1
|
Konishi K, Kusakabe S, Kawaguchi N, Shishido T, Ito N, Harada M, Inoue S, Maeda K, Hall WW, Orba Y, Sawa H, Sasaki M, Sato A. β-d-N 4-hydroxycytidine, a metabolite of molnupiravir, exhibits in vitro antiviral activity against rabies virus. Antiviral Res 2024; 229:105977. [PMID: 39089332 DOI: 10.1016/j.antiviral.2024.105977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/03/2024]
Abstract
Rabies is a fatal neurological disorder caused by rabies virus (RABV) infection. Approximately 60,000 patients die from rabies annually, and there are no effective treatments for this disease. Nucleoside analogs are employed as antiviral drugs based on their broad antiviral spectrum, and certain nucleoside analogs have been reported to exhibit anti-RABV activity. The nucleoside analog β-d-N4-hydroxycytidine (NHC) has antiviral effects against a range of RNA viruses. Molnupiravir (MPV), a prodrug of NHC, is clinically used as an oral antiviral drug for coronavirus infections. Despite its broad-spectrum activity, the antiviral activity of NHC against RABV remains unclear. In this study, we reveal that NHC exhibits comparable in vitro anti-RABV activity as ribavirin and favipiravir (also known as T-705) with a 90% effective concentration of 6 μM in mouse neuroblastoma cells. NHC reduced viral loads in neuronal and nonneuronal cells in a dose-dependent manner. Both laboratory and field RABVs (fixed and street strains, respectively) were susceptible to NHC. However, no increase in survival or reduction in viral titers in the brain was observed in RABV-infected mice treated prophylactically with MPV. These findings highlight the potential and challenges of NHC in the treatment of RABV infection.
Collapse
Affiliation(s)
- Kei Konishi
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., Osaka, Japan; Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shinji Kusakabe
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., Osaka, Japan; Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Nijiho Kawaguchi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takao Shishido
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Michiko Harada
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - William W Hall
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; National Virus Reference Laboratory, School of Medicine, University College of Dublin, Ireland; Global Virus Network, Baltimore, MD, USA; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Virus Network, Baltimore, MD, USA; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| | - Akihiko Sato
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., Osaka, Japan; Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Pseudotyped Viruses for Lyssavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:191-208. [PMID: 36920698 DOI: 10.1007/978-981-99-0113-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Lyssaviruses, which belong to the family Rhabdoviridae, are enveloped and bullet-shaped ssRNA viruses with genetic diversity. All members of Lyssavirus genus are known to infect warm-blooded animals and cause the fatal disease rabies. The rabies virus (RABV) in lyssavirus is the major pathogen to cause fatal rabies. The pseudotyped RABV is constructed to study the biological functions of G protein and evaluation of anti-RABV products including vaccine-induced antisera, rabies immunoglobulins (RIG), neutralizing mAbs, and other antiviral inhibitors. In this chapter, we focus on RABV as a representative and describe the construction of RABV G protein bearing pseudotyped virus and its applications. Other non-RABV lyssaviruses are also included.
Collapse
|
4
|
Groaz E, De Clercq E, Herdewijn P. Anno 2021: Which antivirals for the coming decade? ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2021; 57:49-107. [PMID: 34744210 PMCID: PMC8563371 DOI: 10.1016/bs.armc.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite considerable progress in the development of antiviral drugs, among which anti-immunodeficiency virus (HIV) and anti-hepatitis C virus (HCV) medications can be considered real success stories, many viral infections remain without an effective treatment. This not only applies to infectious outbreaks caused by zoonotic viruses that have recently spilled over into humans such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), but also ancient viral diseases that have been brought under control by vaccination such as variola (smallpox), poliomyelitis, measles, and rabies. A largely unsolved problem are endemic respiratory infections due to influenza, respiratory syncytial virus (RSV), and rhinoviruses, whose associated morbidity will likely worsen with increasing air pollution. Furthermore, climate changes will expose industrialized countries to a dangerous resurgence of viral hemorrhagic fevers, which might also become global infections. Herein, we summarize the recent progress that has been made in the search for new antivirals against these different threats that the world population will need to confront with increasing frequency in the next decade.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,Corresponding author:
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|