accumulation. • AC2 and AV2 of ToLCNDV and ToLCGuV AV2 are major PTGS suppressors.
Collapse
Affiliation(s)
- Saumik Basu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Divya Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Sanjeeb Kumar Sahu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
28
|
Lan HH, Lu LM. Characterization of Hibiscus Latent Fort Pierce Virus-Derived siRNAs in Infected Hibiscus rosa-sinensis in China. THE PLANT PATHOLOGY JOURNAL 2020; 36:618-627. [PMID: 33312097 PMCID: PMC7721542 DOI: 10.5423/ppj.oa.09.2020.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/27/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Although limited progress have been made about pathogen system of Hibiscus rosa-sinensis and Hibiscus latent Fort Pierce virus (HLFPV), interaction between plant host and pathogen remain largely unknown, which led to deficiency of effective measures to control disease of hibiscus plants caused by HLFPV. In this study, infection of HLFPV in Hibiscus rosa-sinensis was firstly confirmed for the first time by traditional electron microscopy, modern reverse transcription polymerase chain reaction and RNA-seq methods in China (HLFPV-Ch). Sequence properties analyzing suggested that the full-length sequences (6,465 nt) of HLFPV-Ch had a high sequence identity and a similar genomic structure with other tobamoviruses. It includes a 5'-terminal untranslated region (UTR), followed by four open reading frames encoding for a 128.5-kDa replicase, a 186.5-kDa polymerase, a 31-kDa movement protein, 17.6-kDa coat protein, and the last a 3'-terminal UTR. Furthermore, HLFPV-Ch-derived virus-derived siRNAs (vsiRNAs) ant its putative target genes, reported also for the first time, were identified and characterized from disease Hibiscus rosa-sinensis through sRNA-seq and Patmatch server to investigate the interaction in this pathogen systems. HLFPV-Ch-derived vsiRNAs demonstrated several general and specific characteristics. Gene Ontology classification revealed predicted target genes by vsiRNAs are involved in abroad range of cellular component, molecular function and biological processes. Taken together, for first time, our results certified the HLFPV infection in China and provide an insight into interaction between HLFPV and Hibiscus rosa-sinensis.
Collapse
Affiliation(s)
- Han-hong Lan
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Luan-mei Lu
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
29
|
Pitzalis N, Amari K, Graindorge S, Pflieger D, Donaire L, Wassenegger M, Llave C, Heinlein M. Turnip mosaic virus in oilseed rape activates networks of sRNA-mediated interactions between viral and host genomes. Commun Biol 2020; 3:702. [PMID: 33230160 PMCID: PMC7683744 DOI: 10.1038/s42003-020-01425-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022] Open
Abstract
Virus-induced plant diseases in cultivated plants cause important damages in yield. Although the mechanisms of virus infection are intensely studied at the cell biology level, only little is known about the molecular dialog between the invading virus and the host genome. Here we describe a combinatorial genome-wide approach to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus (TuMV) infection sites in Brassica napus leaves. We show that the induction of host-encoded, virus-activated small interfering RNAs (vasiRNAs) observed in virus-infected tissues is accompanied by site-specific cleavage events on both viral and host RNAs that recalls the activity of small RNA-induced silencing complexes (RISC). Cleavage events also involve virus-derived siRNA (vsiRNA)–directed cleavage of target host transcripts as well as cleavage of viral RNA by both host vasiRNAs and vsiRNAs. Furthermore, certain coding genes act as virus-activated regulatory hubs to produce vasiRNAs for the targeting of other host genes. The observations draw an advanced model of plant-virus interactions and provide insights into the complex regulatory networking at the plant-virus interface within cells undergoing early stages of infection. Pitzalis et al. use replicative RNAseq, small RNA (sRNA)seq, and parallel analysis of RNA ends (PARE)seq analysis to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus infection sites. This study provides insights into the complex regulatory networking at the plantvirus interface within cells undergoing early stages of infection.
Collapse
Affiliation(s)
- Nicolas Pitzalis
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - Khalid Amari
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France.,Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Strasse 27, 06484, Quedlinburg, Germany
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - David Pflieger
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - Livia Donaire
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.,Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, 30100, Murcia, Spain
| | - Michael Wassenegger
- RLP Agroscience, AlPlanta-Institute for Plant Research, 67435, Neustadt, Germany.,Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - César Llave
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France.
| |
Collapse
|
30
|
Shidore T, Zuverza-Mena N, da Silva W. Small RNA profiling analysis of two recombinant strains of potato virus Y in infected tobacco plants. Virus Res 2020; 288:198125. [PMID: 32835742 DOI: 10.1016/j.virusres.2020.198125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 01/15/2023]
Abstract
Plant viral infections lead to accumulation of virus-derived small interfering RNAs (vsiRNAs) as a result of host defense mechanisms. High-throughput sequencing technology enables vsiRNA profiling analyses from virus infected plants, which provide important insights into virus-host interactions. Potato virus Y (PVY) is a detrimental plant pathogen that can infect a variety of solanaceous crops, e.g., potato, tobacco, tomato, and pepper. We analyzed and characterized vsiRNAs derived from Nicotiana tabacum cv. Samsun infected with two recombinant PVY strains, N-Wi and NTN. We observed that the average percentage of vsiRNAs derived from plants infected with N-Wi was higher than from plants infected with NTN, indicating that N-Wi invokes a stronger host response than NTN in tobacco. The size distribution pattern and polarity of vsiRNAs were similar between both virus strains with the 21 and 22 nucleotide (nt) vsiRNA classes as most predominant and the sense/antisense vsiRNAs ratio nearly equal in the 20-24 nt class. However, the percentage of sense vsiRNAs was significantly higher in the 25-26 nt long vsiRNAs. Distinct vsiRNA hotspots, identifying highly abundant reads of different unique vsiRNA sequences, were observed in both viral genomes. Previous studies found an A or U bias at the 5' terminal nucleotide position of 21 nt vsiRNAs; in contrast, our analysis revealed a C and U nucleotide bias. This study provides insights that will help further elucidate differential processing of vsiRNAs in plant antiviral defense.
Collapse
Affiliation(s)
- Teja Shidore
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States.
| | - Nubia Zuverza-Mena
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven CT 06511, United States
| | - Washington da Silva
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States.
| |
Collapse
|
31
|
Sun Q, Zhuo T, Zhao T, Zhou C, Li Y, Wang Y, Li D, Yu J, Han C. Functional Characterization of RNA Silencing Suppressor P0 from Pea Mild Chlorosis Virus. Int J Mol Sci 2020; 21:E7136. [PMID: 32992609 PMCID: PMC7582759 DOI: 10.3390/ijms21197136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 01/22/2023] Open
Abstract
To counteract host antiviral RNA silencing, plant viruses encode numerous viral suppressors of RNA silencing (VSRs). P0 proteins have been identified as VSRs in many poleroviruses. However, their suppressor function has not been fully characterized. Here, we investigated the function of P0 from pea mild chlorosis virus (PMCV) in the suppression of local and systemic RNA silencing via green fluorescent protein (GFP) co-infiltration assays in wild-type and GFP-transgenic Nicotiana benthamiana (line 16c). Amino acid deletion analysis showed that N-terminal residues Asn 2 and Val 3, but not the C-terminus residues from 230-270 aa, were necessary for PMCV P0 (P0PM) VSR activity. P0PM acted as an F-box protein, and triple LPP mutation (62LPxx79P) at the F-box-like motif abolished its VSR activity. In addition, P0PM failed to interact with S-phase kinase-associated protein 1 (SKP1), which was consistent with previous findings of P0 from potato leafroll virus. These data further support the notion that VSR activity of P0 is independent of P0-SKP1 interaction. Furthermore, we examined the effect of P0PM on ARGONAUTE1 (AGO1) protein stability, and co-expression analysis showed that P0PM triggered AGO1 degradation. Taken together, our findings suggest that P0PM promotes degradation of AGO1 to suppress RNA silencing independent of SKP1 interaction.
Collapse
Affiliation(s)
- Qian Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Tao Zhuo
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Tianyu Zhao
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Cuiji Zhou
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Yuanyuan Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Dawei Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Jialin Yu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Chenggui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| |
Collapse
|
32
|
Naoi T, Kitabayashi S, Kasai A, Sugawara K, Adkar-Purushothama CR, Senda M, Hataya T, Sano T. Suppression of RNA-dependent RNA polymerase 6 in tomatoes allows potato spindle tuber viroid to invade basal part but not apical part including pluripotent stem cells of shoot apical meristem. PLoS One 2020; 15:e0236481. [PMID: 32716919 PMCID: PMC7384629 DOI: 10.1371/journal.pone.0236481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/06/2020] [Indexed: 01/29/2023] Open
Abstract
RNA-dependent RNA polymerase 6 (RDR6) is one of the key factors in plant defense responses and suppresses virus or viroid invasion into shoot apical meristem (SAM) in Nicotiana benthamiana. To evaluate the role of Solanum lycopersicum (Sl) RDR6 upon viroid infection, SlRDR6-suppressed (SlRDR6i) ‘Moneymaker’ tomatoes were generated by RNA interference and inoculated with intermediate or lethal strain of potato spindle tuber viroid (PSTVd). Suppression of SlRDR6 did not change disease symptoms of both PSTVd strains in ‘Moneymaker’ tomatoes. Analysis of PSTVd distribution in shoot apices by in situ hybridization revealed that both PSTVd strains similarly invade the basal part but not apical part including pluripotent stem cells of SAM in SlRDR6i plants at a low rate unlike a previous report in N. benthamiana. In addition, unexpectedly, amount of PSTVd accumulation was apparently lower in SlRDR6i plants than in control tomatoes transformed with empty cassette in early infection especially in the lethal strain. Meanwhile, SlRDR6 suppression did not affect the seed transmission rates of PSTVd. These results indicate that RDR6 generally suppresses PSTVd invasion into SAM in plants, while suppression of RDR6 does not necessarily elevate amount of PSTVd accumulation. Additionally, our results suggest that host factors such as RDR1 other than RDR6 may also be involved in the protection of SAM including pluripotent stem cells from PSTVd invasion and effective RNA silencing causing the decrease of PSTVd accumulation during early infection in tomato plants.
Collapse
Affiliation(s)
- Takashi Naoi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Syoya Kitabayashi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Kohei Sugawara
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Charith Raj Adkar-Purushothama
- Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mineo Senda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Tatsuji Hataya
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- * E-mail: (TH); (TS)
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
- * E-mail: (TH); (TS)
| |
Collapse
|
33
|
Devani RS, Kute A, John S, Adhikari S, Sinha S, Banerjee AK. Development of a Virus-Induced Gene Silencing System for Dioecious Coccinia grandis. Mol Biotechnol 2020; 62:412-422. [PMID: 32592122 DOI: 10.1007/s12033-020-00259-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 11/28/2022]
Abstract
Coccinia grandis is an interesting model system to understand dioecy in Cucurbitaceae family. Recent transcriptomics and proteomics studies carried out to understand the sex expression in C. grandis have resulted in identification of many candidate sex-biased genes. In absence of an efficient genetic transformation protocol for C. grandis, virus-induced gene silencing (VIGS) would be a powerful tool to enable gene functional analysis. In current study, we explored the apple latent spherical virus (ALSV) for gene knockdown in C. grandis. The viral infection was achieved through mechanical inoculation of ALSV-infected Chenopodium quinoa leaf extract onto the cotyledons of C. grandis. ALSV-VIGS mediated knockdown of CgPDS gene was successfully achieved in C. grandis by mechanical inoculation method resulting in characteristic photobleaching. Subsequently, we developed agroinfiltration compatible vectors for direct infection of C. grandis and shortened the time-frame by skipping viral propagation in C. quinoa. Typical yellow-leaf phenotype was observed in C. grandis plants agroinfiltrated with ALSV-CgSU constructs, indicating robust silencing of CgSU gene. In addition, we improved the infection efficiency of ALSV by co-infiltration of P19 viral silencing suppressor. These results suggest that ALSV-VIGS is suitable for characterization of gene function in dioecious C. grandis and it can help us understand the mechanism of sex expression.
Collapse
Affiliation(s)
- Ravi Suresh Devani
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008, India.,IPS2, INRA, CNRS, University Paris Sud, University of Evry, University of Paris Diderot, University of Paris Saclay, Batiment 630, 91190, Gif-sur-Yvette, France
| | - Apurva Kute
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| | - Sheeba John
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| | - Supriya Adhikari
- Department of Botany, Tripura University, Suryamaninagar, 799022, Tripura, India
| | - Sangram Sinha
- Department of Botany, Tripura University, Suryamaninagar, 799022, Tripura, India
| | - Anjan Kumar Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008, India.
| |
Collapse
|
34
|
The Tomato spotted wilt virus (TSWV) Genome is Differentially Targeted in TSWV-Infected Tomato ( Solanum lycopersicum) with or without Sw-5 Gene. Viruses 2020; 12:v12040363. [PMID: 32224858 PMCID: PMC7232525 DOI: 10.3390/v12040363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
Tospoviruses cause significant losses to a wide range of agronomic and horticultural crops worldwide. The type member, Tomato spotted wilt tospovirus (TSWV), causes systemic infection in susceptible tomato cultivars, whereas its infection is localized in cultivars carrying the Sw-5 resistance gene. The response to TSWV infection in tomato cultivars with or without Sw-5 was determined at the virus small RNA level in the locally infected leaf. Predicted reads were aligned to TSWV reference sequences. The TSWV genome was found to be differentially processed among each of the three-viral genomic RNAs—Large (L), Medium (M) and Small (S)—in the Sw-5(+) compared to Sw-5(−) genotypes. In the Sw-5(+) cultivar, the L RNA had the highest number of viral small-interfering RNAs (vsiRNAs), whereas in the Sw-5(−) cultivar the number was higher in the S RNA. Among the three-viral genomic RNAs, the distribution of hotspots showed a higher number of reads per million reads of vsiRNAs of 21 and 22 nt class at the 5′ and 3′ ends of the L and the S RNAs, with less coverage in the M RNA. In the Sw-5(−) cultivar, the nature of the 5′ nucleotide-end in the siRNAs varied significantly; reads with 5′-adenine-end were most abundant in the mock control, whereas cytosine and uracil were more abundant in the infected plants. No such differences were seen in case of the resistant genotype. Findings provided insights into the response of tomato cultivars to TSWV infection.
Collapse
|
35
|
Zhang C, Chen D, Yang G, Yu X, Wu J. Rice Stripe Mosaic Virus-Encoded P4 Is a Weak Suppressor of Viral RNA Silencing and Is Required for Disease Symptom Development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:412-422. [PMID: 31841359 DOI: 10.1094/mpmi-08-19-0239-ia] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Viral suppressors of RNA silencing (VSRs) are a cluster of viral proteins that have evolved to counteract eukaryotic antiviral RNA silencing pathways, thereby contributing to viral pathogenicity. In this study, we revealed that the matrix protein P4 encoded by rice stripe mosaic virus (RSMV), which is an emerging cytoplasmic rhabdovirus, is a weak RNA silencing suppressor. By conducting yeast two-hybrid, bimolecular fluorescence complementation, and subcellular colocalization assays, we proved that P4 interacts with the rice endogenous suppressor of gene silencing 3 (OsSGS3). We also determined that P4 overexpression has no effect on OsSGS3 transcription. However, P4 can promote the degradation of OsSGS3 via ubiquitination and autophagy. Additionally, a potato virus X-based expression system was used to confirm that P4 enhances the development of mosaic symptoms on Nicotiana benthamiana leaves by promoting hydrogen peroxide accumulation but not cell death. To verify whether P4 is a pathogenicity factor in host plants, we generated transgenic P4-overexpressing rice plants that exhibited disease-related developmental defects including decreased plant height and excessive tillering. Our data suggest that RSMV-encoded P4 serves as a weak VSR that inhibits antiviral RNA silencing by targeting OsSGS3.
Collapse
Affiliation(s)
- Chao Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dong Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guoyi Yang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiyuan Yu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
36
|
Liu M, Liang Z, Aranda MA, Hong N, Liu L, Kang B, Gu Q. A cucumber green mottle mosaic virus vector for virus-induced gene silencing in cucurbit plants. PLANT METHODS 2020; 16:9. [PMID: 32025236 PMCID: PMC6996188 DOI: 10.1186/s13007-020-0560-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/23/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cucurbits produce fruits or vegetables that have great dietary importance and economic significance worldwide. The published genomes of at least 11 cucurbit species are boosting gene mining and novel breeding strategies, however genetic transformation in cucurbits is impractical as a tool for gene function validation due to low transformation efficiency. Virus-induced gene silencing (VIGS) is a potential alternative tool. So far, very few ideal VIGS vectors are available for cucurbits. RESULTS Here, we describe a new VIGS vector derived from cucumber green mottle mosaic virus (CGMMV), a monopartite virus that infects cucurbits naturally. We show that the CGMMV vector is competent to induce efficient silencing of the phytoene desaturase (PDS) gene in the model plant Nicotiana benthamiana and in cucurbits, including watermelon, melon, cucumber and bottle gourd. Infection with the CGMMV vector harboring PDS sequences of 69-300 bp in length in the form of sense-oriented or hairpin cDNAs resulted in photobleaching phenotypes in N. benthamiana and cucurbits by PDS silencing. Additional results reflect that silencing of the PDS gene could persist for over two months and the silencing effect of CGMMV-based vectors could be passaged. CONCLUSIONS These results demonstrate that CGMMV vector could serve as a powerful and easy-to-use tool for characterizing gene function, controlling viral pathogens or even performing resistance breeding in cucurbits. Moreover, this study will possess considerable important reference value for developing different viral vectors.
Collapse
Affiliation(s)
- Mei Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 People’s Republic of China
- Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zhiling Liang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 People’s Republic of China
| | - Miguel A. Aranda
- Centro de Edafologia y Biologia Aplicada del Segura (CEBAS)-CSIC, Apdo. Correos 164, Espinardo, 30100 Murcia, Spain
| | - Ni Hong
- Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Liming Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 People’s Republic of China
| | - Baoshan Kang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 People’s Republic of China
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 People’s Republic of China
| |
Collapse
|
37
|
Voorburg CM, Yan Z, Bergua‐Vidal M, Wolters AA, Bai Y, Kormelink R. Ty-1, a universal resistance gene against geminiviruses that is compromised by co-replication of a betasatellite. MOLECULAR PLANT PATHOLOGY 2020; 21:160-172. [PMID: 31756021 PMCID: PMC6988424 DOI: 10.1111/mpp.12885] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV), a begomovirus, causes large yield losses and breeding for resistance is an effective way to combat this viral disease. The resistance gene Ty-1 codes for an RNA-dependent RNA polymerase and has recently been shown to enhance transcriptional gene silencing of TYLCV. Whereas Ty-1 was earlier shown to also confer resistance to a bipartite begomovirus, here it is shown that Ty-1 is probably generic to all geminiviruses. A tomato Ty-1 introgression line, but also stable transformants of susceptible tomato cv. Moneymaker and Nicotiana benthamiana (N. benthamiana) expressing the Ty-1 gene, exhibited resistance to begomoviruses as well as to the distinct, leafhopper-transmitted beet curly top virus, a curtovirus. Stable Ty-1 transformants of N. benthamiana and tomato showed fewer symptoms and reduced viral titres on infection compared to wild-type plants. TYLCV infections in wild-type N. benthamiana plants in the additional presence of a betasatellite led to increased symptom severity and a consistent, slightly lowered virus titre relative to the high averaged levels seen in the absence of the betasatellite. On the contrary, in Ty-1 transformed N. benthamiana viral titres increased in the presence of the betasatellite. The same was observed when these Ty-1-encoding plants were challenged with TYLCV and a potato virus X construct expressing the RNA interference suppressor protein βC1 encoded by the betasatellite. The resistance spectrum of Ty-1 and the durability of the resistance are discussed in light of antiviral RNA interference and viral counter defence strategies.
Collapse
Affiliation(s)
- Corien M. Voorburg
- Laboratory of VirologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBNetherlands
| | - Zhe Yan
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBNetherlands
| | - Maria Bergua‐Vidal
- Laboratory of VirologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBNetherlands
| | - Anne‐Marie A. Wolters
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBNetherlands
| | - Yuling Bai
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBNetherlands
| | - Richard Kormelink
- Laboratory of VirologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBNetherlands
| |
Collapse
|
38
|
Analysis of Small RNAs of Barley Genotypes Associated with Resistance to Barley Yellow Dwarf Virus. PLANTS 2020; 9:plants9010060. [PMID: 31906504 PMCID: PMC7020447 DOI: 10.3390/plants9010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 11/29/2022]
Abstract
Barley yellow dwarf virus (BYDV) causes an often-devastating disease of cereals that is most effectively controlled by using plant genotypes that are resistant or tolerant to the virus. New barley lines Vir8:3 and Vir13:8, with pyramided resistance genes against different pathogens and resistance gene Ryd2 against BYDV, are currently being tested. Because microRNAs (miRNAs) are associated with antiviral plant defense, here we compared the miRNA profiles in these lines and in cultivar Wysor (carrying one resistance gene, Ryd2), with and without BYDV infection and after feeding by virus-free aphids, to determine whether the miRNA profile in the resistant variety bear similarities with the newly developed lines. The BYDV titer for each group was also determined and compared to the titer in sensitive cultivar Graciosa. Among 746 miRNAs identified in barley, 66 were known miRNAs, and 680 were novel. The expression of 73 miRNAs differed significantly after BYDV infection, including the strong, specific upregulation of novel miRNA10778 that was conserved across all the barley genotypes. This miRNA belongs to the H box and ACA box (H/ACA) snoR14 family of RNAs (Rf01280) and is associated with pseudourydilation. The expression of 48 miRNAs also differed depending on the barley genotype. The profile of miRNAs expressed in Vir8:3 and Vir13:8 in response to BYDV was similar and differed from that of Wysor. Insights into the expression patterns of miRNAs in response to BYDV in barley provided here will benefit further studies toward understanding the resistance mechanisms and developing novel strategies against virus infections.
Collapse
|
39
|
Vivek AT, Zahra S, Kumar S. From current knowledge to best practice: A primer on viral diagnostics using deep sequencing of virus-derived small interfering RNAs (vsiRNAs) in infected plants. Methods 2019; 183:30-37. [PMID: 31669354 DOI: 10.1016/j.ymeth.2019.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023] Open
Abstract
Plants have evolved many defense strategies for combating viral infections. One major surveillance strategy adopted by them is manipulating viral sequences to generate distinct small RNA products via Dicer-like enzymes (DCL), and thereby restricting virus multiplication through the RNA interference (RNAi) mechanism. The power of high-throughput sequencing technologies, with diverse computational tools to handle small RNA sequencing (sRNA-Seq) data, bestows unprecedented opportunities to answer fundamental questions in plant virology. Here, we present some basic concepts of virus-derived, small interfering RNA (vsiRNA) biogenesis in plants, optimization strategies, caveats, and best practices for efficient discovery and diagnosis of known as well as novel plant viruses/viroids using deep sequencing of small RNA (sRNA) pools.
Collapse
Affiliation(s)
- A T Vivek
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shafaque Zahra
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Kumar
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
40
|
Diezma‐Navas L, Pérez‐González A, Artaza H, Alonso L, Caro E, Llave C, Ruiz‐Ferrer V. Crosstalk between epigenetic silencing and infection by tobacco rattle virus in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2019; 20:1439-1452. [PMID: 31274236 PMCID: PMC6792132 DOI: 10.1111/mpp.12850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA methylation is an important epigenetic mechanism for controlling innate immunity against microbial pathogens in plants. Little is known, however, about the manner in which viral infections interact with DNA methylation pathways. Here we investigate the crosstalk between epigenetic silencing and viral infections in Arabidopsis inflorescences. We found that tobacco rattle virus (TRV) causes changes in the expression of key transcriptional gene silencing factors with RNA-directed DNA methylation activities that coincide with changes in methylation at the whole genome level. Viral susceptibility/resistance was altered in DNA (de)methylation-deficient mutants, suggesting that DNA methylation is an important regulatory system controlling TRV proliferation. We further show that several transposable elements (TEs) underwent transcriptional activation during TRV infection, and that TE regulation likely involved both DNA methylation-dependent and -independent mechanisms. We identified a cluster of disease resistance genes regulated by DNA methylation in infected plants that were enriched for TEs in their promoters. Interestingly, TEs and nearby resistance genes were co-regulated in TRV-infected DNA (de)methylation mutants. Our study shows that DNA methylation contributes to modulate the outcome of viral infections in Arabidopsis, and opens up new possibilities for exploring the role of TE regulation in antiviral defence.
Collapse
Affiliation(s)
- Laura Diezma‐Navas
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones BiológicasCSICRamiro de Maeztu 9MadridSpain
- Doctorado en Biotecnología y Recursos Genéticos de Plantas y Microorganismos AsociadosETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid28040MadridSpain
| | - Ana Pérez‐González
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPM28223Pozuelo de Alarcón, MadridSpain
| | - Haydeé Artaza
- Bionformatic and Statistic Service, Centro de Investigaciones BiológicasCSICRamiro de Maeztu 928040MadridSpain
- Present address:
Department of Clinical ScienceUniversity of Bergen5020BergenNorway
| | - Lola Alonso
- Bionformatic and Statistic Service, Centro de Investigaciones BiológicasCSICRamiro de Maeztu 928040MadridSpain
- Present address:
Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO)MadridSpain
| | - Elena Caro
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo UPM28223Pozuelo de Alarcón, MadridSpain
| | - César Llave
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones BiológicasCSICRamiro de Maeztu 9MadridSpain
| | - Virginia Ruiz‐Ferrer
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones BiológicasCSICRamiro de Maeztu 9MadridSpain
- Present address:
Department of Plant Physiology, Plant Biotechnology and Molecular Biology Group. Environmental Sciences and Biochemistry SchoolCastilla‐La Mancha UniversityToledoSpain
| |
Collapse
|
41
|
Lan HH, Wang CM, Chen SS, Zheng JY. siRNAs Derived from Cymbidium Mosaic Virus and Odontoglossum Ringspot Virus Down-modulated the Expression Levels of Endogenous Genes in Phalaenopsis equestris. THE PLANT PATHOLOGY JOURNAL 2019; 35:508-520. [PMID: 31632225 PMCID: PMC6788414 DOI: 10.5423/ppj.oa.03.2019.0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/10/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Interplay between Cymbidium mosaic virus (CymMV)/Odontoglossum ringspot virus (ORSV) and its host plant Phalaenopsis equestris remain largely unknown, which led to deficiency of effective measures to control disease of P. equestris caused by infecting viruses. In this study, for the first time, we characterized viral small interfering RNAs (vsiRNAs) profiles in P. equestris co-infected with CymMV and ORSV through small RNA sequencing technology. CymMV and ORSV small interfering RNAs (siRNAs) demonstrated several general and specific/new characteristics. vsiRNAs, with A/U bias at the first nucleotide, were predominantly 21-nt long and they were derived predominantly (90%) from viral positive-strand RNA. 21-nt siRNA duplexes with 0-nt overhangs were the most abundant 21-nt duplexes, followed by 2-nt overhangs and then 1-nt overhangs 21-nt duplexes in infected P. equestris. Continuous but heterogeneous distribution and secondary structures prediction implied that vsiRNAs originate predominantly by direct Dicer-like enzymes cleavage of imperfect duplexes in the most folded regions of the positive strand of both viruses RNA molecular. Furthermore, we totally predicted 54 target genes by vsiRNAs with psRNATarget server, including disease/stress response-related genes, RNA interference core components, cytoskeleton-related genes, photosynthesis or energy supply related genes. Gene Ontology classification showed that a majority of the predicted targets were related to cellular components and cellular processes and performed a certain function. All target genes were down-regulated with different degree by vsiRNAs as shown by real-time reverse transcription polymerase chain reaction. Taken together, CymMV and ORSV siRNAs played important roles in interplay with P. equestris by down modulating the expression levels of endogenous genes in host plant.
Collapse
Affiliation(s)
- Han-hong Lan
- Corresponding author: Phone) +86-596-2528735, FAX) +86-591-2528735, E-mail)
| | | | | | | |
Collapse
|
42
|
Diao P, Zhang Q, Sun H, Ma W, Cao A, Yu R, Wang J, Niu Y, Wuriyanghan H. miR403a and SA Are Involved in NbAGO2 Mediated Antiviral Defenses Against TMV Infection in Nicotiana benthamiana. Genes (Basel) 2019; 10:E526. [PMID: 31336929 PMCID: PMC6679004 DOI: 10.3390/genes10070526] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 11/18/2022] Open
Abstract
RNAi (RNA interference) is an important defense response against virus infection in plants. The core machinery of the RNAi pathway in plants include DCL (Dicer Like), AGO (Argonaute) and RdRp (RNA dependent RNA polymerase). Although involvement of these RNAi components in virus infection responses was demonstrated in Arabidopsis thaliana, their contribution to antiviral immunity in Nicotiana benthamiana, a model plant for plant-pathogen interaction studies, is not well understood. In this study, we investigated the role of N. benthamiana NbAGO2 gene against TMV (Tomato mosaic virus) infection. Silencing of NbAGO2 by transient expression of an hpRNA construct recovered GFP (Green fluorescent protein) expression in GFP-silenced plant, demonstrating that NbAGO2 participated in RNAi process in N. benthamiana. Expression of NbAGO2 was transcriptionally induced by both MeSA (Methylsalicylate acid) treatment and TMV infection. Down-regulation of NbAGO2 gene by amiR-NbAGO2 transient expression compromised plant resistance against TMV infection. Inhibition of endogenous miR403a, a predicted regulatory microRNA of NbAGO2, reduced TMV infection. Our study provides evidence for the antiviral role of NbAGO2 against a Tobamovirus family virus TMV in N. benthamiana, and SA (Salicylic acid) mediates this by induction of NbAGO2 expression upon TMV infection. Our data also highlighted that miR403a was involved in TMV defense by regulation of target NbAGO2 gene in N. Benthamiana.
Collapse
Affiliation(s)
- Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qimeng Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hongyu Sun
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenjie Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Aiping Cao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jiaojiao Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
43
|
Shukla A, López-González S, Hoffmann G, Hafrén A. Diverse plant viruses: a toolbox for dissection of cellular pathways. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3029-3034. [PMID: 30882863 PMCID: PMC6598076 DOI: 10.1093/jxb/erz122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 05/12/2023]
Abstract
Research in virology has usually focused on one selected host-virus pathosystem to examine the mechanisms underlying a particular disease. However, as exemplified by the mechanistically versatile suppression of antiviral RNA silencing by plant viruses, there may be functionally convergent evolution. Assuming this is a widespread feature, we propose that effector proteins from diverse plant viruses can be a powerful resource for discovering new regulatory mechanisms of distinct cellular pathways. The efficiency of this approach will depend on how deeply and widely the studied pathway is integrated into viral infections. Beyond this, comparative studies using broad virus diversity should increase our global understanding of plant-virus interactions.
Collapse
Affiliation(s)
- Aayushi Shukla
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
44
|
Perspectives on microRNAs and Phased Small Interfering RNAs in Maize ( Zea mays L.): Functions and Big Impact on Agronomic Traits Enhancement. PLANTS 2019; 8:plants8060170. [PMID: 31212808 PMCID: PMC6630462 DOI: 10.3390/plants8060170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023]
Abstract
Small RNA (sRNA) population in plants comprises of primarily micro RNAs (miRNAs) and small interfering RNAs (siRNAs). MiRNAs play important roles in plant growth and development. The miRNA-derived secondary siRNAs are usually known as phased siRNAs, including phasiRNAs and tasiRNAs. The miRNA and phased siRNA biogenesis mechanisms are highly conserved in plants. However, their functional conservation and diversification may differ in maize. In the past two decades, lots of miRNAs and phased siRNAs have been functionally identified for curbing important maize agronomic traits, such as those related to developmental timing, plant architecture, sex determination, reproductive development, leaf morphogenesis, root development and nutrition, kernel development and tolerance to abiotic stresses. In contrast to Arabidopsis and rice, studies on maize miRNA and phased siRNA biogenesis and functions are limited, which restricts the small RNA-based fundamental and applied studies in maize. This review updates the current status of maize miRNA and phased siRNA mechanisms and provides a survey of our knowledge on miRNA and phased siRNA functions in controlling agronomic traits. Furthermore, improvement of those traits through manipulating the expression of sRNAs or their targets is discussed.
Collapse
|
45
|
Wu G, Hu Q, Du J, Li K, Sun M, Jing C, Li M, Li J, Qing L. Molecular characterization of virus-derived small RNAs in Nicotiana benthamiana plants infected with tobacco curly shoot virus and its β satellite. Virus Res 2019; 265:10-19. [PMID: 30831178 DOI: 10.1016/j.virusres.2019.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
Tobacco curly shoot virus (TbCSV) is a monopartite DNA virus of the genus Begomovirus, which causes leaf curl symptoms in tobacco and tomato. The β satellite of TbCSV (TbCSB induces more severe symptoms and enhanced virus accumulation when co-infects the host plants with TbCSV. Small interfering RNAs derived from virus(vsiRNAs) induce disease symptoms and promote virus invasion by target and guide the degradation of host transcripts The vsiRNAs derived from TbCSV and TbCSV + TbCSB remained to be explored to elucidate the molecular mechanism of symptoms development in plants. In the present work, two libraries of small RNA from TbCSV-infected and TbCSV + TbCSB-infected N. benthamiana plants were constructed and the vsiRNAs in both samples shared the same characteristics. The size of the vsiRNAs ranged from 18 to 30 nucleotides (nt), with most of them being 21 or 22 nt, which accounted for 29.11% and 23.22% in TbCSV plants and 29.39% and 21.82% in TbCSV + TbCSV plants, respectively. The vsiRNAs with A/U bias at the first site were abundant in both the TbCSV-treated and TbCSV + TbCSB-treated plants. It is discovered that the vsiRNAs continuously, but heterogeneously, distributed through bothe the TbCSV and TbCSB sequences. And the distribution profiles were similar in both the treatments such as mainly in the overlapping region of the AC2/AC3 coding sequences. The host transcripts targeted by vsiRNAs were predicted, and the targeted genes were found to be involved in varied biological processes. It is indicated that the presence of TbCSB does not significantly affect the production of vsiRNAs from TbCSV in plants, the distribution hotsopt of TbCSV vsiRNAs could be useful in designing effective targets for TbCSV resistance exploiting RNA interference.
Collapse
Affiliation(s)
- Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Qiao Hu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Jiang Du
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Ke Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Miao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Chenchen Jing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Junmin Li
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
46
|
Katsarou K, Mitta E, Bardani E, Oulas A, Dadami E, Kalantidis K. DCL-suppressed Nicotiana benthamiana plants: valuable tools in research and biotechnology. MOLECULAR PLANT PATHOLOGY 2019; 20:432-446. [PMID: 30343523 PMCID: PMC6637889 DOI: 10.1111/mpp.12761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RNA silencing is a universal mechanism involved in development, epigenetic modifications and responses to biotic and abiotic stresses. The major components of this mechanism are Dicer-like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerase (RDR) proteins. Understanding the role of each component is of great scientific and agronomic importance. Plants, including Nicotiana benthamiana, an important plant model, usually possess four DCL proteins, each of which has a specific role, namely being responsible for the production of an exclusive small RNA population. Here, we used RNA interference (RNAi) technology to target DCL proteins and produced single and combinatorial mutants for DCL. We analysed the phenotype for each DCL knockdown plant, together with the small RNA profile, by next-generation sequencing (NGS). We also investigated transgene expression, as well as viral infections, and were able to show that DCL suppression results in distinct developmental defects, changes in small RNA populations, increases in transgene expression and, finally, higher susceptibility in certain RNA viruses. Therefore, these plants are excellent tools for the following: (i) to study the role of DCL enzymes; (ii) to overexpress proteins of interest; and (iii) to understand the complex relationship between the plant silencing mechanism and biotic or abiotic stresses.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Eleni Mitta
- Department of BiologyUniversity of CreteHeraklionGreece
| | | | - Anastasis Oulas
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
- Present address:
Bioinformatics Group, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Elena Dadami
- Department of BiologyUniversity of CreteHeraklionGreece
- Present address:
RLP AgroScience, AlPlantaNeustadtGermany
| | - Kriton Kalantidis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
- Department of BiologyUniversity of CreteHeraklionGreece
| |
Collapse
|
47
|
Bernal-Vicente A, Donaire L, Torre C, Gómez-Aix C, Sánchez-Pina MA, Juarez M, Hernando Y, Aranda MA. Small RNA-Seq to Characterize Viruses Responsible of Lettuce Big Vein Disease in Spain. Front Microbiol 2018; 9:3188. [PMID: 30622528 PMCID: PMC6309106 DOI: 10.3389/fmicb.2018.03188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
The emerging lettuce big-vein disease (LBVD) is causing losses in lettuce production ranging from 30 to 70% worldwide. Several studies have associated this disease with Mirafiori lettuce big-vein virus (MiLBVV) alone or in mixed infection with lettuce big-vein associated virus (LBVaV). We used Illumina small RNA sequencing (sRNA-seq) to identify viruses present in symptomatic lettuce plants from commercial fields in Southern Spain. Data analysis using the VirusDetect tool showed the consistent presence of MiLBVV and LBVaV in diseased plants. Populations of MiLBVV and LBVaV viral small RNAs (sRNAs) were characterized, showing features essentially similar to those of other viruses, with the peculiarity of an uneven asymmetric distribution of MiLBVV virus-derived small RNAs (vsRNAs) for the different polarities of genomic RNA4 vs. RNAs1 to 3. Sanger sequencing of coat protein genes was used to study MiLBVV and LBVaV phylogenetic relationships and population genetics. The Spanish MiLBVV population was composed of isolates from three well-differentiated lineages and reflected almost all of the diversity reported for the MiLBVV species, whereas the LBVaV population showed very little genetic differentiation at the regional scale but lineage differentiation at a global geographical scale. Universal primers were used to detect and quantify the accumulation of MiLBVV and LBVaV in field samples; both symptomatic and asymptomatic plants from affected fields carried equal viral loads, with LBVaV accumulating at higher levels than MiLBVV.
Collapse
Affiliation(s)
| | - Livia Donaire
- Biology of Stress and Plant Pathology Department, CEBAS-CSIC, Murcia, Spain
| | - Covadonga Torre
- Department of Research and Development, ABIOPEP S.L., Murcia, Spain
| | | | | | - Miguel Juarez
- Plant Production and Microbiology Department, University Miguel Hernández of Elche, Orihuela, Spain
| | - Yolanda Hernando
- Department of Research and Development, ABIOPEP S.L., Murcia, Spain
| | - Miguel A. Aranda
- Biology of Stress and Plant Pathology Department, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
48
|
Lee CH, Carroll BJ. Evolution and Diversification of Small RNA Pathways in Flowering Plants. PLANT & CELL PHYSIOLOGY 2018; 59:2169-2187. [PMID: 30169685 DOI: 10.1093/pcp/pcy167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Small regulatory RNAs guide gene silencing at the DNA or RNA level through repression of complementary sequences. The two main forms of small RNAs are microRNA (miRNA) and small interfering RNA (siRNAs), which are generated from the processing of different forms of double-stranded RNA (dsRNA) precursors. These two forms of small regulatory RNAs function in distinct but overlapping gene silencing pathways in plants. Gene silencing pathways in eukaryotes evolved from an ancient prokaryotic mechanism involved in genome defense against invasive genetic elements, but has since diversified to also play a crucial role in regulation of endogenous gene expression. Here, we review the biogenesis of the different forms of small RNAs in plants, including miRNAs, phased, secondary siRNAs (phasiRNAs) and heterochromatic siRNAs (hetsiRNAs), with a focus on their functions in genome defense, transcriptional and post-transcriptional gene silencing, RNA-directed DNA methylation, trans-chromosomal methylation and paramutation. We also discuss the important role that gene duplication has played in the functional diversification of gene silencing pathways in plants, and we highlight recently discovered components of gene silencing pathways in plants.
Collapse
Affiliation(s)
- Chin Hong Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
49
|
Qiao W, Zarzyńska‐Nowak A, Nerva L, Kuo Y, Falk BW. Accumulation of 24 nucleotide transgene-derived siRNAs is associated with crinivirus immunity in transgenic plants. MOLECULAR PLANT PATHOLOGY 2018; 19:2236-2247. [PMID: 29704454 PMCID: PMC6638120 DOI: 10.1111/mpp.12695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNA silencing is a conserved antiviral defence mechanism that has been used to develop robust resistance against plant virus infections. Previous efforts have been made to develop RNA silencing-mediated resistance to criniviruses, yet none have given immunity. In this study, transgenic Nicotiana benthamiana plants harbouring a hairpin construct of the Lettuce infectious yellows virus (LIYV) RNA-dependent RNA polymerase (RdRp) sequence exhibited immunity to systemic LIYV infection. Deep sequencing analysis was performed to characterize virus-derived small interfering RNAs (vsiRNAs) generated on systemic LIYV infection in non-transgenic N. benthamiana plants as well as transgene-derived siRNAs (t-siRNAs) derived from the immune-transgenic plants before and after LIYV inoculation. Interestingly, a similar sequence distribution pattern was obtained with t-siRNAs and vsiRNAs mapped to the transgene region in both immune and susceptible plants, except for a significant increase in t-siRNAs of 24 nucleotides in length, which was consistent with small RNA northern blot results that showed the abundance of t-siRNAs of 21, 22 and 24 nucleotides in length. The accumulated 24-nucleotide sequences have not yet been reported in transgenic plants partially resistant to criniviruses, and thus may indicate their correlation with crinivirus immunity. To further test this hypothesis, we developed transgenic melon (Cucumis melo) plants immune to systemic infection of another crinivirus, Cucurbit yellow stunting disorder virus (CYSDV). As predicted, the accumulation of 24-nucleotide t-siRNAs was detected in transgenic melon plants by northern blot. Together with our findings and previous studies on crinivirus resistance, we propose that the accumulation of 24-nucleotide t-siRNAs is associated with crinivirus immunity in transgenic plants.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| | - Aleksandra Zarzyńska‐Nowak
- Department of Virology and BacteriologyInstitute of Plant Protection‐National Research InstitutePoznańPoland, 60‐318
| | - Luca Nerva
- Council for Agricultural Research and Economics – Research Centre for Viticulture and EnologyConegliano (TV)Italy, 00198
- Institute for Sustainable Plant ProtectionTorinoItaly, 10135
| | - Yen‐Wen Kuo
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| | - Bryce W. Falk
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| |
Collapse
|
50
|
Esposito S, Aversano R, D'Amelia V, Villano C, Alioto D, Mirouze M, Carputo D. Dicer-like and RNA-dependent RNA polymerase gene family identification and annotation in the cultivated Solanum tuberosum and its wild relative S. commersonii. PLANTA 2018; 248:729-743. [PMID: 29948127 DOI: 10.1007/s00425-018-2937-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/05/2018] [Indexed: 05/24/2023]
Abstract
We provide advances in DCL and RDR gene diversity in Solanaceae. We also shed light on DCL and RDR gene expression in response to cold stress. DICER-like (DCL) and RNA-dependent RNA polymerase (RDR) genes form the core components to trigger small non-coding RNA (ncRNA) production. In spite of this, little is known about the two gene families in non-model plant species. As their genome sequences are now available, the cultivated potato (Solanum tuberosum) and its cold-tolerant wild relative Solanum commersonii offer a valuable opportunity to advance our understanding of the above genes. To determine the extent of diversification and evolution of DCLs and RDRs in these species, we performed a comparative analysis. Seven DCLs were identified in the two species, whereas seven and six RDR genes were found in S. tuberosum and S. commersonii, respectively. Based on phylogenetic analysis with DCLs and RDRs from several species, we provide evidence for an increase in their number in both potato species. We also disclosed that tandem duplications played a major role in the evolution of these gene families in Solanaceae. DCL and RDR expression was investigated in different tissues and under cold and virus stresses, with divergent profiles of the tandem duplicated genes being found in different tissues. DCL paralogs showed a contrasting expression in S. tuberosum and S. commersonii following cold stress and virus infection. By contrast, no change in RDR transcript activity was detected following both stresses. Overall, this study provides the first comparative genomic analysis of the core components of the RNAi machinery in Solanaceae and offers a scaffold for future functional analysis of these gene families.
Collapse
Affiliation(s)
- Salvatore Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, Italy.
| | - Vincenzo D'Amelia
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, Italy
| | - Daniela Alioto
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, Italy
| | - Marie Mirouze
- Plant Genome and Development Laboratory, Institut de Recherche pour le Développement, IRD DIADE, Université de Perpignan, Perpignan, France
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, Italy.
| |
Collapse
|