1
|
Tessema MB, Feng S, Enosi Tuipulotu D, Farrukee R, Ngo C, Gago da Graça C, Yamomoto M, Utzschneider DT, Brooks AG, Londrigan SL, Man SM, Reading PC. Mouse guanylate-binding proteins of the chromosome 3 cluster do not mediate antiviral activity in vitro or in mouse models of infection. Commun Biol 2024; 7:1050. [PMID: 39183326 PMCID: PMC11345437 DOI: 10.1038/s42003-024-06748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Dynamin-like GTPase proteins, including myxoma (Mx) and guanylate-binding proteins (GBPs), are among the many interferon stimulated genes induced following viral infections. While studies report that human (h)GBPs inhibit different viruses in vitro, few have convincingly demonstrated that mouse (m)GBPs mediate antiviral activity, although mGBP-deficient mice have been used extensively to define their importance in immunity to diverse intracellular bacteria and protozoa. Herein, we demonstrate that individual (overexpression) or collective (knockout (KO) mice) mGBPs of the chromosome 3 cluster (mGBPchr3) do not inhibit replication of five viruses from different virus families in vitro, nor do we observe differences in virus titres recovered from wild type versus mGBPchr3 KO mice after infection with three of these viruses (influenza A virus, herpes simplex virus type 1 or lymphocytic choriomeningitis virus). These data indicate that mGBPchr3 do not appear to be a major component of cell-intrinsic antiviral immunity against the diverse viruses tested in our studies.
Collapse
Affiliation(s)
- Melkamu B Tessema
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Shouya Feng
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - Rubaiyea Farrukee
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Chinh Ngo
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Catarina Gago da Graça
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Masahiro Yamomoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia.
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia.
| |
Collapse
|
2
|
Li R, Zhai S, Gao S, Yang X, Zhao J, Zhang X, Wang Z. Goose IFIT5 positively regulates goose astrovirus replication in GEF cells. Poult Sci 2024; 103:103930. [PMID: 38908126 PMCID: PMC11253660 DOI: 10.1016/j.psj.2024.103930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024] Open
Abstract
Interferon-induced protein with tetratricopeptide repeats (IFITs), a family of proteins strongly induced by type I interferon (IFN-I), are deeply involved in many cellular and viral processes. IFIT5, the sole protein in this family found in birds, also plays a crucial role in regulating virus infection. In this study, goose IFIT5 (gIFIT5) was first cloned from peripheral blood lymphocyte (PBL) and phylogenetic analysis showed that it was highly homologous with duck IFIT5 (dIFIT5), sharing 94.6% identity in amino acid sequence. Subsequently, the expression kinetics of gIFIT5 during goose astrovirus (GAstV) infection and the regulatory effect of gIFIT5 on GAstV proliferation were evaluated. Results showed that the mRNA and protein expression level of gIFIT5 was greatly induced by GAstV infection, especially at 12 hpi. Importantly, gIFIT5 could conversely promote GAstV replication in GEF cells. Virus titers in gIFIT5 overexpression group were significantly higher than those in control group at 12 and 24 hpi. Western blot and quantitative real-time PCR (qRT-PCR) further demonstrated that the production of viral cap protein was significantly facilitated in gIFIT5-transfected group. Collectively, GAstV facilitates self-replication via promoting gIFIT5 expression.
Collapse
Affiliation(s)
- Ruixue Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Saimin Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shenyan Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Yang D, Geng T, Harrison AG, Cahoon JG, Xing J, Jiao B, Wang M, Cheng C, Hill RE, Wang H, Vella AT, Cheng G, Wang Y, Wang P. UBR5 promotes antiviral immunity by disengaging the transcriptional brake on RIG-I like receptors. Nat Commun 2024; 15:780. [PMID: 38278841 PMCID: PMC10817939 DOI: 10.1038/s41467-024-45141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The Retinoic acid-Inducible Gene I (RIG-I) like receptors (RLRs) are the major viral RNA sensors essential for the initiation of antiviral immune responses. RLRs are subjected to stringent transcriptional and posttranslational regulations, of which ubiquitination is one of the most important. However, the role of ubiquitination in RLR transcription is unknown. Here, we screen 375 definite ubiquitin ligase knockout cell lines and identify Ubiquitin Protein Ligase E3 Component N-Recognin 5 (UBR5) as a positive regulator of RLR transcription. UBR5 deficiency reduces antiviral immune responses to RNA viruses, while increases viral replication in primary cells and mice. Ubr5 knockout mice are more susceptible to lethal RNA virus infection than wild type littermates. Mechanistically, UBR5 mediates the Lysine 63-linked ubiquitination of Tripartite Motif Protein 28 (TRIM28), an epigenetic repressor of RLRs. This modification prevents intramolecular SUMOylation of TRIM28, thus disengages the TRIM28-imposed brake on RLR transcription. In sum, UBR5 enables rapid upregulation of RLR expression to boost antiviral immune responses by ubiquitinating and de-SUMOylating TRIM28.
Collapse
Affiliation(s)
- Duomeng Yang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| | - Tingting Geng
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Andrew G Harrison
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jason G Cahoon
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jian Xing
- Department of Neuroscience, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Baihai Jiao
- Department of Medicine, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Mark Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert E Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, EH4, 2XU, UK
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Yanlin Wang
- Department of Medicine, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
4
|
Ma H, Yang Y, Nie T, Yan R, Si Y, Wei J, Li M, Liu H, Ye W, Zhang H, Cheng L, Zhang L, Lv X, Luo L, Xu Z, Zhang X, Lei Y, Zhang F. Disparate macrophage responses are linked to infection outcome of Hantan virus in humans or rodents. Nat Commun 2024; 15:438. [PMID: 38200007 PMCID: PMC10781751 DOI: 10.1038/s41467-024-44687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Hantaan virus (HTNV) is asymptomatically carried by rodents, yet causes lethal hemorrhagic fever with renal syndrome in humans, the underlying mechanisms of which remain to be elucidated. Here, we show that differential macrophage responses may determine disparate infection outcomes. In mice, late-phase inactivation of inflammatory macrophage prevents cytokine storm syndrome that usually occurs in HTNV-infected patients. This is attained by elaborate crosstalk between Notch and NF-κB pathways. Mechanistically, Notch receptors activated by HTNV enhance NF-κB signaling by recruiting IKKβ and p65, promoting inflammatory macrophage polarization in both species. However, in mice rather than humans, Notch-mediated inflammation is timely restrained by a series of murine-specific long noncoding RNAs transcribed by the Notch pathway in a negative feedback manner. Among them, the lnc-ip65 detaches p65 from the Notch receptor and inhibits p65 phosphorylation, rewiring macrophages from the pro-inflammation to the pro-resolution phenotype. Genetic ablation of lnc-ip65 leads to destructive HTNV infection in mice. Thus, our findings reveal an immune-braking function of murine noncoding RNAs, offering a special therapeutic strategy for HTNV infection.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
- Department of Anaesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yongheng Yang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710038, China
| | - Rong Yan
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yue Si
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Jing Wei
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an, Shaanxi, 710054, China
| | - Mengyun Li
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - He Liu
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Wei Ye
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Hui Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Linfeng Cheng
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Liang Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Xin Lv
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Limin Luo
- Department of Infectious Disease, Air Force Hospital of Southern Theatre Command, Guangzhou, Guangdong, 510602, China
| | - Zhikai Xu
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| | - Xijing Zhang
- Department of Anaesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| | - Yingfeng Lei
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| | - Fanglin Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
5
|
Nigos LR, Scott NE, Brooks AG, Ait-Goughoulte M, Londrigan SL, Reading PC, Farrukee R. TRIM16 Overexpression in HEK293T Cells Results in Cell Line-Specific Antiviral Activity. Pathogens 2023; 12:852. [PMID: 37375542 DOI: 10.3390/pathogens12060852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Host cell restriction factors are intracellular proteins that can inhibit virus replication. Characterisation of novel host cell restriction factors can provide potential targets for host-directed therapies. In this study, we aimed to assess a member of the Tripartite-motif family protein (TRIM) family, TRIM16, as a putative host cell restriction factor. To this end, we utilized constitutive or doxycycline-inducible systems to overexpress TRIM16 in HEK293T epithelial cells and then tested for its ability to inhibit growth by a range of RNA and DNA viruses. In HEK293T cells, overexpression of TRIM16 resulted in potent inhibition of multiple viruses, however, when TRIM16 was overexpressed in other epithelial cell lines (A549, Hela, or Hep2), virus inhibition was not observed. When investigating the antiviral activity of endogenous TRIM16, we report that siRNA-mediated knockdown of TRIM16 in A549 cells also modulated the mRNA expression of other TRIM proteins, complicating the interpretation of results using this method. Therefore, we used CRISPR/Cas9 editing to knockout TRIM16 in A549 cells and demonstrate that endogenous TRIM16 did not mediate antiviral activity against the viruses tested. Thus, while initial overexpression in HEK293T cells suggested that TRIM16 was a host cell restriction factor, alternative approaches did not validate these findings. These studies highlight the importance of multiple complementary experimental approaches, including overexpression analysis in multiple cell lines and investigation of the endogenous protein, when defining host cell restriction factors with novel antiviral activity.
Collapse
Affiliation(s)
- Lance R Nigos
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Malika Ait-Goughoulte
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Disease Reference Laboratory, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Rubaiyea Farrukee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| |
Collapse
|
6
|
Tessema MB, Tuipulotu DE, Oates CV, Brooks AG, Man SM, Londrigan SL, Reading PC. Mouse guanylate-binding protein 1 does not mediate antiviral activity against influenza virus in vitro or in vivo. Immunol Cell Biol 2023; 101:383-396. [PMID: 36744765 PMCID: PMC10952839 DOI: 10.1111/imcb.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Many interferon (IFN)-stimulated genes are upregulated within host cells following infection with influenza and other viruses. While the antiviral activity of some IFN-stimulated genes, such as the IFN-inducible GTPase myxoma resistance (Mx)1 protein 1, has been well defined, less is known regarding the antiviral activities of related IFN-inducible GTPases of the guanylate-binding protein (GBP) family, particularly mouse GBPs, where mouse models can be used to assess their antiviral properties in vivo. Herein, we demonstrate that mouse GBP1 (mGBP1) was upregulated in a mouse airway epithelial cell line (LA-4 cells) following pretreatment with mouse IFNα or infection by influenza A virus (IAV). Whereas doxycycline-inducible expression of mouse Mx1 (mMx1) in LA-4 cells resulted in reduced susceptibility to IAV infection and reduced viral growth, inducible mGBP1 did not. Moreover, primary cells isolated from mGBP1-deficient mice (mGBP1-/- ) showed no difference in susceptibility to IAV and mGBP1-/- macrophages showed no defect in IAV-induced NLRP3 (NLR family pyrin domain containing 3) inflammasome activation. After intranasal IAV infection, mGBP1-/- mice also showed no differences in virus replication or induction of inflammatory responses in the airways during infection. Thus, using complementary approaches such as mGBP1 overexpression, cells from mGBP1-/- mice and intranasal infection of mGBP1-/- we demonstrate that mGBP1 does not play a major role in modulating IAV infection in vitro or in vivo.
Collapse
Affiliation(s)
- Melkamu B Tessema
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Clare V Oates
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Andrew G Brooks
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Sarah L Londrigan
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Patrick C Reading
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference LaboratoryThe Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| |
Collapse
|
7
|
Expression of a Functional Mx1 Protein Is Essential for the Ability of RIG-I Agonist Prophylaxis to Provide Potent and Long-Lasting Protection in a Mouse Model of Influenza A Virus Infection. Viruses 2022; 14:v14071547. [PMID: 35891527 PMCID: PMC9319350 DOI: 10.3390/v14071547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
RIG-I is an innate sensor of RNA virus infection and its activation induces interferon-stimulated genes (ISGs). In vitro studies using human cells have demonstrated the ability of synthetic RIG-I agonists (3pRNA) to inhibit IAV replication. However, in mouse models of IAV the effectiveness of 3pRNA reported to date differs markedly between studies. Myxoma resistance (Mx)1 is an ISG protein which mediates potent anti-IAV activity, however most inbred mouse strains do not express a functional Mx1. Herein, we utilised C57BL/6 mice that do (B6.A2G-Mx1) and do not (B6-WT) express functional Mx1 to assess the ability of prophylactic 3pRNA treatment to induce ISGs and to protect against subsequent IAV infection. In vitro, 3pRNA treatment of primary lung cells from B6-WT and B6.A2G-Mx1 mice resulted in ISG induction however inhibition of IAV infection was more potent in cells from B6.A2G-Mx1 mice. In vivo, a single intravenous injection of 3pRNA resulted in ISG induction in lungs of both B6-WT and B6.A2G-Mx1 mice, however potent and long-lasting protection against subsequent IAV challenge was only observed in B6.A2G-Mx1 mice. Thus, despite broad ISG induction, expression of a functional Mx1 is critical for potent and long-lasting RIG-I agonist-mediated protection in the mouse model of IAV infection.
Collapse
|