1
|
Tokarz-Deptuła B, Kulus J, Baraniecki Ł, Stosik M, Deptuła W. Characterisation of Lagovirus europaeus GI-RHDVs (Rabbit Haemorrhagic Disease Viruses) in Terms of Their Pathogenicity and Immunogenicity. Int J Mol Sci 2024; 25:5342. [PMID: 38791380 PMCID: PMC11120834 DOI: 10.3390/ijms25105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Rabbit haemorrhagic disease viruses (RHDV) belong to the family Caliciviridae, genus Lagovirus europaeus, genogroup GI, comprising four genotypes GI.1-GI.4, of which the genotypes GI.1 and GI.2 are pathogenic RHD viruses, while the genotypes GI.3 and GI.4 are non-pathogenic RCV (Rabbit calicivirus) viruses. Among the pathogenic genotypes GI.1 and GI.2 of RHD viruses, an antigenic variant of RHDV, named RHDVa-now GI.1a-RHDVa, was distinguished in 1996; and in 2010, a variant of RHDV-named RHDVb, later RHDV2 and now GI.2-RHDV2/b-was described; and recombinants of these viruses were registered. Pathogenic viruses of the genotype GI.1 were the cause of a disease described in 1984 in China in domestic (Oryctolagus (O.) cuniculus domesticus) and wild (O. cuniculus) rabbits, characterised by a very rapid course and a mortality rate of 90-100%, which spread in countries all over the world and which has been defined since 1989 as rabbit haemorrhagic disease. It is now accepted that GI.1-RHDV, including GI.1a-RHDVa, cause the predetermined primary haemorrhagic disease in domestic and wild rabbits, while GI.2-RHDV2/b cause it not only in rabbits, including domestic rabbits' young up to 4 weeks and rabbits immunised with rabbit haemorrhagic disease vaccine, but also in five various species of wild rabbits and seven different species of hares, as well as wild ruminants: mountain muskoxen and European badger. Among these viruses, haemagglutination-positive, doubtful and harmful viruses have been recorded and described and have been shown to form phylogenogroups, immunotypes, haematotypes and pathotypes, which, together with traits that alter and expand their infectious spectrum (rabbit, hare, wild ruminant, badger and various rabbit and hare species), are the determinants of their pathogenicity (infectivity) and immunogenicity and thus shape their virulence. These relationships are the aim of our consideration in this article.
Collapse
Affiliation(s)
| | - Jakub Kulus
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| | - Łukasz Baraniecki
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | - Michał Stosik
- Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Gora, 65-516 Zielona Gora, Poland;
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| |
Collapse
|
2
|
Tang Z, Wang S, Du L, Hu D, Chen X, Zheng H, Ding H, Chen S, Zhang L, Zhang N. The impact of micropolymorphism in Anpl-UAA on structural stability and peptide presentation. Int J Biol Macromol 2024; 267:131665. [PMID: 38636758 DOI: 10.1016/j.ijbiomac.2024.131665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Micropolymorphism significantly shapes the peptide-binding characteristics of major histocompatibility complex class I (MHC-I) molecules, affecting the host's resistance to pathogens, which is particularly pronounced in avian species displaying the "minimal essential MHC" expression pattern. In this study, we compared two duck MHC-I alleles, Anpl-UAA*77 and Anpl-UAA*78, that exhibit markedly different peptide binding properties despite their high sequence homology. Through mutagenesis experiments and crystallographic analysis of complexes with the influenza virus-derived peptide AEAIIVAMV (AEV9), we identified a critical role for the residue at position 62 in regulating hydrogen-bonding interactions between the peptide backbone and the peptide-binding groove. This modulation affects the characteristics of the B pocket and the stability of the loop region between the 310 helix and the α1 helix, leading to significant changes in the structure and stability of the peptide-MHC-I complex (pMHC-I). Moreover, the proportion of different residues at position 62 among Anpl-UAAs may reflect the correlation between pAnpl-UAA stability and duck body temperature. This research not only advances our understanding of the Anpl-UAA structure but also deepens our insight into the impact of MHC-I micropolymorphism on peptide binding.
Collapse
Affiliation(s)
- Ziche Tang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Suqiu Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Liubao Du
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dongmei Hu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoming Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hanyin Zheng
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Ding
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shiwen Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan 250100, Shandong, China.
| | - Nianzhi Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China..
| |
Collapse
|
3
|
Halabi S, Kaufman J. New vistas unfold: Chicken MHC molecules reveal unexpected ways to present peptides to the immune system. Front Immunol 2022; 13:886672. [PMID: 35967451 PMCID: PMC9372762 DOI: 10.3389/fimmu.2022.886672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
The functions of a wide variety of molecules with structures similar to the classical class I and class II molecules encoded by the major histocompatibility complex (MHC) have been studied by biochemical and structural studies over decades, with many aspects for humans and mice now enshrined in textbooks as dogma. However, there is much variation of the MHC and MHC molecules among the other jawed vertebrates, understood in the most detail for the domestic chicken. Among the many unexpected features in chickens is the co-evolution between polymorphic TAP and tapasin genes with a dominantly-expressed class I gene based on a different genomic arrangement compared to typical mammals. Another important discovery was the hierarchy of class I alleles for a suite of properties including size of peptide repertoire, stability and cell surface expression level, which is also found in humans although not as extreme, and which led to the concept of generalists and specialists in response to infectious pathogens. Structural studies of chicken class I molecules have provided molecular explanations for the differences in peptide binding compared to typical mammals. These unexpected phenomena include the stringent binding with three anchor residues and acidic residues at the peptide C-terminus for fastidious alleles, and the remodelling binding sites, relaxed binding of anchor residues in broad hydrophobic pockets and extension at the peptide C-terminus for promiscuous alleles. The first few studies for chicken class II molecules have already uncovered unanticipated structural features, including an allele that binds peptides by a decamer core. It seems likely that the understanding of how MHC molecules bind and present peptides to lymphocytes will broaden considerably with further unexpected discoveries through biochemical and structural studies for chickens and other non-mammalian vertebrates.
Collapse
Affiliation(s)
- Samer Halabi
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Jim Kaufman,
| |
Collapse
|
4
|
Zhao Y, Sun M, Zhang N, Liu X, Yue C, Feng L, Ji S, Liu X, Qi J, Wong CC, Gao GF, Liu WJ. Phosphosite-dependent presentation of dual phosphorylated peptides by MHC class I molecules. iScience 2022; 25:104013. [PMID: 35310951 PMCID: PMC8931367 DOI: 10.1016/j.isci.2022.104013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022] Open
Abstract
Phosphopeptides presented by major histocompatibility complex (MHC) class I have been regarded as a pivotal type of cancer neoantigens that are recognized by T cells. The structural basis of single-phosphorylated peptide presentation has been well studied. Diphosphorylation with one interval between two sites is one of the prevalent forms of multisite-phosphorylated peptides. Herein, we determined the molecular basis of presentation of two P4/P6 double pS-containing peptides by HLA-B27 and compared them with unmodified and single-phosphorylated peptide complexes. These data clarified not only the HLA allele-specific presentation of phosphopeptides by MHC class I molecules but also the cooperativity of peptide conformation within P4 and P6 phosphorylation sites. The phosphorylation of P6 site can influence the binding mode of P4 phosphorylated site to HLA-B27. And we found the diphospho-dependent attenuated effect of peptide binding affinity. This study provides insights into the MHC presentation features of diphosphopeptides, which is different from monophosphopeptides. Diphosphorylation with an interval is prevalent among multiphosphorylated peptides Diphosphopeptide presentation is HLA specific and different from monophosphopeptide The cooperativity of peptide conformation within P4 and P6 phosphorylation sites The diphosphorylation attenuates peptide binding affinity to HLA-B27
Collapse
Affiliation(s)
- Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Mingwei Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Nan Zhang
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Xueyuan Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 100052, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 100052, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Feng
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 100052, China
| | - Shushen Ji
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Xiao Liu
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Catherine C.L. Wong
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing 100191, China
- Corresponding author
| | - George F. Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing 102206, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author
| | - William J. Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing 102206, China
- Corresponding author
| |
Collapse
|
5
|
Mooring stone-like Arg 114 pulls diverse bulged peptides: first insight into African swine fever virus-derived T cell epitopes presented by swine MHC class I. J Virol 2021; 96:e0137821. [PMID: 34851145 DOI: 10.1128/jvi.01378-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), which is a devastating pig disease threatening the global pork industry. However, currently no commercial vaccines are available. During the immune response, major histocompatibility complex (MHC) class I molecules select viral peptide epitopes and present them to host cytotoxic T lymphocytes, thereby playing critical roles in eliminating viral infections. Here we screened peptides derived from ASFV and determined the molecular basis of ASFV-derived peptides presented by the swine leukocyte antigen (SLA)-1*0101. We found that peptide binding in SLA-1*0101 differs from the traditional mammalian binding patterns. Unlike the typical B and F pockets used by the common MHC-I molecule, SLA-1*0101 uses the D and F pockets as major peptide anchor pockets. Furthermore, the conformationally stable Arg114 residue located in the peptide-binding groove (PBG) was highly selective for the peptides. Arg114 draws negatively charged residues at positions P5 to P7 of the peptides, which led to multiple bulged conformations of different peptides binding to SLA-1*0101 and creating diversity for T cells receptor docking. Thus, the solid Arg114 residue acts as a "mooring stone" and pulls the peptides into the PBG of SLA-1*0101. Notably, the T cells recognition and activation of p72-derived peptides were verified by SLA-1*0101 tetramer-based flow cytometry in peripheral blood mononuclear cells (PBMCs) of the donor pigs. These results refresh our understanding of MHC I molecular anchor peptides, and provide new insights into vaccine development for the prevention and control of ASF. IMPORTANCE The spread of African swine fever virus (ASFV) has caused enormous losses to the pork industry worldwide. Here, a series of ASFV-derived peptides were identified, which could bind to swine leukocyte antigen SLA-1*0101, a prevalent SLA allele among Yorkshire pigs. The crystal structure of four ASFV-derived peptides and one foot-and-mouth disease virus (FMDV)-derived peptide complexed with SLA-1*0101 revealed an unusual peptide anchoring mode of SLA-1*0101 with D and F pockets as anchoring pockets. Negatively-charged residues are preferred within the middle portion of SLA-1*0101-binding peptides. Notably, we determined an unexpected role of Arg114 of SLA-1*0101 as a "mooring stone" which pulls the peptide anchoring into the PBG in diverse "M" or "n" shaped conformation. Furthermore, T cells from donor pigs could activate through the recognition of ASFV-derived peptides. Our study sheds light on the uncommon presentation of ASFV peptides by swine MHC I and benefits the development of ASF vaccines.
Collapse
|
6
|
Wang P, Yue C, Liu K, Lu D, Liu S, Yao S, Li X, Su X, Ren K, Chai Y, Qi J, Zhao Y, Lou Y, Sun Z, Gao GF, Liu WJ. Peptide Presentations of Marsupial MHC Class I Visualize Immune Features of Lower Mammals Paralleled with Bats. THE JOURNAL OF IMMUNOLOGY 2021; 207:2167-2178. [PMID: 34535575 DOI: 10.4049/jimmunol.2100350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
Marsupials are one of three major mammalian lineages that include the placental eutherians and the egg-laying monotremes. The marsupial brushtail possum is an important protected species in the Australian forest ecosystem. Molecules encoded by the MHC genes are essential mediators of adaptive immune responses in virus-host interactions. Yet, nothing is known about the peptide presentation features of any marsupial MHC class I (MHC I). This study identified a series of possum MHC I Trvu-UB*01:01 binding peptides derived from wobbly possum disease virus (WPDV), a lethal virus of both captive and feral possum populations, and unveiled the structure of marsupial peptide/MHC I complex. Notably, we found the two brushtail possum-specific insertions, the 3-aa Ile52Glu53Arg54 and 1-aa Arg154 insertions are located in the Trvu-UB*01:01 peptide binding groove (PBG). The 3-aa insertion plays a pivotal role in maintaining the stability of the N terminus of Trvu-UB*01:01 PBG. This aspect of marsupial PBG is unexpectedly similar to the bat MHC I Ptal-N*01:01 and is shared with lower vertebrates from elasmobranch to monotreme, indicating an evolution hotspot that may have emerged from the pathogen-host interactions. Residue Arg154 insertion, located in the α2 helix, is available for TCR recognition, and it has a particular influence on promoting the anchoring of peptide WPDV-12. These findings add significantly to our understanding of adaptive immunity in marsupials and its evolution in vertebrates. Our findings have the potential to impact the conservation of the protected species brushtail possum and other marsupial species.
Collapse
Affiliation(s)
- Pengyan Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Dan Lu
- Savaid Medical School, University of Chinese Academy of Science, Beijing, China
| | - Sai Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sijia Yao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - George F Gao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; .,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - William J Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; .,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
7
|
Zhang Z, Zhang Y, Liu K, Li Y, Lu Q, Wang Q, Zhang Y, Wang L, Liao H, Zheng A, Ma S, Fan Z, Li H, Huang W, Bi Y, Zhao X, Wang Q, Gao GF, Xiao H, Tong Z, Qi J, Sun Y. The molecular basis for SARS-CoV-2 binding to dog ACE2. Nat Commun 2021; 12:4195. [PMID: 34234119 PMCID: PMC8263772 DOI: 10.1038/s41467-021-24326-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 can infect many domestic animals, including dogs. Herein, we show that dog angiotensin-converting enzyme 2 (dACE2) can bind to the SARS-CoV-2 spike (S) protein receptor binding domain (RBD), and that both pseudotyped and authentic SARS-CoV-2 can infect dACE2-expressing cells. We solved the crystal structure of RBD in complex with dACE2 and found that the total number of contact residues, contact atoms, hydrogen bonds and salt bridges at the binding interface in this complex are slightly fewer than those in the complex of the RBD and human ACE2 (hACE2). This result is consistent with the fact that the binding affinity of RBD to dACE2 is lower than that of hACE2. We further show that a few important mutations in the RBD binding interface play a pivotal role in the binding affinity of RBD to both dACE2 and hACE2. Our work reveals a molecular basis for cross-species transmission and potential animal spread of SARS-CoV-2, and provides new clues to block the potential transmission chains of this virus.
Collapse
Affiliation(s)
- Zengyuan Zhang
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yanfang Zhang
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China ,grid.458513.e0000 0004 1763 3963Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Kefang Liu
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiong Lu
- grid.410749.f0000 0004 0577 6238Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Qingling Wang
- grid.412262.10000 0004 1761 5538Shanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an, China
| | - Yuqin Zhang
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Liang Wang
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hanyi Liao
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Anqi Zheng
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Sufang Ma
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zheng Fan
- grid.458488.d0000 0004 0627 1442Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huifang Li
- grid.414252.40000 0004 1761 8894The Northern Medical District of the PLA General Hospital, Beijing, China
| | - Weijin Huang
- grid.410749.f0000 0004 0577 6238Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Yuhai Bi
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qihui Wang
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F. Gao
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haixia Xiao
- grid.458513.e0000 0004 1763 3963Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhou Tong
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yeping Sun
- grid.458488.d0000 0004 0627 1442CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|