1
|
Hu Y, Delviks-Frankenberry KA, Wu C, Arizaga F, Pathak VK, Xiong Y. Structural insights into PPP2R5A degradation by HIV-1 Vif. Nat Struct Mol Biol 2024; 31:1492-1501. [PMID: 38789685 DOI: 10.1038/s41594-024-01314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
HIV-1 Vif recruits host cullin-RING-E3 ubiquitin ligase and CBFβ to degrade the cellular APOBEC3 antiviral proteins through diverse interactions. Recent evidence has shown that Vif also degrades the regulatory subunits PPP2R5(A-E) of cellular protein phosphatase 2A to induce G2/M cell cycle arrest. As PPP2R5 proteins bear no functional or structural resemblance to A3s, it is unclear how Vif can recognize different sets of proteins. Here we report the cryogenic-electron microscopy structure of PPP2R5A in complex with HIV-1 Vif-CBFβ-elongin B-elongin C at 3.58 Å resolution. The structure shows PPP2R5A binds across the Vif molecule, with biochemical and cellular studies confirming a distinct Vif-PPP2R5A interface that partially overlaps with those for A3s. Vif also blocks a canonical PPP2R5A substrate-binding site, indicating that it suppresses the phosphatase activities through both degradation-dependent and degradation-independent mechanisms. Our work identifies critical Vif motifs regulating the recognition of diverse A3 and PPP2R5A substrates, whereby disruption of these host-virus protein interactions could serve as potential targets for HIV-1 therapeutics.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Krista A Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Fidel Arizaga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Ghone DA, Evans EL, Bandini M, Stephenson KG, Sherer NM, Suzuki A. HIV-1 Vif disrupts phosphatase feedback regulation at the kinetochore, leading to a pronounced pseudo-metaphase arrest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605839. [PMID: 39131328 PMCID: PMC11312601 DOI: 10.1101/2024.07.30.605839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Virion Infectivity Factor (Vif) targets and degrades cellular APOBEC3 proteins, key regulators of intrinsic and innate antiretroviral immune responses, thereby facilitating HIV-1 infection. While Vif's role in degrading APOBEC3G is well-studied, Vif is also known to cause cell cycle arrest but the detailed nature of Vif's effects on the cell cycle has yet to be delineated. In this study, we employed high-temporal single-cell live imaging and super-resolution microscopy to monitor individual cells during Vif-induced cell cycle arrest. Our findings reveal that Vif does not affect the G2/M boundary as previously thought. Instead, Vif triggers a unique and robust pseudo-metaphase arrest, which is markedly distinct from the mild prometaphase arrest induced by the HIV-1 accessory protein, Vpr, known for modulating the cell cycle. During Vif-mediated arrest, chromosomes align properly to form a metaphase plate but later disassemble, resulting in polar chromosomes. Notably, unlike Vpr, Vif significantly reduces the levels of both Phosphatase 1 (PP1) and 2 (PP2) at kinetochores, which are key regulators of chromosome-microtubule interactions. These results reveal a novel function of Vif in kinetochore regulation that governs the spatial organization of chromosomes during mitosis.
Collapse
Affiliation(s)
- Dhaval A. Ghone
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- These authors contributed equally
| | - Edward L. Evans
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- These authors contributed equally
- Present address: Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Madison Bandini
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kaelyn G. Stephenson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Ikeda T, Shimizu R, Nasser H, Carpenter MA, Cheng AZ, Brown WL, Sauter D, Harris RS. APOBEC3 degradation is the primary function of HIV-1 Vif determining virion infectivity in the myeloid cell line THP-1. mBio 2023; 14:e0078223. [PMID: 37555667 PMCID: PMC10470580 DOI: 10.1128/mbio.00782-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023] Open
Abstract
HIV-1 must overcome multiple innate antiviral mechanisms to replicate in CD4+ T lymphocytes and macrophages. Previous studies have demonstrated that the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) family of proteins (at least A3D, A3F, A3G, and stable A3H haplotypes) contribute to HIV-1 restriction in CD4+ T lymphocytes. Virus-encoded virion infectivity factor (Vif) counteracts this antiviral activity by degrading A3 enzymes allowing HIV-1 replication in infected cells. In addition to A3 proteins, Vif also targets other cellular proteins in CD4+ T lymphocytes, including PPP2R5 proteins. However, whether Vif primarily degrades only A3 proteins during viral replication is currently unknown. Herein, we describe the development and characterization of A3F-, A3F/A3G-, and A3A-to-A3G-null THP-1 cells. In comparison to Vif-proficient HIV-1, Vif-deficient viruses have substantially reduced infectivity in parental and A3F-null THP-1 cells, and a more modest decrease in infectivity in A3F/A3G-null cells. Remarkably, disruption of A3A-A3G protein expression completely restores the infectivity of Vif-deficient viruses in THP-1 cells. These results indicate that the primary function of Vif during infectious HIV-1 production from THP-1 cells is the targeting and degradation of A3 enzymes. IMPORTANCE HIV-1 Vif neutralizes the HIV-1 restriction activity of A3 proteins. However, it is currently unclear whether Vif has additional essential cellular targets. To address this question, we disrupted A3A to A3G genes in the THP-1 myeloid cell line using CRISPR and compared the infectivity of wild-type HIV-1 and Vif mutants with the selective A3 neutralization activities. Our results demonstrate that the infectivity of Vif-deficient HIV-1 and the other Vif mutants is fully restored by ablating the expression of cellular A3A to A3G proteins. These results indicate that A3 proteins are the only essential target of Vif that is required for fully infectious HIV-1 production from THP-1 cells.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Adam Z. Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
4
|
Wu J, Xu L, Liu B, Sun W, Hu Y, Yang Y, Guo K, Jia X, Sun H, Wu J, Huang Y, Ji W, Fu S, Qiao Y, Zhang X. Biomedical association analysis between G2/M checkpoint genes and susceptibility to HIV-1 infection and AIDS progression from a northern chinese MSM population. AIDS Res Ther 2023; 20:51. [PMID: 37468905 PMCID: PMC10357704 DOI: 10.1186/s12981-023-00536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND MSM are at high risk of HIV infection. Previous studies have shown that the cell cycle regulation plays an important role in HIV-1 infection, especially at the G2/M checkpoint. ATR, Chk1, Cdc25C and CDK1 are key genes of G2/M checkpoint. However, the association between SNPs of these genes and susceptibility to HIV-1 infection and AIDS progression remains unknown. METHODS In this study, 42 tSNPs from the above four G2/M checkpoint genes were genotyped in 529 MSM and 529 control subjects from northern China to analyze this association. RESULTS The results showed that rs34660854 A and rs75368165 A in ATR gene and rs3756766 A in Cdc25C gene could increase the risk of HIV-1 infection (P = 0.049, OR = 1.234, 95% CI 1.001-1.521; P = 0.020, OR = 1.296, 95% CI 1.042-1.611; P = 0.011, OR = 1.392, 95% CI 1.080-1.794, respectively), while Chk1 rs10893405 (P = 0.029, OR = 1.629, 95% CI 1.051-2.523) were significantly associated with AIDS progression. Besides, rs34660854 (P = 0.019, OR = 1.364, 95% CI 1.052-1.769; P = 0.022, OR = 1.337, 95% CI 1.042-1.716, under Codominant model and Dominant model, respectively) and rs75368165 (P = 0.006, OR = 1.445, 95% CI = 1.114-1.899; P = 0.007, OR = 1.418, 95% CI 1.099-1.831, under Codominant model and Dominant model, respectively) in ATR gene, rs12576279 (P = 0.013, OR = 0.343, 95% CI 0.147-0.800; P = 0.048, OR = 0.437, 95% CI 0.192-0.991, under Codominant model and Dominant model, respectively) and rs540436 (P = 0.012, OR = 1.407, 95% CI 1.077-1.836; P = 0.021, OR = 1.359, 95% CI 1.048-1.762, under Codominant model and Dominant model, respectively) in Chk1 gene, rs3756766 (P = 0.013, OR = 1.455, 95% CI 1.083-1.954; P = 0.009, OR = 1.460, 95% CI 1.098-1.940, under Codominant model and Dominant model, respectively) in Cdc25C gene and rs139245206 (P = 0.022, OR = 5.011, 95% CI 1.267-19.816; P = 0.020, OR = 5.067, 95% CI 1.286-19.970, under Codominant model and Recessive model, respectively) in CDK1 gene were significantly associated with HIV-1 infection under different models. CONCLUSIONS We found that genetic variants of G2/M checkpoint genes had a molecular influence on the occurrence of HIV-1 infection and AIDS progression in a northern Chinese MSM population.
Collapse
Affiliation(s)
- Jiawei Wu
- College of Basic Medicine, Harbin Medical University-Daqing Campus, Daqing, Heilongjiang Province, 163319, China
| | - Lidan Xu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Bangquan Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Yuanting Hu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Yi Yang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Keer Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Haiming Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Yun Huang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Wei Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Yuandong Qiao
- College of Basic Medicine, Harbin Medical University-Daqing Campus, Daqing, Heilongjiang Province, 163319, China.
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China.
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China.
| | - Xuelong Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China.
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China.
| |
Collapse
|
5
|
Eltalkhawy YM, Takahashi N, Ariumi Y, Shimizu J, Miyazaki K, Senju S, Suzu S. iPS cell-derived model to study the interaction between tissue macrophage and HIV-1. J Leukoc Biol 2023; 114:53-67. [PMID: 36976024 DOI: 10.1093/jleuko/qiad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Despite effective antiretroviral therapy, HIV-1 persists in cells, including macrophages, which is an obstacle to cure. However, the precise role of macrophages in HIV-1 infection remains unclear because they reside in tissues that are not easily accessible. Monocyte-derived macrophages are widely used as a model in which peripheral blood monocytes are cultured and differentiated into macrophages. However, another model is needed because recent studies revealed that most macrophages in adult tissues originate from the yolk sac and fetal liver precursors rather than monocytes, and the embryonic macrophages possess a self-renewal (proliferating) capacity that monocyte-derived macrophages lack. Here, we show that human induced pluripotent stem cell-derived immortalized macrophage-like cells are a useful self-renewing macrophage model. They proliferate in a cytokine-dependent manner, retain macrophage functions, support HIV-1 replication, and exhibit infected monocyte-derived macrophage-like phenotypes, such as enhanced tunneling nanotube formation and cell motility, as well as resistance to a viral cytopathic effect. However, several differences are also observed between monocyte-derived macrophages and induced pluripotent stem cell-derived immortalized macrophage-like cells, most of which can be explained by the proliferation of induced pluripotent stem cell-derived immortalized macrophage-like cells. For instance, proviruses with large internal deletions, which increased over time in individuals receiving antiretroviral therapy, are enriched more rapidly in induced pluripotent stem cell-derived immortalized macrophage-like cells. Interestingly, inhibition of viral transcription by HIV-1-suppressing agents is more obvious in induced pluripotent stem cell-derived immortalized macrophage-like cells. Collectively, our present study proposes that the model of induced pluripotent stem cell-derived immortalized macrophage-like cells is suitable for mimicking the interplay between HIV-1 and self-renewing tissue macrophages, the newly recognized major population in most tissues that cannot be fully modeled by monocyte-derived macrophages alone.
Collapse
Affiliation(s)
- Youssef M Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | - Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | - Yasuo Ariumi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | - Jun Shimizu
- MiCAN Technologies Inc., Goryo-ohara 1-36, Kyoto 615-8245, Japan
| | - Kazuo Miyazaki
- MiCAN Technologies Inc., Goryo-ohara 1-36, Kyoto 615-8245, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| |
Collapse
|
6
|
Ikeda T, Shimizu R, Nasser H, Carpenter MA, Cheng AZ, Brown WL, Sauter D, Harris RS. APOBEC3 degradation is the primary function of HIV-1 Vif for virus replication in the myeloid cell line THP-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534666. [PMID: 37034786 PMCID: PMC10081227 DOI: 10.1101/2023.03.28.534666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
HIV-1 must overcome multiple innate antiviral mechanisms to replicate in CD4 + T lymphocytes and macrophages. Previous studies have demonstrated that the APOBEC3 (A3) family of proteins (at least A3D, A3F, A3G, and stable A3H haplotypes) contribute to HIV-1 restriction in CD4 + T lymphocytes. Virus-encoded virion infectivity factor (Vif) counteracts this antiviral activity by degrading A3 enzymes allowing HIV-1 replication in infected cells. In addition to A3 proteins, Vif also targets other cellular proteins in CD4 + T lymphocytes, including PPP2R5 proteins. However, whether Vif primarily degrades only A3 proteins or has additional essential targets during viral replication is currently unknown. Herein, we describe the development and characterization of A3F -, A3F/A3G -, and A3A -to- A3G -null THP-1 cells. In comparison to Vif-proficient HIV-1, Vif-deficient viruses have substantially reduced infectivity in parental and A3F -null THP-1 cells, and a more modest decrease in infectivity in A3F/A3G -null cells. Remarkably, disruption of A3Aâ€"A3G protein expression completely restores the infectivity of Vif-deficient viruses in THP-1 cells. These results indicate that the primary function of Vif during HIV-1 replication in THP-1 cells is the targeting and degradation of A3 enzymes. Importance HIV-1 Vif neutralizes the HIV-1 restriction activity of A3 proteins. However, it is currently unclear whether Vif has additional essential cellular targets. To address this question, we disrupted A3A to A3G genes in the THP-1 myeloid cell line using CRISPR and compared the infectivity of wildtype HIV-1 and Vif mutants with the selective A3 neutralization activities. Our results demonstrate that the infectivity of Vif-deficient HIV-1 and the other Vif mutants is fully restored by ablating the expression of cellular A3A to A3G proteins. These results indicate that A3 proteins are the only essential target of Vif that is required for HIV-1 replication in THP-1 cells.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto 8600811, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41511, Egypt
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Adam Z. Cheng
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - William L. Brown
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen 72076, Germany
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
7
|
Luperchio AM, Jónsson SR, Salamango DJ. Evolutionary Conservation of PP2A Antagonism and G2/M Cell Cycle Arrest in Maedi-Visna Virus Vif. Viruses 2022; 14:1701. [PMID: 36016323 PMCID: PMC9413702 DOI: 10.3390/v14081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
The canonical function of lentiviral Vif proteins is to counteract the mutagenic potential of APOBEC3 antiviral restriction factors. However, recent studies have discovered that Vif proteins from diverse HIV-1 and simian immunodeficiency virus (SIV) isolates degrade cellular B56 phosphoregulators to remodel the host phosphoproteome and induce G2/M cell cycle arrest. Here, we evaluate the conservation of this activity among non-primate lentiviral Vif proteins using fluorescence-based degradation assays and demonstrate that maedi-visna virus (MVV) Vif efficiently degrades all five B56 family members. Testing an extensive panel of single amino acid substitution mutants revealed that MVV Vif recognizes B56 proteins through a conserved network of electrostatic interactions. Furthermore, experiments using genetic and pharmacologic approaches demonstrate that degradation of B56 proteins requires the cellular cofactor cyclophilin A. Lastly, MVV Vif-mediated depletion of B56 proteins induces a potent G2/M cell cycle arrest phenotype. Therefore, remodeling of the cellular phosphoproteome and induction of G2/M cell cycle arrest are ancient and conserved functions of lentiviral Vif proteins, which suggests that they are advantageous for lentiviral pathogenesis.
Collapse
Affiliation(s)
- Adeline M. Luperchio
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, NY 11794, USA;
| | - Stefán R. Jónsson
- Institute for Experimental Pathology, University of Iceland, Keldur, 112 Reykjavik, Iceland;
| | - Daniel J. Salamango
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, NY 11794, USA;
| |
Collapse
|
8
|
Kaake RM, Echeverria I, Kim SJ, Von Dollen J, Chesarino NM, Feng Y, Yu C, Ta H, Chelico L, Huang L, Gross J, Sali A, Krogan NJ. Characterization of an A3G-Vif HIV-1-CRL5-CBFβ Structure Using a Cross-linking Mass Spectrometry Pipeline for Integrative Modeling of Host-Pathogen Complexes. Mol Cell Proteomics 2021; 20:100132. [PMID: 34389466 PMCID: PMC8459920 DOI: 10.1016/j.mcpro.2021.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 10/24/2022] Open
Abstract
Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFβ) to determine the structure of the (A3G-Vif-CRL5-CBFβ) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFβ complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - John Von Dollen
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yuqing Feng
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - Hai Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Linda Chelico
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - John Gross
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA.
| |
Collapse
|
9
|
Salamango DJ, Harris RS. Demystifying Cell Cycle Arrest by HIV-1 Vif. Trends Microbiol 2021; 29:381-384. [PMID: 33478820 DOI: 10.1016/j.tim.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
Although APOBEC3 degradation is the canonical function of HIV-1 Vif, this viral protein also induces potent cell cycle arrest through a newly defined mechanism. Here, we review recent advances in this area and propose that the scope of this activity may go beyond subversion of the host cell cycle.
Collapse
Affiliation(s)
- Daniel J Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Salamango DJ, Harris RS. Dual Functionality of HIV-1 Vif in APOBEC3 Counteraction and Cell Cycle Arrest. Front Microbiol 2021; 11:622012. [PMID: 33510734 PMCID: PMC7835321 DOI: 10.3389/fmicb.2020.622012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023] Open
Abstract
Accessory proteins are a key feature that distinguishes primate immunodeficiency viruses such as human immunodeficiency virus type I (HIV-1) from other retroviruses. A prime example is the virion infectivity factor, Vif, which hijacks a cellular co-transcription factor (CBF-β) to recruit a ubiquitin ligase complex (CRL5) to bind and degrade antiviral APOBEC3 enzymes including APOBEC3D (A3D), APOBEC3F (A3F), APOBEC3G (A3G), and APOBEC3H (A3H). Although APOBEC3 antagonism is essential for viral pathogenesis, and a more than sufficient functional justification for Vif’s evolution, most viral proteins have evolved multiple functions. Indeed, Vif has long been known to trigger cell cycle arrest and recent studies have shed light on the underlying molecular mechanism. Vif accomplishes this function using the same CBF-β/CRL5 ubiquitin ligase complex to degrade a family of PPP2R5 phospho-regulatory proteins. These advances have helped usher in a new era of accessory protein research and fresh opportunities for drug development.
Collapse
Affiliation(s)
- Daniel J Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
HIV-1 Vif Triggers Cell Cycle Arrest by Degrading Cellular PPP2R5 Phospho-regulators. Cell Rep 2020; 29:1057-1065.e4. [PMID: 31665623 PMCID: PMC6903395 DOI: 10.1016/j.celrep.2019.09.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
HIV-1 Vif hijacks a cellular ubiquitin ligase complex to degrade antiviral APOBEC3 enzymes and PP2A phosphatase regulators (PPP2R5A–E). APOBEC3 counteraction is essential for viral pathogenesis. However, Vif also functions through an unknown mechanism to induce G2 cell cycle arrest. Here, deep mutagenesis is used to define the Vif surface required for PPP2R5 degradation and isolate a panel of separation-of-function mutants (PPP2R5 degradation-deficient and APOBEC3G degradation-proficient). Functional studies with Vif and PPP2R5 mutants were combined to demonstrate that PPP2R5 is, in fact, the target Vif degrades to induce G2 arrest. Pharmacologic and genetic approaches show that direct modulation of PP2A function or depletion of specific PPP2R5 proteins causes an indistinguishable arrest phenotype. Vif function in the cell cycle checkpoint is present in common HIV-1 subtypes worldwide and likely advantageous for viral pathogenesis. Salamango et al. discovered that the HIV-1 accessory protein Vif degrades several PP2A phospho-regulators to induce G2 cell cycle arrest. This activity is prevalent among diverse HIV-1 subtypes and global viral populations, suggesting that virus-induced G2 arrest is advantageous for pathogenesis.
Collapse
|
12
|
Ferreira IATM, Porterfield JZ, Gupta RK, Mlcochova P. Cell Cycle Regulation in Macrophages and Susceptibility to HIV-1. Viruses 2020; 12:v12080839. [PMID: 32751972 PMCID: PMC7472357 DOI: 10.3390/v12080839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages are the first line of defence against invading pathogens. They play a crucial role in immunity but also in regeneration and homeostasis. Their remarkable plasticity in their phenotypes and function provides them with the ability to quickly respond to environmental changes and infection. Recent work shows that macrophages undergo cell cycle transition from a G0/terminally differentiated state to a G1 state. This G0-to-G1 transition presents a window of opportunity for HIV-1 infection. Macrophages are an important target for HIV-1 but express high levels of the deoxynucleotide-triphosphate hydrolase SAMHD1, which restricts viral DNA synthesis by decreasing levels of dNTPs. While the G0 state is non-permissive to HIV-1 infection, a G1 state is very permissive to HIV-1 infection. This is because macrophages in a G1 state switch off the antiviral restriction factor SAMHD1 by phosphorylation, thereby allowing productive HIV-1 infection. Here, we explore the macrophage cell cycle and the interplay between its regulation and permissivity to HIV-1 infection.
Collapse
Affiliation(s)
- Isabella A. T. M. Ferreira
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB20AW, UK; (I.A.T.M.F.); (R.K.G.)
- Department of Medicine, University of Cambridge, Cambridge CB20QQ, UK
| | - J. Zachary Porterfield
- Department of Microbiology, University of Kentucky, Lexington, KY 40536, USA;
- Africa Health Research Institute, Durban 4001, South Africa
| | - Ravindra K. Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB20AW, UK; (I.A.T.M.F.); (R.K.G.)
- Department of Medicine, University of Cambridge, Cambridge CB20QQ, UK
- Africa Health Research Institute, Durban 4001, South Africa
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB20AW, UK; (I.A.T.M.F.); (R.K.G.)
- Department of Medicine, University of Cambridge, Cambridge CB20QQ, UK
- Correspondence:
| |
Collapse
|
13
|
Critical role of PP2A-B56 family protein degradation in HIV-1 Vif mediated G2 cell cycle arrest. Biochem Biophys Res Commun 2020; 527:257-263. [DOI: 10.1016/j.bbrc.2020.04.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/22/2020] [Indexed: 11/21/2022]
|
14
|
Marelli S, Williamson JC, Protasio AV, Naamati A, Greenwood EJD, Deane JE, Lehner PJ, Matheson NJ. Antagonism of PP2A is an independent and conserved function of HIV-1 Vif and causes cell cycle arrest. eLife 2020; 9:e53036. [PMID: 32292164 PMCID: PMC7920553 DOI: 10.7554/elife.53036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
The seminal description of the cellular restriction factor APOBEC3G and its antagonism by HIV-1 Vif has underpinned two decades of research on the host-virus interaction. We recently reported that HIV-1 Vif is also able to degrade the PPP2R5 family of regulatory subunits of key cellular phosphatase PP2A (PPP2R5A-E; Greenwood et al., 2016; Naamati et al., 2019). We now identify amino acid polymorphisms at positions 31 and 128 of HIV-1 Vif which selectively regulate the degradation of PPP2R5 family proteins. These residues covary across HIV-1 viruses in vivo, favouring depletion of PPP2R5A-E. Through analysis of point mutants and naturally occurring Vif variants, we further show that degradation of PPP2R5 family subunits is both necessary and sufficient for Vif-dependent G2/M cell cycle arrest. Antagonism of PP2A by HIV-1 Vif is therefore independent of APOBEC3 family proteins, and regulates cell cycle progression in HIV-infected cells.
Collapse
Affiliation(s)
- Sara Marelli
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - James C Williamson
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Anna V Protasio
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Adi Naamati
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Edward JD Greenwood
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Janet E Deane
- Department of Clinical Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute for Medical Research (CIMR), University of CambridgeCambridgeUnited Kingdom
| | - Paul J Lehner
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Nicholas J Matheson
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
15
|
Du J, Rui Y, Zheng W, Li P, Kang J, Zhao K, Sun T, Yu XF. Vif-CBFβ interaction is essential for Vif-induced cell cycle arrest. Biochem Biophys Res Commun 2019; 511:910-915. [PMID: 30851937 DOI: 10.1016/j.bbrc.2019.02.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
Interaction between HIV-1 Vif and host factor CBFβ leads to the assembly of the Vif-Cul5-EloB/C ubiquitin ligase (E3 complex). By inducing the formation of E3 complex, Vif depletes host APOBEC3 restriction factors and promotes HIV-1 infection. In addition, Vif is known to arrest host cells at G2/M phase (G2 arrest), benefiting HIV-1 replication and contributing to the depletion of CD4+ T cells. However, whether CBFβ is also involved in Vif-induced cell cycle arrest remains unclear. In the present study, we report that CBFβ is an essential factor for Vif-induced G2 arrest. Reducing endogenous CBFβ expression significantly compromised Vif's potency in cell cycle regulation. In addition, tests with CBFβ and Vif mutants indicated that Vif-CBFβ interaction is crucial for Vif to induce G2 arrest. Furthermore, suppressors against Vif-hijacked E3 complex or proteasome-mediated proteolysis also abolished Vif's ability to cause G2 arrest. In general, our data indicated that Vif induces G2 arrest through depletion of a yet-unknown cellular factor, where the involvement of CBFβ is essential. On the other hand, our data also suggested that, antiviral drugs targeting the Vif-CBFβ interaction have the potential to abolish Vif's ability to cause APOBEC3 degradation as well as G2 arrest in host cells, thus reducing both HIV-1 replication and Vif-induced CD4+ T-cell depletion.
Collapse
Affiliation(s)
- Juan Du
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Wenwen Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Peng Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - Jian Kang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, 130061, China.
| | - Tianmeng Sun
- Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin, 130061, China; International Center of Future Science, Jilin University, Changchun, Jilin, 130061, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130061, China.
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, 130061, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
16
|
Evans EL, Becker JT, Fricke SL, Patel K, Sherer NM. HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific. J Virol 2018; 92:e02102-17. [PMID: 29321323 PMCID: PMC5972884 DOI: 10.1128/jvi.02102-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Cells derived from mice and other rodents exhibit profound blocks to HIV-1 virion production, reflecting species-specific incompatibilities between viral Tat and Rev proteins and essential host factors cyclin T1 (CCNT1) and exportin-1 (XPO1, also known as CRM1), respectively. To determine if mouse cell blocks other than CCNT1 and XPO1 affect HIV's postintegration stages, we studied HIV-1NL4-3 gene expression in mouse NIH 3T3 cells modified to constitutively express HIV-1-compatible versions of CCNT1 and XPO1 (3T3.CX cells). 3T3.CX cells supported both Rev-independent and Rev-dependent viral gene expression and produced relatively robust levels of virus particles, confirming that CCNT1 and XPO1 represent the predominant blocks to these stages. Unexpectedly, however, 3T3.CX cells were remarkably resistant to virus-induced cytopathic effects observed in human cell lines, which we mapped to the viral protein Vif and its apparent species-specific capacity to induce G2/M cell cycle arrest. Vif was able to mediate rapid degradation of human APOBEC3G and the PPP2R5D regulatory B56 subunit of the PP2A phosphatase holoenzyme in mouse cells, thus demonstrating that VifNL4-3's modulation of the cell cycle can be functionally uncoupled from some of its other defined roles in CUL5-dependent protein degradation. Vif was also unable to induce G2/M cell cycle arrest in other nonhuman cell types, including cells derived from nonhuman primates, leading us to propose that one or more human-specific cofactors underpin Vif's ability to modulate the cell cycle.IMPORTANCE Cells derived from mice and other rodents exhibit profound blocks to HIV-1 replication, thus hindering the development of a low-cost small-animal model for studying HIV/AIDS. Here, we engineered otherwise-nonpermissive mouse cells to express HIV-1-compatible versions of two species-specific host dependency factors, cyclin T1 (CCNT1) and exportin-1 (XPO1) (3T3.CX cells). We show that 3T3.CX cells rescue HIV-1 particle production but, unexpectedly, are completely resistant to virus-induced cytopathic effects. We mapped these effects to the viral accessory protein Vif, which induces a prolonged G2/M cell cycle arrest followed by apoptosis in human cells. Combined, our results indicate that one or more additional human-specific cofactors govern HIV-1's capacity to modulate the cell cycle, with potential relevance to viral pathogenesis in people and existing animal models.
Collapse
Affiliation(s)
- Edward L Evans
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jordan T Becker
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephanie L Fricke
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kishan Patel
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
17
|
Ikeda T, Symeonides M, Albin JS, Li M, Thali M, Harris RS. HIV-1 adaptation studies reveal a novel Env-mediated homeostasis mechanism for evading lethal hypermutation by APOBEC3G. PLoS Pathog 2018; 14:e1007010. [PMID: 29677220 PMCID: PMC5931688 DOI: 10.1371/journal.ppat.1007010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/02/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023] Open
Abstract
HIV-1 replication normally requires Vif-mediated neutralization of APOBEC3 antiviral enzymes. Viruses lacking Vif succumb to deamination-dependent and -independent restriction processes. Here, HIV-1 adaptation studies were leveraged to ask whether viruses with an irreparable vif deletion could develop resistance to restrictive levels of APOBEC3G. Several resistant viruses were recovered with multiple amino acid substitutions in Env, and these changes alone are sufficient to protect Vif-null viruses from APOBEC3G-dependent restriction in T cell lines. Env adaptations cause decreased fusogenicity, which results in higher levels of Gag-Pol packaging. Increased concentrations of packaged Pol in turn enable faster virus DNA replication and protection from APOBEC3G-mediated hypermutation of viral replication intermediates. Taken together, these studies reveal that a moderate decrease in one essential viral activity, namely Env-mediated fusogenicity, enables the virus to change other activities, here, Gag-Pol packaging during particle production, and thereby escape restriction by the antiviral factor APOBEC3G. We propose a new paradigm in which alterations in viral homeostasis, through compensatory small changes, constitute a general mechanism used by HIV-1 and other viral pathogens to escape innate antiviral responses and other inhibitions including antiviral drugs.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Menelaos Symeonides
- Cellular, Molecular and Biomedical Sciences Graduate Program and Department of Microbiology and Molecular Genetics, Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - John S. Albin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ming Li
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Markus Thali
- Cellular, Molecular and Biomedical Sciences Graduate Program and Department of Microbiology and Molecular Genetics, Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
18
|
Turner T, Shao Q, Wang W, Wang Y, Wang C, Kinlock B, Liu B. Differential Contributions of Ubiquitin-Modified APOBEC3G Lysine Residues to HIV-1 Vif-Induced Degradation. J Mol Biol 2016; 428:3529-39. [PMID: 27297094 DOI: 10.1016/j.jmb.2016.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022]
Abstract
Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) is a host restriction factor that impedes HIV-1 replication. Viral integrity is salvaged by HIV-1 virion infectivity factor (Vif), which mediates A3G polyubiquitination and subsequent cellular depletion. Previous studies have implied that A3G polyubiquitination is essential for Vif-induced degradation. However, the contribution of polyubiquitination to the rate of A3G degradation remains unclear. Here, we show that A3G polyubiquitination is essential for degradation. Inhibition of ubiquitin-activating enzyme E1 by PYR-41 or blocking the formation of ubiquitin chains by over-expressing the lysine to arginine mutation of ubiquitin K48 (K48R) inhibited A3G degradation. Our A3G mutagenesis study showed that lysine residues 297, 301, 303, and 334 were not sufficient to render lysine-free A3G sensitive to Vif-mediated degradation. Our data also confirm that Vif could induce ubiquitin chain formation on lysine residues interspersed throughout A3G. Notably, A3G degradation relied on the lysine residues involved in polyubiquitination. Although A3G and the A3G C-terminal mutant interacted with Vif and were modified by ubiquitin chains, the latter remained more resistant to Vif-induced degradation. Furthermore, the A3G C-terminal mutant, but not the N-terminal mutant, maintained potent antiviral activity in the presence of Vif. Taken together, our results suggest that the location of A3G ubiquitin modification is a determinant for Vif-mediated degradation, implying that in addition to polyubiquitination, other factors may play a key role in the rate of A3G degradation.
Collapse
Affiliation(s)
- Tiffany Turner
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA
| | - Weiran Wang
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA; National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province 130000, People's Republic of China
| | - Yudi Wang
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA
| | - Chenliang Wang
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA
| | - Ballington Kinlock
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA.
| |
Collapse
|
19
|
Ooms M, Brayton B, Letko M, Maio SM, Pilcher CD, Hecht FM, Barbour JD, Simon V. HIV-1 Vif adaptation to human APOBEC3H haplotypes. Cell Host Microbe 2014; 14:411-21. [PMID: 24139399 DOI: 10.1016/j.chom.2013.09.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/02/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
Several human APOBEC3 deaminases can inhibit HIV-1 replication in vitro. HIV-1 Vif counteracts this restriction by targeting APOBEC3 for proteasomal degradation. Human APOBEC3H (A3H) is highly polymorphic, with natural variants differing considerably in anti-HIV-1 activity in vitro. To examine HIV-1 adaptation to variation in A3H activity in a natural infection context, we determined the A3H haplotypes and Vif sequences from 76 recently infected HIV-1 patients. We detected A3H-specific Vif changes suggesting viral adaptation. The patient-derived Vif sequences were used to engineer viruses that specifically differed in their ability to counteract A3H. Replication of these Vif-variant viruses in primary T cells naturally expressing active or inactive A3H haplotypes showed that endogenously expressed A3H restricts HIV-1 replication. Proviral DNA from A3H-restricted viruses showed high levels of G-to-A mutations in an A3H-specific GA dinucleotide context. Taken together, our data validate A3H expressed at endogenous levels as a bona fide HIV-1 restriction factor.
Collapse
Affiliation(s)
- Marcel Ooms
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Calistri A, Munegato D, Carli I, Parolin C, Palù G. The ubiquitin-conjugating system: multiple roles in viral replication and infection. Cells 2014; 3:386-417. [PMID: 24805990 PMCID: PMC4092849 DOI: 10.3390/cells3020386] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/17/2022] Open
Abstract
Through the combined action of ubiquitinating and deubiquitinating enzymes, conjugation of ubiquitin to a target protein acts as a reversible post-translational modification functionally similar to phosphorylation. Indeed, ubiquitination is more and more recognized as a central process for the fine regulation of many cellular pathways. Due to their nature as obligate intracellular parasites, viruses rely on the most conserved host cell machineries for their own replication. Thus, it is not surprising that members from almost every viral family are challenged by ubiquitin mediated mechanisms in different steps of their life cycle and have evolved in order to by-pass or exploit the cellular ubiquitin conjugating system to maximize their chance to establish a successful infection. In this review we will present several examples of the complex interplay that links viruses and the ubiquitin conjugation machinery, with a special focus on the mechanisms evolved by the human immunodeficiency virus to escape from cellular restriction factors and to exit from infected cells.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Denis Munegato
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Ilaria Carli
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| |
Collapse
|
21
|
De Maio FA, Rocco CA, Aulicino PC, Bologna R, Mangano A, Sen L. Unusual substitutions in HIV-1 vif from children infected perinatally without progression to AIDS for more than 8 years without therapy. J Med Virol 2013; 84:1844-52. [PMID: 23080486 DOI: 10.1002/jmv.23261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The HIV-1 vif gene encodes for an accessory protein that is central for virus replication due mainly to its capacity to counteract the antiviral action of host APOBEC3 restriction factors. In order to evaluate whether HIV-1 vif alterations account for a delayed progression to AIDS in children infected perinatally, the vif genes from a group of 11 patients who exhibited an extremely slow disease progression (slow progressors) were studied by direct sequencing. In addition, the vif genes from a group of 93 children with typical disease progression (typical progressors) were analyzed for comparison. Phylogenetic analysis indicated that sequences from slow progressors did not have a common origin, discarding a shared ancestor of reduced virulence. There were no differences in the diversity between the vif genes from slow and typical progressors. No gross defects showing a clear distinction among sequences from both groups of children were found. However, in the deduced Vif proteins, changes V13I, V55T, and L81M were observed only in sequences from slow progressors. By analyzing sequences stored in databases, these mutations were determined as unusual substitutions occurring at highly conserved Vif sites across different HIV-1 clades, but were observed with an increased frequency in sequences from elite controllers. These mutations were in the Vif regions reported as relevant for protein activity. These findings suggest that the Vif sequences from slow progressors carry unusual substitutions, which may alter the protein function and may contribute to viral attenuation.
Collapse
Affiliation(s)
- Federico A De Maio
- Cellular Biology and Retroviruses Laboratory-CONICET, Juan P. Garrahan, Pediatric Hospital, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
22
|
Stanley DJ, Bartholomeeusen K, Crosby DC, Kim DY, Kwon E, Yen L, Cartozo NC, Li M, Jäger S, Mason-Herr J, Hayashi F, Yokoyama S, Krogan NJ, Harris RS, Peterlin BM, Gross JD. Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G. PLoS Pathog 2012; 8:e1003085. [PMID: 23300442 PMCID: PMC3531493 DOI: 10.1371/journal.ppat.1003085] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 10/30/2012] [Indexed: 01/18/2023] Open
Abstract
Cellular restriction factors help to defend humans against human immunodeficiency virus (HIV). HIV accessory proteins hijack at least three different Cullin-RING ubiquitin ligases, which must be activated by the small ubiquitin-like protein NEDD8, in order to counteract host cellular restriction factors. We found that conjugation of NEDD8 to Cullin-5 by the NEDD8-conjugating enzyme UBE2F is required for HIV Vif-mediated degradation of the host restriction factor APOBEC3G (A3G). Pharmacological inhibition of the NEDD8 E1 by MLN4924 or knockdown of either UBE2F or its RING-protein binding partner RBX2 bypasses the effect of Vif, restoring the restriction of HIV by A3G. NMR mapping and mutational analyses define specificity determinants of the UBE2F NEDD8 cascade. These studies demonstrate that disrupting host NEDD8 cascades presents a novel antiretroviral therapeutic approach enhancing the ability of the immune system to combat HIV.
Collapse
Affiliation(s)
- David J. Stanley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
- Graduate Program in Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Koen Bartholomeeusen
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - David C. Crosby
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Dong Young Kim
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Eunju Kwon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Linda Yen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Nathalie Caretta Cartozo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Ming Li
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stefanie Jäger
- Department of Molecular and Cellular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America
| | - Jeremy Mason-Herr
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Fumiaki Hayashi
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Nevan J. Krogan
- Department of Molecular and Cellular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Boris Matija Peterlin
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - John D. Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Monajemi M, Woodworth CF, Benkaroun J, Grant M, Larijani M. Emerging complexities of APOBEC3G action on immunity and viral fitness during HIV infection and treatment. Retrovirology 2012; 9:35. [PMID: 22546055 PMCID: PMC3416701 DOI: 10.1186/1742-4690-9-35] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/30/2012] [Indexed: 12/31/2022] Open
Abstract
The enzyme APOBEC3G (A3G) mutates the human immunodeficiency virus (HIV) genome by converting deoxycytidine (dC) to deoxyuridine (dU) on minus strand viral DNA during reverse transcription. A3G restricts viral propagation by degrading or incapacitating the coding ability of the HIV genome. Thus, this enzyme has been perceived as an innate immune barrier to viral replication whilst adaptive immunity responses escalate to effective levels. The discovery of A3G less than a decade ago led to the promise of new anti-viral therapies based on manipulation of its cellular expression and/or activity. The rationale for therapeutic approaches has been solidified by demonstration of the effectiveness of A3G in diminishing viral replication in cell culture systems of HIV infection, reports of its mutational footprint in virions from patients, and recognition of its unusually robust enzymatic potential in biochemical studies in vitro. Despite its effectiveness in various experimental systems, numerous recent studies have shown that the ability of A3G to combat HIV in the physiological setting is severely limited. In fact, it has become apparent that its mutational activity may actually enhance viral fitness by accelerating HIV evolution towards the evasion of both anti-viral drugs and the immune system. This body of work suggests that the role of A3G in HIV infection is more complex than heretofore appreciated and supports the hypothesis that HIV has evolved to exploit the action of this host factor. Here we present an overview of recent data that bring to light historical overestimation of A3G's standing as a strictly anti-viral agent. We discuss the limitations of experimental systems used to assess its activities as well as caveats in data interpretation.
Collapse
Affiliation(s)
- Mahdis Monajemi
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland, Canada
| | - Claire F Woodworth
- Mani Larijani, Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Jessica Benkaroun
- Mani Larijani, Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Michael Grant
- Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Mani Larijani
- Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| |
Collapse
|
24
|
Sharma A, Yilmaz A, Marsh K, Cochrane A, Boris-Lawrie K. Thriving under stress: selective translation of HIV-1 structural protein mRNA during Vpr-mediated impairment of eIF4E translation activity. PLoS Pathog 2012; 8:e1002612. [PMID: 22457629 PMCID: PMC3310836 DOI: 10.1371/journal.ppat.1002612] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 02/14/2012] [Indexed: 12/23/2022] Open
Abstract
Translation is a regulated process and is pivotal to proper cell growth and homeostasis. All retroviruses rely on the host translational machinery for viral protein synthesis and thus may be susceptible to its perturbation in response to stress, co-infection, and/or cell cycle arrest. HIV-1 infection arrests the cell cycle in the G2/M phase, potentially disrupting the regulation of host cell translation. In this study, we present evidence that HIV-1 infection downregulates translation in lymphocytes, attributable to the cell cycle arrest induced by the HIV-1 accessory protein Vpr. The molecular basis of the translation suppression is reduced accumulation of the active form of the translation initiation factor 4E (eIF4E). However, synthesis of viral structural proteins is sustained despite the general suppression of protein production. HIV-1 mRNA translation is sustained due to the distinct composition of the HIV-1 ribonucleoprotein complexes. RNA-coimmunoprecipitation assays determined that the HIV-1 unspliced and singly spliced transcripts are predominantly associated with nuclear cap binding protein 80 (CBP80) in contrast to completely-spliced viral and cellular mRNAs that are associated with eIF4E. The active translation of the nuclear cap binding complex (CBC)-bound viral mRNAs is demonstrated by ribosomal RNA profile analyses. Thus, our findings have uncovered that the maintenance of CBC association is a novel mechanism used by HIV-1 to bypass downregulation of eIF4E activity and sustain viral protein synthesis. We speculate that a subset of CBP80-bound cellular mRNAs contribute to recovery from significant cellular stress, including human retrovirus infection. Retroviruses are intracellular parasites that utilize the host translation machinery to catalyze viral protein synthesis. The activity of the translation machinery fluctuates during cell cycle progression and is reduced in the G2/M phase. HIV-1 infection causes the cells to arrest in the G2/M phase, which has the potential to alter the activity of the translation machinery. Herein several lines of evidence demonstrated that lymphocyte mRNA translation is suppressed by the action of HIV-1 accessory protein Vpr. The molecular basis of translation suppression is reduced activity of the rate-limiting translation intitation factor, eIF4E. However, synthesis of the viral structural proteins is sustained and is due to the difference in composition of the viral and cellular mRNA-ribonucleoprotein complexes. Both cellular and completely spliced viral mRNAs are predominantly associated with the cytoplasmic cap binding protein, eIF4E. In contrast, unspliced HIV-1 mRNAs are predominantly associated with the components of the nuclear cap binding complex (CBC). The retention of CBC on the viral mRNAs provides a mechanism to sustain viral protein synthesis. This newly characterized interface of the virus-host-protein synthesis machinery is likely a cellular adaptation used to enable synthesis of proteins that reengage the cell cycle and facilitate recovery from stress.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio, United States of America
- Center for Retrovirus Research, Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Alper Yilmaz
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio, United States of America
- Center for Retrovirus Research, Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Kim Marsh
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kathleen Boris-Lawrie
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio, United States of America
- Center for Retrovirus Research, Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
25
|
Biard-Piechaczyk M, Borel S, Espert L, de Bettignies G, Coux O. HIV-1, ubiquitin and ubiquitin-like proteins: the dialectic interactions of a virus with a sophisticated network of post-translational modifications. Biol Cell 2012; 104:165-87. [PMID: 22188301 DOI: 10.1111/boc.201100112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022]
Abstract
The modification of intracellular proteins by ubiquitin (Ub) and ubiquitin-like (UbL) proteins is a central mechanism for regulating and fine-tuning all cellular processes. Indeed, these modifications are widely used to control the stability, activity and localisation of many key proteins and, therefore, they are instrumental in regulating cellular functions as diverse as protein degradation, cell signalling, vesicle trafficking and immune response. It is thus no surprise that pathogens in general, and viruses in particular, have developed multiple strategies to either counteract or exploit the complex mechanisms mediated by the Ub and UbL protein conjugation pathways. The aim of this review is to provide an overview on the intricate and conflicting relationships that intimately link HIV-1 and these sophisticated systems of post-translational modifications.
Collapse
Affiliation(s)
- Martine Biard-Piechaczyk
- Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé (CPBS-CNRS), Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
26
|
Jäger S, Kim DY, Hultquist JF, Shindo K, LaRue RS, Kwon E, Li M, Anderson BD, Yen L, Stanley D, Mahon C, Kane J, Franks-Skiba K, Cimermancic P, Burlingame A, Sali A, Craik CS, Harris RS, Gross JD, Krogan NJ. Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature 2011; 481:371-5. [PMID: 22190037 DOI: 10.1038/nature10693] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 11/01/2011] [Indexed: 01/03/2023]
Abstract
Restriction factors, such as the retroviral complementary DNA deaminase APOBEC3G, are cellular proteins that dominantly block virus replication. The AIDS virus, human immunodeficiency virus type 1 (HIV-1), produces the accessory factor Vif, which counteracts the host's antiviral defence by hijacking a ubiquitin ligase complex, containing CUL5, ELOC, ELOB and a RING-box protein, and targeting APOBEC3G for degradation. Here we reveal, using an affinity tag/purification mass spectrometry approach, that Vif additionally recruits the transcription cofactor CBF-β to this ubiquitin ligase complex. CBF-β, which normally functions in concert with RUNX DNA binding proteins, allows the reconstitution of a recombinant six-protein assembly that elicits specific polyubiquitination activity with APOBEC3G, but not the related deaminase APOBEC3A. Using RNA knockdown and genetic complementation studies, we also demonstrate that CBF-β is required for Vif-mediated degradation of APOBEC3G and therefore for preserving HIV-1 infectivity. Finally, simian immunodeficiency virus (SIV) Vif also binds to and requires CBF-β to degrade rhesus macaque APOBEC3G, indicating functional conservation. Methods of disrupting the CBF-β-Vif interaction might enable HIV-1 restriction and provide a supplement to current antiviral therapies that primarily target viral proteins.
Collapse
Affiliation(s)
- Stefanie Jäger
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gustin JK, Moses AV, Früh K, Douglas JL. Viral takeover of the host ubiquitin system. Front Microbiol 2011; 2:161. [PMID: 21847386 PMCID: PMC3147166 DOI: 10.3389/fmicb.2011.00161] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/14/2011] [Indexed: 01/29/2023] Open
Abstract
Like the other more well-characterized post-translational modifications (phosphorylation, methylation, acetylation, acylation, etc.), the attachment of the 76 amino acid ubiquitin (Ub) protein to substrates has been shown to govern countless cellular processes. As obligate intracellular parasites, viruses have evolved the capability to commandeer many host processes in order to maximize their own survival, whether it be to increase viral production or to ensure the long-term survival of latently infected host cells. The first evidence that viruses could usurp the Ub system came from the DNA tumor viruses and Adenoviruses, each of which use Ub to dysregulate the host cell cycle (Scheffner et al., 1990; Querido et al., 2001). Today, the list of viruses that utilize Ub includes members from almost every viral class, encompassing both RNA and DNA viruses. Among these, there are examples of Ub usage at every stage of the viral life cycle, involving both ubiquitination and de-ubiquitination. In addition to viruses that merely modify the host Ub system, many of the large DNA viruses encode their own Ub modifying machinery. In this review, we highlight the latest discoveries regarding the myriad ways that viruses utilize Ub to their advantage.
Collapse
Affiliation(s)
- Jean K Gustin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University Beaverton, OR, USA
| | | | | | | |
Collapse
|
28
|
Hayes AM, Qian S, Yu L, Boris-Lawrie K. Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1. Retrovirology 2011; 8:36. [PMID: 21569500 PMCID: PMC3120759 DOI: 10.1186/1742-4690-8-36] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 05/13/2011] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNA (miRNA)-mediated RNA silencing is integral to virtually every cellular process including cell cycle progression and response to virus infection. The interplay between RNA silencing and HIV-1 is multifaceted, and accumulating evidence posits a strike-counterstrike interface that alters the cellular environment to favor virus replication. For instance, miRNA-mediated RNA silencing of HIV-1 translation is antagonized by HIV-1 Tat RNA silencing suppressor activity. The activity of HIV-1 accessory proteins Vpr/Vif delays cell cycle progression, which is a process prominently modulated by miRNA. The expression profile of cellular miRNA is altered by HIV-1 infection in both cultured cells and clinical samples. The open question stands of what, if any, is the contribution of Tat RNA silencing suppressor activity or Vpr/Vif activity to the perturbation of cellular miRNA by HIV-1. Results Herein, we compared the perturbation of miRNA expression profiles of lymphocytes infected with HIV-1NL4-3 or derivative strains that are deficient in Tat RNA silencing suppressor activity (Tat K51A substitution) or ablated of the vpr/vif open reading frames. Microarrays recapitulated the perturbation of the cellular miRNA profile by HIV-1 infection. The miRNA expression trends overlapped ~50% with published microarray results on clinical samples from HIV-1 infected patients. Moreover, the number of miRNA perturbed by HIV-1 was largely similar despite ablation of Tat RSS activity and Vpr/Vif; however, the Tat RSS mutation lessened HIV-1 downregulation of twenty-two miRNAs. Conclusions Our study identified miRNA expression changes attributable to Tat RSS activity in HIV-1NL4-3. The results accomplish a necessary step in the process to understand the interface of HIV-1 with host RNA silencing activity. The overlap in miRNA expression trends observed between HIV-1 infected CEMx174 lymphocytes and primary cells supports the utility of cultured lymphocytes as a tractable model to investigate interplay between HIV-1 and host RNA silencing. The subset of miRNA determined to be perturbed by Tat RSS in HIV-1 infection provides a focal point to define the gene networks that shape the cellular environment for HIV-1 replication.
Collapse
Affiliation(s)
- Amy M Hayes
- Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus OH, USA
| | | | | | | |
Collapse
|
29
|
Maudet C, Bertrand M, Le Rouzic E, Lahouassa H, Ayinde D, Nisole S, Goujon C, Cimarelli A, Margottin-Goguet F, Transy C. Molecular insight into how HIV-1 Vpr protein impairs cell growth through two genetically distinct pathways. J Biol Chem 2011; 286:23742-52. [PMID: 21566118 DOI: 10.1074/jbc.m111.220780] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vpr, a small HIV auxiliary protein, hijacks the CUL4 ubiquitin ligase through DCAF1 to inactivate an unknown cellular target, leading to cell cycle arrest at the G(2) phase and cell death. Here we first sought to delineate the Vpr determinants involved in the binding to DCAF1 and to the target. On the one hand, the three α-helices of Vpr are necessary and sufficient for binding to DCAF1; on the other hand, nonlinear determinants in Vpr are required for binding to the target, as shown by using protein chimeras. We also underscore that a SRIG motif conserved in the C-terminal tail of Vpr proteins from HIV-1/SIVcpz and HIV-2/SIVsmm lineages is critical for G(2) arrest. Our results suggest that this motif may be predictive of the ability of Vpr proteins from other SIV lineages to mediate G(2) arrest. We took advantage of the characterization of a subset of G(2) arrest-defective, but DCAF1 binding-proficient mutants, to investigate whether Vpr interferes with cell viability independently of its ability to induce G(2) arrest. These mutants inhibited cell colony formation in HeLa cells and are cytotoxic in lymphocytes, unmasking a G(2) arrest-independent cytopathic effect of Vpr. Furthermore these mutants do not block cell cycle progression at the G(1) or S phases but trigger apoptosis through caspase 3. Disruption of DCAF1 binding restored efficiency of colony formation. However, DCAF1 binding per se is not sufficient to confer cytopathicity. These data support a model in which Vpr recruits DCAF1 to induce the degradation of two host proteins independently required for proper cell growth.
Collapse
|
30
|
Sakai K, Barnitz RA, Chaigne-Delalande B, Bidère N, Lenardo MJ. Human immunodeficiency virus type 1 Vif causes dysfunction of Cdk1 and CyclinB1: implications for cell cycle arrest. Virol J 2011; 8:219. [PMID: 21569376 PMCID: PMC3113979 DOI: 10.1186/1743-422x-8-219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 05/11/2011] [Indexed: 12/16/2022] Open
Abstract
The two major cytopathic factors in human immunodeficiency virus type 1 (HIV-1), the accessory proteins viral infectivity factor (Vif) and viral protein R (Vpr), inhibit cell-cycle progression at the G2 phase of the cell cycle. Although Vpr-induced blockade and the associated T-cell death have been well studied, the molecular mechanism of G2 arrest by Vif remains undefined. To elucidate how Vif induces arrest, we infected synchronized Jurkat T-cells and examined the effect of Vif on the activation of Cdk1 and CyclinB1, the chief cell-cycle factors for the G2 to M phase transition. We found that the characteristic dephosphorylation of an inhibitory phosphate on Cdk1 did not occur in infected cells expressing Vif. In addition, the nuclear translocation of Cdk1 and CyclinB1 was disregulated. Finally, Vif-induced cell cycle arrest was correlated with proviral expression of Vif. Taken together, our results suggest that Vif impairs mitotic entry by interfering with Cdk1-CyclinB1 activation.
Collapse
Affiliation(s)
- Keiko Sakai
- Laboratory of Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
HIV-1 depends on host-cell resources for replication, access to which may be limited to a particular phase of the cell cycle. The HIV-encoded proteins Vpr (viral protein R) and Vif (viral infectivity factor) arrest cells in the G₂ phase; however, alteration of other cell-cycle phases has not been reported. We show that Vif drives cells out of G₁ and into the S phase. The effect of Vif on the G₁- to-S transition is distinct from its effect on G₂, because G₂ arrest is Cullin5-dependent, whereas the G₁- to-S progression is Cullin5-independent. Using mass spectrometry, we identified 2 novel cellular partners of Vif, Brd4 and Cdk9, both of which are known to regulate cell-cycle progression. We confirmed the interaction of Vif and Cdk9 by immunoprecipitation and Western blot, and showed that small interfering RNAs (siRNAs) specific for Cdk9 inhibit the Vif-mediated G₁- to-S transition. These data suggest that Vif regulates early cell-cycle progression, with implications for infection and latency.
Collapse
|
32
|
Wissing S, Galloway NLK, Greene WC. HIV-1 Vif versus the APOBEC3 cytidine deaminases: an intracellular duel between pathogen and host restriction factors. Mol Aspects Med 2010; 31:383-97. [PMID: 20538015 DOI: 10.1016/j.mam.2010.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 10/19/2022]
Abstract
The Vif protein of HIV is essential for the effective propagation of this pathogenic retrovirus in vivo. Vif acts by preventing virion encapsidation of two potent antiviral factors, the APOBEC3G and APOBEC3F cytidine deaminases. Decreased encapsidation in part involves Vif-mediated recruitment of a ubiquitin E3 ligase complex that promotes polyubiquitylation and proteasome-mediated degradation of APOBEC3G/F. The resultant decline in intracellular levels of these enzymes leads to decreased encapsidation of APOBECG/F into budding virions. This review discusses recent advances in our understanding of the dynamic interplay of Vif with the antiviral APOBEC3 enzymes.
Collapse
Affiliation(s)
- Silke Wissing
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
33
|
Casey L, Wen X, de Noronha CMC. The functions of the HIV1 protein Vpr and its action through the DCAF1.DDB1.Cullin4 ubiquitin ligase. Cytokine 2010; 51:1-9. [PMID: 20347598 DOI: 10.1016/j.cyto.2010.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 01/30/2010] [Accepted: 02/24/2010] [Indexed: 01/21/2023]
Abstract
Among the proteins encoded by human and simian immunodeficiency viruses (HIV and SIV) at least three, Vif, Vpu and Vpr, subvert cellular ubiquitin ligases to block the action of anti-viral defenses. This review focuses on Vpr and its HIV2/SIV counterparts, Vpx and Vpr, which all engage the DDB1.Cullin4 ubiquitin ligase complex through the DCAF1 adaptor protein. Here, we discuss the multiple functions that have been linked to Vpr expression and summarize the current knowledge on the role of the ubiquitin ligase complex in carrying out a subset of these activities.
Collapse
Affiliation(s)
- Laurieann Casey
- Center for Immunology and Microbial Disease, Albany Medical College, 43 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
34
|
Chim3 confers survival advantage to CD4+ T cells upon HIV-1 infection by preventing HIV-1 DNA integration and HIV-1-induced G2 cell-cycle delay. Blood 2010; 115:4021-9. [PMID: 20220118 DOI: 10.1182/blood-2009-09-243030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The long-term expression and the ability of a therapeutic gene to confer survival advantage to transduced cells are mandatory requirements for successful anti-HIV gene therapy. In this context, we developed lentiviral vectors (LVs) expressing the F12-viral infectivity factor (Vif) derivative Chim3. We recently showed that Chim3 inhibits HIV-1 replication in primary cells by both blocking the accumulation of retrotranscripts, independently of either human APOBEC3G (hA3G) or Vif, and by preserving the antiviral function of hA3G. These results were predictive of long-lasting survival of Chim3(+) cells after HIV-1 infection. Furthermore, Vif, like Vpr, deregulates cell-cycle progression by inducing a delay in G(2) phase. Thus, the aim of this study was to investigate the role of Chim3 on both cell survival and cell-cycle regulation after HIV-1 infection. Here, we provide evidence that infected Chim3(+) T cells prevail over either mock- or empty-LV engineered cells, show reduced G(2) accumulation, and, as a consequence, ultimately extend their lifespan. Based on these findings, Chim3 rightly belongs to the most efficacious class of antiviral genes. In conclusion, Chim3 usage in anti-HIV gene therapy based on hematopoietic stem cell (HSC) modification has to be considered as a promising therapeutic intervention to eventually cope with HIV-1 infection.
Collapse
|
35
|
Virion-associated Vpr of human immunodeficiency virus type 1 triggers activation of apoptotic events and enhances fas-induced apoptosis in human T cells. J Virol 2009; 83:11283-97. [PMID: 19692467 DOI: 10.1128/jvi.00756-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Vpr protein exists in three different forms: soluble, intracellular, and virion associated. Previous studies showed that virion-associated Vpr induces apoptosis in activated peripheral blood mononuclear cells (PBMCs) and Jurkat T cells, but these studies were conducted in the presence of other de novo-expressed HIV proteins that may have had additive proapoptotic effects. In this report, we show that virion-associated Vpr triggers apoptosis through caspases 3/7 and 9 in human T cells independently of other HIV de novo-expressed proteins. In contrast to a previous study, we also detected the activation of caspase 8, the initiator caspase of the death receptor pathway. However, activation of all caspases by virion-associated Vpr was independent of the Fas death receptor pathway. Further analyses showed that virion-associated Vpr enhanced caspase activation in Fas-mediated apoptosis in Jurkat T cells and human activated PBMCs. Thus, our results indicate for the first time that viral particles that contain virion-associated Vpr can cause apoptosis in the absence of other de novo-expressed viral factors and can act in synergy with the Fas receptor pathway, thereby enhancing the apoptotic process in T cells. These findings suggest that virion-associated Vpr can contribute to the depletion of CD4(+) lymphocytes either directly or by enhancing Fas-mediated apoptosis during acute HIV-1 infection and in AIDS.
Collapse
|
36
|
Romani B, Engelbrecht S, Glashoff RH. Antiviral roles of APOBEC proteins against HIV-1 and suppression by Vif. Arch Virol 2009; 154:1579-88. [DOI: 10.1007/s00705-009-0481-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/22/2009] [Indexed: 01/18/2023]
|
37
|
Chaurushiya MS, Weitzman MD. Viral manipulation of DNA repair and cell cycle checkpoints. DNA Repair (Amst) 2009; 8:1166-76. [PMID: 19473887 DOI: 10.1016/j.dnarep.2009.04.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recognition and repair of DNA damage is critical for maintaining genomic integrity and suppressing tumorigenesis. In eukaryotic cells, the sensing and repair of DNA damage are coordinated with cell cycle progression and checkpoints, in order to prevent the propagation of damaged DNA. The carefully maintained cellular response to DNA damage is challenged by viruses, which produce a large amount of exogenous DNA during infection. Viruses also express proteins that perturb cellular DNA repair and cell cycle pathways, promoting tumorigenesis in their quest for cellular domination. This review presents an overview of strategies employed by viruses to manipulate DNA damage responses and cell cycle checkpoints as they commandeer the cell to maximize their own viral replication. Studies of viruses have identified key cellular regulators and revealed insights into molecular mechanisms governing DNA repair, cell cycle checkpoints, and transformation.
Collapse
Affiliation(s)
- Mira S Chaurushiya
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
38
|
Niewiadomska AM, Yu XF. Host restriction of HIV-1 by APOBEC3 and viral evasion through Vif. Curr Top Microbiol Immunol 2009; 339:1-25. [PMID: 20012521 DOI: 10.1007/978-3-642-02175-6_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The arms race between virus and host is a constant battle. APOBEC3 proteins are known to be potent innate cellular defenses against both endogenous retroelements and diverse retroviruses. However, retroviruses have developed their own methods to launch counter-strikes. Most primate lentiviruses encode a protein called the viral infectivity factor (Vif). Vif induces targeted destruction of APOBEC3 proteins by hijacking the cellular ubiquitin-proteasome pathway. Here we review the research that led up to the identification of A3G, the mechanisms by which APOBEC3 proteins can inhibit retroelements, and the counter-mechanisms that HIV-1 Vif has developed to evade its antiviral activities.
Collapse
Affiliation(s)
- Anna Maria Niewiadomska
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|