1
|
Peng Q, Wang L, Zuo L, Gao S, Jiang X, Han Y, Lin J, Peng M, Wu N, Tang Y, Tian H, Zhou Y, Liao Q. HPV E6/E7: insights into their regulatory role and mechanism in signaling pathways in HPV-associated tumor. Cancer Gene Ther 2024; 31:9-17. [PMID: 38102462 DOI: 10.1038/s41417-023-00682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 12/17/2023]
Abstract
Human papillomavirus (HPV) is a class of envelope-free double-stranded DNA virus. HPV infection has been strongly associated with the development of many malignancies, such as cervical, anal and oral cancers. The viral oncoproteins E6 and E7 perform central roles on HPV-induced carcinogenic processes. During tumor development, it usually goes along with the activation of abnormal signaling pathways. E6 and E7 induces changes in cell cycle, proliferation, invasion, metastasis and other biological behaviors by affecting downstream tumor-related signaling pathways, thus promoting malignant transformation of cells and ultimately leading to tumorigenesis and progression. Here, we summarized that E6 and E7 proteins promote HPV-associated tumorigenesis and development by regulating the activation of various tumor-related signaling pathways, for example, the Wnt/β-catenin, PI3K/Akt, and NF-kB signaling pathway. We also discussed the importance of HPV-encoded E6 and E7 and their regulated tumor-related signaling pathways for the diagnosis and effective treatment of HPV-associated tumors.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Liang Zuo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shuichao Gao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hao Tian
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Yapindi L, Bowley T, Kurtaneck N, Bergeson RL, James K, Wilbourne J, Harrod CK, Hernandez BY, Emerling BM, Yates C, Harrod R. Activation of p53-regulated pro-survival signals and hypoxia-independent mitochondrial targeting of TIGAR by human papillomavirus E6 oncoproteins. Virology 2023; 585:1-20. [PMID: 37257253 PMCID: PMC10527176 DOI: 10.1016/j.virol.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
The high-risk subtype human papillomaviruses (hrHPVs) infect and oncogenically transform basal epidermal stem cells associated with the development of squamous-cell epithelial cancers. The viral E6 oncoprotein destabilizes the p53 tumor suppressor, inhibits p53 K120-acetylation by the Tat-interacting protein of 60 kDa (TIP60, or Kat5), and prevents p53-dependent apoptosis. Intriguingly, the p53 gene is infrequently mutated in HPV + cervical cancer clinical isolates which suggests a possible paradoxical role for this gatekeeper in viral carcinogenesis. Here, we demonstrate that E6 activates the TP53-induced glycolysis and apoptosis regulator (TIGAR) and protects cells against oncogene-induced oxidative genotoxicity. The E6 oncoprotein induces a Warburg-like stress response and activates PI3K/PI5P4K/AKT-signaling that phosphorylates the TIGAR on serine residues and induces its hypoxia-independent mitochondrial targeting in hrHPV-transformed cells. Primary HPV + cervical cancer tissues contain high levels of TIGAR, p53, and c-Myc and our xenograft studies have further shown that lentiviral-siRNA-knockdown of TIGAR expression inhibits hrHPV-induced tumorigenesis in vivo. These findings suggest the modulation of p53 pro-survival signals and the antioxidant functions of TIGAR could have key ancillary roles during HPV carcinogenesis.
Collapse
Affiliation(s)
- Lacin Yapindi
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Tetiana Bowley
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Nick Kurtaneck
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Rachel L Bergeson
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Kylie James
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Jillian Wilbourne
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Carolyn K Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Brenda Y Hernandez
- Hawaii Tumor Registry, University of Hawaii Cancer Center, Honolulu, HI, 96813, United States
| | | | - Courtney Yates
- Laboratory Animal Resource Center, Southern Methodist University, Dallas, TX, 75275, United States
| | - Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States.
| |
Collapse
|
3
|
Xin S, Liu L, Li Y, Yang J, Zuo L, Cao P, Yan Q, Li S, Yang L, Cui T, Lu J. Cyclophilin A binds to AKT1 and facilitates the tumorigenicity of Epstein-Barr virus by mediating the activation of AKT/mTOR/NF-κB positive feedback loop. Virol Sin 2022; 37:913-921. [PMID: 36075565 PMCID: PMC9797372 DOI: 10.1016/j.virs.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/31/2022] [Indexed: 01/19/2023] Open
Abstract
The AKT/mTOR and NF-κB signalings are crucial pathways activated in cancers including nasopharyngeal carcinoma (NPC), which is prevalent in southern China and closely related to Epstein-Barr virus (EBV) infection. How these master pathways are persistently activated in EBV-associated NPC remains to be investigated. Here we demonstrated that EBV-encoded latent membrane protein 1 (LMP1) promoted cyclophilin A (CYPA) expression through the activation of NF-κB. The depletion of CYPA suppressed cell proliferation and facilitated apoptosis. CYPA was able to bind to AKT1, thus activating AKT/mTOR/NF-κB signaling cascade. Moreover, the use of mTOR inhibitor, rapamycin, subverted the activation of the positive feedback loop, NF-κB/CYPA/AKT/mTOR. It is reasonable that LMP1 expression derived from initial viral infection is enough to assure the constant potentiation of AKT/mTOR and NF-κB signalings. This may partly explain the fact that EBV serves as a tumor-promoting factor with minimal expression of the viral oncoprotein LMP1 in malignancies. Our findings provide new insight into the understanding of causative role of EBV in tumorigenicity during latent infection.
Collapse
Affiliation(s)
- Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Lingzhi Liu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Jing Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Lielian Zuo
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Pengfei Cao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Qijia Yan
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Shen Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Taimei Cui
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China,Corresponding author.
| |
Collapse
|
4
|
Prakasam G, Iqbal MA, Srivastava A, Bamezai RNK, Singh RK. HPV18 oncoproteins driven expression of PKM2 reprograms HeLa cell metabolism to maintain aerobic glycolysis and viability. Virusdisease 2022; 33:223-235. [PMID: 36277414 PMCID: PMC9481809 DOI: 10.1007/s13337-022-00776-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
The molecular basis of human papillomavirus (HPV)-mediated cellular immortalization and malignant transformation has illustrated an indispensable role of viral E6/E7-oncoproteins. However, the impact of viral-oncoproteins on the metabolic phenotype of cancer cells remains ambiguous. We showed silencing of HPV18-encoded E6/E7-oncoprotein significantly reduced glucose consumption, lactate production, ATP level and viability. Silencing of HPV18-encoded E6/E7 in HeLa cells significantly down-regulated expression and activity of HK1, HK2, LDHA, and LDHB. Interestingly, there was an increased pyruvate kinase activity due to switch in expression from PKM2 isoform to PKM1. The switch in favor of alternatively spliced isoform PKM1, was regulated by viral-E6/E7-oncoprotein by inhibiting the c-Myc/hnRNP-axis. Further, the near absence of the PKM1 protein despite an adequate amount of PKM1 mRNA in HeLa cells was due to its proteasomal degradation. Our results suggests HPV18-encoded E6/E7 driven preferential expression of PKM2 is essential to support aerobic glycolysis and cell proliferation. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-022-00776-w.
Collapse
Affiliation(s)
- Gopinath Prakasam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Anusha Srivastava
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Rameshwar N. K. Bamezai
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Delhi School of Public Health, University of Delhi, New Delhi, 110007 India
| | - Rajnish Kumar Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
5
|
Moreno R, Buehler D, Lambert PF. MmuPV1-Induced Cutaneous Squamous Cell Carcinoma Arises Preferentially from Lgr5+ Epithelial Progenitor Cells. Viruses 2022; 14:1751. [PMID: 36016373 PMCID: PMC9414603 DOI: 10.3390/v14081751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Murine papillomavirus, MmuPV1, causes natural infections in laboratory mice that can progress to squamous cell carcinoma (SCC) making it a useful preclinical model to study the role of papillomaviruses in cancer. Papillomavirus can infect cells within hair follicles, which contain multiple epithelial progenitor cell populations, including Lgr5+ progenitors, and transgenic mice expressing human papillomavirus oncogenes develop tumors derived from Lgr5 progenitors. We therefore tested the hypothesis that Lgr5+ progenitors contribute to neoplastic lesions arising in skins infected with MmuPV1 by performing lineage tracing experiments. Ears of 6-8-week-old Lgr5-eGFP-IRES-CreERT2/Rosa26LSLtdTomato mice were treated topically with 4-OH Tamoxifen to label Lgr5+ progenitor cells and their progeny with tdTomato and, 72 h later, infected with MmuPV1. Four months post-infection, tissue at the infection site was harvested for histopathological analysis and immunofluorescence to determine the percentage of tdTomato+ cells within the epithelial lesions caused by MmuPV1. Squamous cell dysplasia showed a low percentage of tdTomato+ cells (7%), indicating that it arises primarily from non-Lgr5 progenitor cells. In contrast, cutaneous SCC (cSCC) was substantially more positive for tdTomato+ cells (42%), indicating that cSCCs preferentially arise from Lgr5+ progenitors. Biomarker analyses of dysplasia vs. cSCC revealed further differences consistent with cSCC arising from LGR5+ progenitor cells.
Collapse
Affiliation(s)
- Ruben Moreno
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
6
|
Xiong J, Li G, Mei X, Ding J, Shen H, Zhu D, Wang H. Co-Delivery of p53 Restored and E7 Targeted Nucleic Acids by Poly (Beta-Amino Ester) Complex Nanoparticles for the Treatment of HPV Related Cervical Lesions. Front Pharmacol 2022; 13:826771. [PMID: 35185576 PMCID: PMC8855959 DOI: 10.3389/fphar.2022.826771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
The p53 gene has the highest mutation frequency in tumors, and its inactivation can lead to malignant transformation, such as cell cycle arrest and apoptotic inhibition. Persistent high-risk human papillomavirus (HR-HPV) infection is the leading cause of cervical cancer. P53 was inactivated by HPV oncoprotein E6, promoting abnormal cell proliferation and carcinogenesis. To study the treatment of cervical intraepithelial neoplasia (CIN) and cervical cancer by restoring p53 expression and inactivating HPV oncoprotein, and to verify the effectiveness of nano drugs based on nucleic acid delivery in cancer treatment, we developed poly (beta-amino ester)537, to form biocompatible and degradable nanoparticles with plasmids (expressing p53 and targeting E7). In vitro and in vivo experiments show that nanoparticles have low toxicity and high transfection efficiency. Nanoparticles inhibited the growth of xenograft tumors and successfully reversed HPV transgenic mice’s cervical intraepithelial neoplasia. Our work suggests that the restoration of p53 expression and the inactivation of HPV16 E7 are essential for blocking the development of cervical cancer. This study provides new insights into the precise treatment of HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jinfeng Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guannan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Mei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Shen, ; Da Zhu, ; Hui Wang,
| | - Da Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Shen, ; Da Zhu, ; Hui Wang,
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Shen, ; Da Zhu, ; Hui Wang,
| |
Collapse
|
7
|
Lin Z, Zhao Y, Li Q, Ci X, Ye X, Chen G, Tu Q, Feng W, Jiang P, Zhu S, Xue X, Saunders NA, Zhang L, Zhu X, Zhao KN. OUP accepted manuscript. Carcinogenesis 2022; 43:479-493. [PMID: 35134836 DOI: 10.1093/carcin/bgac010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhongmin Lin
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yu Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Qijia Li
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xingyuan Ci
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiaoxian Ye
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Guorong Chen
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Quanmei Tu
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Weixu Feng
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Pengfei Jiang
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Shanli Zhu
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiangyang Xue
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Nicholas A Saunders
- Diamantina Institute for Cancer Immunology and Metabolic Medicine, The University of Queensland, TRI, Woolloongabba, Queensland, Australia
| | - Lifang Zhang
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Kong-Nan Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
8
|
Wei T, Choi S, Buehler D, Lee D, Ward-Shaw E, Anderson RA, Lambert PF. Role of IQGAP1 in Papillomavirus-Associated Head and Neck Tumorigenesis. Cancers (Basel) 2021; 13:2276. [PMID: 34068608 PMCID: PMC8126105 DOI: 10.3390/cancers13092276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Approximately 25% of head and neck squamous cell carcinomas (HNSCC) are associated with human papillomavirus (HPV) infection. In these cancers as well as in HPV-associated anogenital cancers, PI3K signaling is highly activated. We previously showed that IQ motif-containing GTPase activating protein 1 (IQGAP1), a PI3K pathway scaffolding protein, is overexpressed in and contributes to HNSCC and that blocking IQGAP1-mediated PI3K signaling reduces HPV-positive HNSCC cell survival and migration. In this study, we tested whether IQGAP1 promotes papillomavirus (PV)-associated HNSCCs. IQGAP1 was necessary for optimal PI3K signaling induced by HPV16 oncoproteins in transgenic mice and MmuPV1 infection, a mouse papillomavirus that causes HNSCC in mice. Furthermore, we found that, at 6 months post-infection, MmuPV1-infected Iqgap1-/- mice developed significantly less severe tumor phenotypes than MmuPV1-infected Iqgap1+/+ mice, indicating a role of IQGAP1 in MmuPV1-associated HNSCC. The tumors resulting from MmuPV1 infection showed features consistent with HPV infection and HPV-associated cancer. However, such IQGAP1-dependent effects on disease severity were not observed in an HPV16 transgenic mouse model for HNC. This may reflect that IQGAP1 plays a role in earlier stages of viral pathogenesis, or other activities of HPV16 oncogenes are more dominant in driving carcinogenesis than their influence on PI3K signaling.
Collapse
Affiliation(s)
- Tao Wei
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (T.W.); (D.L.); (E.W.-S.)
| | - Suyong Choi
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (S.C.); (R.A.A.)
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
| | - Denis Lee
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (T.W.); (D.L.); (E.W.-S.)
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (T.W.); (D.L.); (E.W.-S.)
| | - Richard A. Anderson
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (S.C.); (R.A.A.)
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (T.W.); (D.L.); (E.W.-S.)
| |
Collapse
|
9
|
Prusinkiewicz MA, Mymryk JS. Metabolic Control by DNA Tumor Virus-Encoded Proteins. Pathogens 2021; 10:560. [PMID: 34066504 PMCID: PMC8148605 DOI: 10.3390/pathogens10050560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Viruses co-opt a multitude of host cell metabolic processes in order to meet the energy and substrate requirements for successful viral replication. However, due to their limited coding capacity, viruses must enact most, if not all, of these metabolic changes by influencing the function of available host cell regulatory proteins. Typically, certain viral proteins, some of which can function as viral oncoproteins, interact with these cellular regulatory proteins directly in order to effect changes in downstream metabolic pathways. This review highlights recent research into how four different DNA tumor viruses, namely human adenovirus, human papillomavirus, Epstein-Barr virus and Kaposi's associated-sarcoma herpesvirus, can influence host cell metabolism through their interactions with either MYC, p53 or the pRb/E2F complex. Interestingly, some of these host cell regulators can be activated or inhibited by the same virus, depending on which viral oncoprotein is interacting with the regulatory protein. This review highlights how MYC, p53 and pRb/E2F regulate host cell metabolism, followed by an outline of how each of these DNA tumor viruses control their activities. Understanding how DNA tumor viruses regulate metabolism through viral oncoproteins could assist in the discovery or repurposing of metabolic inhibitors for antiviral therapy or treatment of virus-dependent cancers.
Collapse
Affiliation(s)
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada;
- Department of Otolaryngology, Head & Neck Surgery, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
10
|
Sun Y, Wang Z, Qiu S, Wang R. Therapeutic strategies of different HPV status in Head and Neck Squamous Cell Carcinoma. Int J Biol Sci 2021; 17:1104-1118. [PMID: 33867833 PMCID: PMC8040311 DOI: 10.7150/ijbs.58077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the 9th most common malignant tumor in the world. Based on the etiology, HNSCC has two main subtypes: human papillomavirus (HPV) -related and HPV-unrelated. HPV-positive HNSCC is more sensitive to treatment with favorable survival. Due to the different biological behaviors, individual therapy is necessary and urgently required to deduce the therapeutic intensity of HPV-positive disease and look for a more effective and toxicity-acceptable regimen for HPV-negative disease. EGFR amplification and PI3K/AKT/mTOR pathway aberrant activation are quite common in HPV-positive HNSCC. Besides, HPV infection alters immune cell infiltrating in HNSCC and encompasses a diverse and heterogeneous landscape with more immune infiltration. On the other hand, the chance of HPV-negative cancers harboring mutation on the P53 gene is significantly higher than that of HPV-positive disease. This review focuses on the updated preclinical and clinical data of HPV-positive and HPV-negative HNSCC and discusses the therapeutic strategies of different HPV status in HNSCC.
Collapse
Affiliation(s)
- Yingming Sun
- Department of Radiation and Medical Oncology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365001, P. R. China
| | - Zhe Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, P. R. China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Sufang Qiu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, P.R. China
| | - Ruoyu Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, P. R. China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| |
Collapse
|
11
|
Morales-Garcia V, Contreras-Paredes A, Martinez-Abundis E, Gomez-Crisostomo NP, Lizano M, Hernandez-Landero F, de la Cruz-Hernandez E. The high-risk HPV E6 proteins modify the activity of the eIF4E protein via the MEK/ERK and AKT/PKB pathways. FEBS Open Bio 2020; 10:2541-2552. [PMID: 32981220 PMCID: PMC7714072 DOI: 10.1002/2211-5463.12987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Previous studies have proposed that the human papillomavirus (HPV) E6 oncoproteins modify the transcriptional activity of eIF4E through mechanisms dependent on p53 degradation. However, the effect of these oncoproteins on pathways regulating the activity of the eIF4E protein remains poorly understood. Hence, we investigated the mechanisms whereby E6 proteins regulate the activity of the eIF4E protein and its effect on target genes. Overexpression of E6 constructs (HPV-6, HPV-16, HPV-18, and HPV52) showed that E6 oncoproteins increased phosphorylation of the eIF4E protein (Serine-209). This result was mainly mediated by phosphorylation of the 4EBP1 protein via the PI3K/AKT pathway. Additionally, the pharmacological inhibition of eIF4E phosphorylation in cervical cancer cell lines substantially reduced the protein levels of CCND1 and ODC1, indicating that E6 of the high-risk genotypes may modify protein synthesis of the eIF4E target genes by increasing the activity of the AKT and ERK pathways.
Collapse
Affiliation(s)
- Vicente Morales-Garcia
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Mexico
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional de Cancerología- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Martinez-Abundis
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Mexico
| | - Nancy P Gomez-Crisostomo
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional de Cancerología- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Fernanda Hernandez-Landero
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Mexico
| | - Erick de la Cruz-Hernandez
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Mexico
| |
Collapse
|
12
|
Olmedo-Nieva L, Muñoz-Bello JO, Manzo-Merino J, Lizano M. New insights in Hippo signalling alteration in human papillomavirus-related cancers. Cell Signal 2020; 76:109815. [PMID: 33148514 DOI: 10.1016/j.cellsig.2020.109815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
The persistent infection with high-risk human papillomavirus (HPV) is an etiologic factor for the development of different types of cancers, mainly attributed to the continuous expression of E6 and E7 HPV oncoproteins, which regulate several cell signalling pathways including the Hippo pathway. It has been demonstrated that E6 proteins promote the increase of the Hippo elements YAP, TAZ and TEAD, at protein level, as well as their transcriptional targets. Also, E6 and E7 oncoproteins promote nuclear YAP localization and a decrease in YAP negative regulators such as MST1, PTPN14 or SOCS6. Interestingly, Hippo signalling components modulate HPV activity, such as TEAD1 and the transcriptional co-factor VGLL1, induce the activation of HPV early and late promoters, while hyperactivation of YAP in specific cells facilitates virus infection by increasing putative HPV receptors and by evading innate immunity. Additionally, alterations in Hippo signalling elements have been found in HPV-related cancers and particularly, the involvement of HPV oncoproteins on the regulation of some of these Hippo components has been also proposed, although the precise mechanisms remain unclear. The present review addresses the recent findings describing the interplay between HPV and Hippo signalling in HPV-related cancers, a fact that highlights the importance of developing more in-depth studies in this field to establish key therapeutic targets.
Collapse
Affiliation(s)
- Leslie Olmedo-Nieva
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - J Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede sur, Mexico City 14330, Mexico
| | - Joaquín Manzo-Merino
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Cátedras CONACyT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico.
| |
Collapse
|
13
|
Kajitani N, Schwartz S. Role of Viral Ribonucleoproteins in Human Papillomavirus Type 16 Gene Expression. Viruses 2020; 12:E1110. [PMID: 33007936 PMCID: PMC7600041 DOI: 10.3390/v12101110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPVs) depend on the cellular RNA-processing machineries including alternative RNA splicing and polyadenylation to coordinate HPV gene expression. HPV RNA processing is controlled by cis-regulatory RNA elements and trans-regulatory factors since the HPV splice sites are suboptimal. The definition of HPV exons and introns may differ between individual HPV mRNA species and is complicated by the fact that many HPV protein-coding sequences overlap. The formation of HPV ribonucleoproteins consisting of HPV pre-mRNAs and multiple cellular RNA-binding proteins may result in the different outcomes of HPV gene expression, which contributes to the HPV life cycle progression and HPV-associated cancer development. In this review, we summarize the regulation of HPV16 gene expression at the level of RNA processing with focus on the interactions between HPV16 pre-mRNAs and cellular RNA-binding factors.
Collapse
Affiliation(s)
- Naoko Kajitani
- Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden;
| | | |
Collapse
|
14
|
Zhou Y, Pei F, Ji M, Zhang F, Sun Y, Zhao Q, Wang X, Hong Y, Tian J, Wang Y, Chen JJ. WDHD1 facilitates G1 checkpoint abrogation in HPV E7 expressing cells by modulating GCN5. BMC Cancer 2020; 20:840. [PMID: 32883234 PMCID: PMC7469104 DOI: 10.1186/s12885-020-07287-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Genomic instability is a hallmark of cancer. The G1 checkpoint allows cells to repair damaged DNA that may lead to genomic instability. The high-risk human papillomavirus (HPV) E7 gene can abrogate the G1 checkpoint, yet the mechanism is still not fully understood. Our recent study showed that WDHD1 (WD repeat and high mobility group [HMG]-box DNA-binding protein 1) plays a role in regulating G1 checkpoint of E7 expressing cells. In this study, we explored the mechanism by which WDHD1 regulates G1 checkpoint in HPV E7 expressing cells. Methods NIKS and RPE1 derived cell lines were used. Real-time PCR, Rescue experiment, FACS and BrdU labeling experiments were performed to examine role of GCN5 in G1 checkpoint abrogation in HPV-16 E7 expressing cells. Results In this study, we observed that WDHD1 facilitates G1 checkpoint abrogation by modulating GCN5 in HPV E7 expressing cells. Notably, depletion of WDHD1 caused G1 arrest while overexpression of GCN5 rescued the inhibitory effects of WDHD1 knockdown on G1/S progression. Furthermore, siWDHD1 significantly decreased cell cycle proliferation and DNA synthesis that was correlated with Akt phosphorylation (p-Akt), which was reversed by GCN5 overexpression in HPV E7 expressing cells. Conclusions In summary, our data identified a WDHD1/GCN5/Akt pathway leading to the abrogation of G1 checkpoint in the presence of damaged DNA, which may cause genomic instability and eventually HPV induced tumorigenesis.
Collapse
Affiliation(s)
- Yunying Zhou
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China.,Shandong LaiBo Biotechnology co., Ltd, Jinan, China
| | - Fengyan Pei
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Mingyu Ji
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Fang Zhang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Yingshuo Sun
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qianqian Zhao
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Xiao Wang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Yatian Hong
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Juanjuan Tian
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Yunshan Wang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China.
| | - Jason J Chen
- Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
15
|
Pereira EJ, Burns JS, Lee CY, Marohl T, Calderon D, Wang L, Atkins KA, Wang CC, Janes KA. Sporadic activation of an oxidative stress-dependent NRF2-p53 signaling network in breast epithelial spheroids and premalignancies. Sci Signal 2020; 13:13/627/eaba4200. [PMID: 32291314 DOI: 10.1126/scisignal.aba4200] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Breast and mammary epithelial cells experience different local environments during tissue development and tumorigenesis. Microenvironmental heterogeneity gives rise to distinct cell regulatory states whose identity and importance are just beginning to be appreciated. Cellular states diversify when clonal three-dimensional (3D) spheroids are cultured in basement membrane, and one such state is associated with stress tolerance and poor response to anticancer therapeutics. Here, we found that this state was jointly coordinated by the NRF2 and p53 pathways, which were costabilized by spontaneous oxidative stress within 3D cultures. Inhibition of NRF2 or p53 individually disrupted some of the transcripts defining the regulatory state but did not yield a notable phenotype in nontransformed breast epithelial cells. In contrast, combined perturbation prevented 3D growth in an oxidative stress-dependent manner. By integrating systems models of NRF2 and p53 signaling in a single oxidative stress network, we recapitulated these observations and made predictions about oxidative stress profiles during 3D growth. NRF2 and p53 signaling were similarly coordinated in normal breast epithelial tissue and hormone-negative ductal carcinoma in situ lesions but were uncoupled in triple-negative breast cancer (TNBC), a subtype in which p53 is usually mutated. Using the integrated model, we correlated the extent of this uncoupling in TNBC cell lines with the importance of NRF2 in the 3D growth of these cell lines and their predicted handling of oxidative stress. Our results point to an oxidative stress tolerance network that is important for single cells during glandular development and the early stages of breast cancer.
Collapse
Affiliation(s)
- Elizabeth J Pereira
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Joseph S Burns
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Christina Y Lee
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Taylor Marohl
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Delia Calderon
- Biology and Chemistry Programs, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Chun-Chao Wang
- Institute of Molecular Medicine and Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA. .,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
16
|
Zhao HY, Yang JH, Wang X, Sun J, Wang EH, Wu GP. Analysis of human papillomavirus 16 E6/E7 and L1 in the bronchial brushing cells of patients with squamous cell carcinoma of the lungs. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4124-4129. [PMID: 31949804 PMCID: PMC6962774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/10/2018] [Indexed: 06/10/2023]
Abstract
A type of high-risk human papillomavirus (HPV), HPV16 takes part in lung carcinogenesis. E6 and E7 are the major oncoproteins of high-risk HPV, and L1 is the major capsid protein. In this study, we detected their mRNA expressions and analyzed their relationship in the bronchial brushing cells of 211 patients with malignant lesions (squamous cell carcinoma of the lungs) and benign lesions (pneumonia and tuberculosis) by quantitative real-time PCR. HPV16 E6, E7, and L1 mRNA expressions in the malignant group were statistically higher than in benign group (P<0.05), and their mRNA expressions in the squamous cell carcinoma of the lung group were statistically higher than in pneumonia group (P<0.05). There was a negative correlation between L1 and E6 expression in the squamous cell carcinoma of the lungs group (Spearman correlation coefficient r=-0.498, P=0.000). An ROC curve shows that the combination of L1 and E6 is a significant predictor for the diagnosis of squamous cell carcinoma of the lungs (AUC: 0.878; Sensitivity: 96.00%; Specificity: 77.91%), which could make up for the deficiency of cytologic testing. The combined detection of HPV16 E6 and L1 mRNA expressions in bronchial brushing cells by quantitative real-time PCR has a great significance for the diagnosis of squamous cell carcinoma of the lungs, providing new therapeutic targets for the clinical treatment of squamous cell carcinoma of the lungs.
Collapse
Affiliation(s)
- Huan-Yu Zhao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University No. 155 Nanjing North Street, Heping District, Shenyang 110001, Liaoning, China
| | - Jing-Hua Yang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University No. 155 Nanjing North Street, Heping District, Shenyang 110001, Liaoning, China
| | - Xin Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University No. 155 Nanjing North Street, Heping District, Shenyang 110001, Liaoning, China
| | - Jian Sun
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University No. 155 Nanjing North Street, Heping District, Shenyang 110001, Liaoning, China
| | - En-Hua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University No. 155 Nanjing North Street, Heping District, Shenyang 110001, Liaoning, China
| | - Guang-Ping Wu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University No. 155 Nanjing North Street, Heping District, Shenyang 110001, Liaoning, China
| |
Collapse
|
17
|
Webb Strickland S, Brimer N, Lyons C, Vande Pol SB. Human Papillomavirus E6 interaction with cellular PDZ domain proteins modulates YAP nuclear localization. Virology 2018; 516:127-138. [PMID: 29346075 DOI: 10.1016/j.virol.2018.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023]
Abstract
HPV E6 oncoproteins associate with cellular PDZ proteins. In addition to previously identified cellular PDZ proteins, we found association of the HPV16 E6 PBM with the Dystrophin Glycoprotein Complex, LRCC1, and SLC9A3R2. HPV18 E6 had additional associations when lysates from adenomatous cell lines were used including LRPPRC, RLGAPB, EIF3A, SMC2 and 3, AMOT, AMOTL1, and ARHGEF1; some of these cellular PDZ proteins are implicated in the regulation of the YAP1 transcriptional co-activator. In keratinocytes, nuclear translocation of YAP1 was promoted by the complete HPV-16 genome, or by expression of the individual E6 or E7 oncoproteins; the activity of E6 required an intact PBM at the carboxy-terminus. This work demonstrates that E6 association with cellular PDZ proteins promotes the nuclear localization of YAP1. The ability of E6 to promote the nuclear transport of YAP1 thus identifies an E6 activity that could contribute to the transformation of cells by E6.
Collapse
Affiliation(s)
- Sydney Webb Strickland
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Charles Lyons
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Scott B Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States.
| |
Collapse
|
18
|
Knapp KA, Pires ES, Adair SJ, Mandal A, Mills AM, Olson WC, Slingluff CL, Parsons JT, Bauer TW, Bullock TN, Herr JC. Evaluation of SAS1B as a target for antibody-drug conjugate therapy in the treatment of pancreatic cancer. Oncotarget 2018; 9:8972-8984. [PMID: 29507667 PMCID: PMC5823626 DOI: 10.18632/oncotarget.23944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022] Open
Abstract
Successful therapeutic options remain elusive for pancreatic cancer. The exquisite sensitivity and specificity of humoral and cellular immunity may provide therapeutic approaches if antigens specific for pancreatic cancer cells can be identified. Here we characterize SAS1B (ovastacin, ASTL, astacin-like), a cancer-oocyte antigen, as an attractive immunotoxin target expressed at the surface of human pancreatic cancer cells, with limited expression among normal tissues. Immunohistochemistry shows that most pancreatic cancers are SAS1Bpos (68%), while normal pancreatic ductal epithelium is SAS1Bneg. Pancreatic cancer cell lines developed from patient-derived xenograft models display SAS1B cell surface localization, in addition to cytoplasmic expression, suggesting utility for SAS1B in multiple immunotherapeutic approaches. When pancreatic cancer cells were treated with an anti-SAS1B antibody-drug conjugate, significant cell death was observed at 0.01-0.1 μg/mL, while SAS1Bneg human keratinocytes were resistant. Cytotoxicity was correlated with SAS1B cell surface expression; substantial killing was observed for tumors with low steady state SAS1B expression, suggesting a substantial proportion of SAS1Bpos tumors can be targeted in this manner. These results demonstrate SAS1B is a surface target in pancreatic cancer cells capable of binding monoclonal antibodies, internalization, and delivering cytotoxic drug payloads, supporting further development of SAS1B as a novel target for pancreatic cancer.
Collapse
Affiliation(s)
- Kiley A Knapp
- Department of Pathology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Eusebio S Pires
- Department of Cell Biology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Department of Obstetrics and Gynecology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Sara J Adair
- Department of Surgery, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Arabinda Mandal
- Department of Cell Biology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Anne M Mills
- Department of Pathology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Walter C Olson
- Department of Surgery, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Craig L Slingluff
- Department of Surgery, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - J Thomas Parsons
- Department of Microbiology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Todd W Bauer
- Department of Surgery, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Timothy N Bullock
- Department of Pathology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - John C Herr
- Department of Pathology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Department of Cell Biology, The School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
19
|
Yin Y, Dang W, Zhou X, Xu L, Wang W, Cao W, Chen S, Su J, Cai X, Xiao S, Peppelenbosch MP, Pan Q. PI3K-Akt-mTOR axis sustains rotavirus infection via the 4E-BP1 mediated autophagy pathway and represents an antiviral target. Virulence 2017; 9:83-98. [PMID: 28475412 PMCID: PMC5955461 DOI: 10.1080/21505594.2017.1326443] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rotavirus infection is a major cause of severe dehydrating diarrhea in infants younger than 5 y old and in particular cases of immunocompromised patients irrespective to the age of the patients. Although vaccines have been developed, antiviral therapy is an important complement that cannot be substituted. Because of the lack of specific approved treatment, it is urgent to facilitate the cascade of further understanding of the infection biology, identification of druggable targets and the final development of effective antiviral therapies. PI3K-Akt-mTOR signaling pathway plays a vital role in regulating the infection course of many viruses. In this study, we have dissected the effects of PI3K-Akt-mTOR signaling pathway on rotavirus infection using both conventional cell culture models and a 3D model of human primary intestinal organoids. We found that PI3K-Akt-mTOR signaling is essential in sustaining rotavirus infection. Thus, blocking the key elements of this pathway, including PI3K, mTOR and 4E-BP1, has resulted in potent anti-rotavirus activity. Importantly, a clinically used mTOR inhibitor, rapamycin, potently inhibited both experimental and patient-derived rotavirus strains. This effect involves 4E-BP1 mediated induction of autophagy, which in turn exerts anti-rotavirus effects. These results revealed new insights on rotavirus-host interactions and provided new avenues for antiviral drug development.
Collapse
Affiliation(s)
- Yuebang Yin
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Wen Dang
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Xinying Zhou
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Lei Xu
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Wenshi Wang
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Wanlu Cao
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Sunrui Chen
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Junhong Su
- b Medical Faculty, Kunming University of Science and Technology , Kunming , P. R. China
| | - Xuepeng Cai
- c State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Lanzhou , P. R. China
| | - Shaobo Xiao
- d State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , P. R. China
| | - Maikel P Peppelenbosch
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Qiuwei Pan
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| |
Collapse
|