1
|
Dibsy R, Bremaud E, Mak J, Favard C, Muriaux D. HIV-1 diverts cortical actin for particle assembly and release. Nat Commun 2023; 14:6945. [PMID: 37907528 PMCID: PMC10618566 DOI: 10.1038/s41467-023-41940-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Enveloped viruses assemble and bud from the host cell membranes. Any role of cortical actin in these processes have often been a source of debate. Here, we assessed if cortical actin was involved in HIV-1 assembly in infected CD4 T lymphocytes. Our results show that preventing actin branching not only increases HIV-1 particle release but also the number of individual HIV-1 Gag assembly clusters at the T cell plasma membrane. Indeed, in infected T lymphocytes and in in vitro quantitative model systems, we show that HIV-1 Gag protein prefers areas deficient in F-actin for assembling. Finally, we found that the host factor Arpin, an inhibitor of Arp2/3 branched actin, is recruited at the membrane of infected T cells and it can associate with the viral Gag protein. Altogether, our data show that, for virus assembly and particle release, HIV-1 prefers low density of cortical actin and may favor local actin debranching by subverting Arpin.
Collapse
Affiliation(s)
- Rayane Dibsy
- Institute of Research in Infectious disease of Montpellier (IRIM), University of Montpellier, UMR9004 CNRS, Montpellier, France
| | - Erwan Bremaud
- Institute of Research in Infectious disease of Montpellier (IRIM), University of Montpellier, UMR9004 CNRS, Montpellier, France
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Brisbane, Australia
| | - Cyril Favard
- Institute of Research in Infectious disease of Montpellier (IRIM), University of Montpellier, UMR9004 CNRS, Montpellier, France
| | - Delphine Muriaux
- Institute of Research in Infectious disease of Montpellier (IRIM), University of Montpellier, UMR9004 CNRS, Montpellier, France.
| |
Collapse
|
2
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
3
|
Dynamics of HIV-1 Gag Processing as Revealed by Fluorescence Lifetime Imaging Microscopy and Single Virus Tracking. Viruses 2022; 14:v14020340. [PMID: 35215933 PMCID: PMC8874525 DOI: 10.3390/v14020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/04/2022] Open
Abstract
The viral polyprotein Gag plays a central role for HIV-1 assembly, release and maturation. Proteolytic processing of Gag by the viral protease is essential for the structural rearrangements that mark the transition from immature to mature, infectious viruses. The timing and kinetics of Gag processing are not fully understood. Here, fluorescence lifetime imaging microscopy and single virus tracking are used to follow Gag processing in nascent HIV-1 particles in situ. Using a Gag polyprotein labelled internally with eCFP, we show that proteolytic release of the fluorophore from Gag is accompanied by an increase in its fluorescence lifetime. By tracking nascent virus particles in situ and analyzing the intensity and fluorescence lifetime of individual traces, we detect proteolytic cleavage of eCFP from Gag in a subset (6.5%) of viral particles. This suggests that for the majority of VLPs, Gag processing occurs with a delay after particle assembly.
Collapse
|
4
|
Lipid-protein interactions in virus assembly and budding from the host cell plasma membrane. Biochem Soc Trans 2021; 49:1633-1641. [PMID: 34431495 PMCID: PMC8421045 DOI: 10.1042/bst20200854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Lipid enveloped viruses contain a lipid bilayer coat that protects their genome to help facilitate entry into the new host cell. This lipid bilayer comes from the host cell which they infect. After viral replication, the mature virion hijacks the host cell plasma membrane where it is then released to infect new cells. This process is facilitated by the interaction between phospholipids that make up the plasma membrane and specialized viral matrix proteins. This step in the viral lifecycle may represent a viable therapeutic strategy for small molecules that aim to block enveloped virus spread. In this review, we summarize the current knowledge on the role of plasma membrane lipid-protein interactions on viral assembly and budding.
Collapse
|
5
|
Wang ZG, Liu SL, Pang DW. Quantum Dots: A Promising Fluorescent Label for Probing Virus Trafficking. Acc Chem Res 2021; 54:2991-3002. [PMID: 34180662 DOI: 10.1021/acs.accounts.1c00276] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent research has highlighted the immense potential of the quantum dot (QD)-based single-virus tracking (SVT) technique in virology. In these experiments, the infection behaviors of single viruses or viral components, labeled with QDs, could be tracked on time scales of milliseconds to hours in host cells. The trajectories of individual viruses are reconstructed with nanometer accuracy, and the underlying dynamic information on virus infection can be extracted to uncover the infection mechanisms of viruses. Therefore, QD-based single-virus tracking (QSVT) is an exquisitely selective and powerful approach to investigating how viruses are internalized in host cells dynamically to release their genome for viral replication and assembly that ensure the completion of viral life cycles.QDs are better candidates than organic dyes and fluorescent proteins for virus labeling and subsequent SVT due to the following considerations: (i) the high brightness of QDs makes it possible to label a virus with sufficient brightness using very few QDs or even just one QD; (ii) the extraordinary photostability of QDs allows one to track the infection process long term and quantify low probability events; (iii) the color-tunable emission property of QDs ensures multicolor labeling of various components of a virus simultaneously; and (iv) the abundant surface ligands of QDs facilitate the conjugation of a virus with a variety of labeling strategies. Therefore, the photoproperties of QDs make it possible to perform multicolor long-term SVT experiments quantitatively. Nowadays, the QD-based SVT (QSVT) technique has made prodigious achievements in unraveling the entry, trafficking, and uncoating mechanisms of viruses. This fascinating technique can provide spatiotemporal dynamic information on the viral journey in unprecedented detail and has revolutionized our understanding of virus infection.In this Account, we first introduce the advantages and the limitations of conventional SVT in virological research and the unique features of QDs as labels in the SVT field. We subsequently focus on the principles and related methods of QSVT and the current state of QD chemistry and QD-based virus labeling that resolves many issues associated with the tracking of individual viruses in live cells. Then we emphasize some new findings by this technique in the study of infection mechanisms. Finally, we will provide our insights into future challenges on this topic. With this Account, we hope to further stimulate the development of QSVT with a combined effort from different disciplines and, more importantly, to accelerate the applications of QSVT in virological research.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Dadhich R, Kapoor S. Various Facets of Pathogenic Lipids in Infectious Diseases: Exploring Virulent Lipid-Host Interactome and Their Druggability. J Membr Biol 2020; 253:399-423. [PMID: 32833058 PMCID: PMC7443855 DOI: 10.1007/s00232-020-00135-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Lipids form an integral, structural, and functional part of all life forms. They play a significant role in various cellular processes such as membrane fusion, fission, endocytosis, protein trafficking, and protein functions. Interestingly, recent studies have revealed their more impactful and critical involvement in infectious diseases, starting with the manipulation of the host membrane to facilitate pathogenic entry. Thereafter, pathogens recruit specific host lipids for the maintenance of favorable intracellular niche to augment their survival and proliferation. In this review, we showcase the lipid-mediated host pathogen interplay in context of life-threatening viral and bacterial diseases including the recent SARS-CoV-2 infection. We evaluate the emergent lipid-centric approaches adopted by these pathogens, while delineating the alterations in the composition and organization of the cell membrane within the host, as well as the pathogen. Lastly, crucial nexus points in their interaction landscape for therapeutic interventions are identified. Lipids act as critical determinants of bacterial and viral pathogenesis by altering the host cell membrane structure and functions.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
7
|
Liu SL, Wang ZG, Xie HY, Liu AA, Lamb DC, Pang DW. Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chem Rev 2020; 120:1936-1979. [PMID: 31951121 PMCID: PMC7075663 DOI: 10.1021/acs.chemrev.9b00692] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Uncovering
the mechanisms of virus infection and assembly is crucial
for preventing the spread of viruses and treating viral disease. The
technique of single-virus tracking (SVT), also known as single-virus
tracing, allows one to follow individual viruses at different parts
of their life cycle and thereby provides dynamic insights into fundamental
processes of viruses occurring in live cells. SVT is typically based
on fluorescence imaging and reveals insights into previously unreported
infection mechanisms. In this review article, we provide the readers
a broad overview of the SVT technique. We first summarize recent advances
in SVT, from the choice of fluorescent labels and labeling strategies
to imaging implementation and analytical methodologies. We then describe
representative applications in detail to elucidate how SVT serves
as a valuable tool in virological research. Finally, we present our
perspectives regarding the future possibilities and challenges of
SVT.
Collapse
Affiliation(s)
- Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM) , Ludwig-Maximilians-Universität , München , 81377 , Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
8
|
Ritter C, Wollmann T, Bernhard P, Gunkel M, Braun DM, Lee JY, Meiners J, Simon R, Sauter G, Erfle H, Rippe K, Bartenschlager R, Rohr K. Hyperparameter optimization for image analysis: application to prostate tissue images and live cell data of virus-infected cells. Int J Comput Assist Radiol Surg 2019; 14:1847-1857. [PMID: 31177423 DOI: 10.1007/s11548-019-02010-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/30/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE Automated analysis of microscopy image data typically requires complex pipelines that involve multiple methods for different image analysis tasks. To achieve best results of the analysis pipelines, method-dependent hyperparameters need to be optimized. However, complex pipelines often suffer from the fact that calculation of the gradient of the loss function is analytically or computationally infeasible. Therefore, first- or higher-order optimization methods cannot be applied. METHODS We developed a new framework for zero-order black-box hyperparameter optimization called HyperHyper, which has a modular architecture that separates hyperparameter sampling and optimization. We also developed a visualization of the loss function based on infimum projection to obtain further insights into the optimization problem. RESULTS We applied HyperHyper in three different experiments with different imaging modalities, and evaluated in total more than 400.000 hyperparameter combinations. HyperHyper was used for optimizing two pipelines for cell nuclei segmentation in prostate tissue microscopy images and two pipelines for detection of hepatitis C virus proteins in live cell microscopy data. We evaluated the impact of separating the sampling and optimization strategy using different optimizers and employed an infimum projection for visualizing the hyperparameter space. CONCLUSIONS The separation of sampling and optimization strategy of the proposed HyperHyper optimization framework improves the result of the investigated image analysis pipelines. Visualization of the loss function based on infimum projection enables gaining further insights on the optimization process.
Collapse
Affiliation(s)
- Christian Ritter
- Biomedical Computer Vision Group, BioQuant, IPMB, University of Heidelberg and DKFZ, Im Neuenheimer Feld 267, Heidelberg, Germany.
| | - Thomas Wollmann
- Biomedical Computer Vision Group, BioQuant, IPMB, University of Heidelberg and DKFZ, Im Neuenheimer Feld 267, Heidelberg, Germany
| | - Patrick Bernhard
- Biomedical Computer Vision Group, BioQuant, IPMB, University of Heidelberg and DKFZ, Im Neuenheimer Feld 267, Heidelberg, Germany
| | - Manuel Gunkel
- High-Content Analysis of the Cell (HiCell) and Advanced Biological Screening Facility, BioQuant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, Germany
| | - Delia M Braun
- Division of Chromatin Networks, DKFZ and BioQuant, Im Neuenheimer Feld 267, Heidelberg, Germany
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, Heidelberg, Germany.,German Center of Infection Research, Heidelberg Partner Site, Heidelberg, Germany
| | - Jan Meiners
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| | - Holger Erfle
- High-Content Analysis of the Cell (HiCell) and Advanced Biological Screening Facility, BioQuant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, DKFZ and BioQuant, Im Neuenheimer Feld 267, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, Heidelberg, Germany.,German Center of Infection Research, Heidelberg Partner Site, Heidelberg, Germany
| | - Karl Rohr
- Biomedical Computer Vision Group, BioQuant, IPMB, University of Heidelberg and DKFZ, Im Neuenheimer Feld 267, Heidelberg, Germany
| |
Collapse
|
9
|
Ospina Stella A, Turville S. All-Round Manipulation of the Actin Cytoskeleton by HIV. Viruses 2018; 10:v10020063. [PMID: 29401736 PMCID: PMC5850370 DOI: 10.3390/v10020063] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.
Collapse
Affiliation(s)
- Alberto Ospina Stella
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| | - Stuart Turville
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| |
Collapse
|
10
|
Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane. Proc Natl Acad Sci U S A 2017; 114:E10056-E10065. [PMID: 29114055 DOI: 10.1073/pnas.1706600114] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The packaging and budding of Gag polyprotein and viral RNA is a critical step in the HIV-1 life cycle. High-resolution structures of the Gag polyprotein have revealed that the capsid (CA) and spacer peptide 1 (SP1) domains contain important interfaces for Gag self-assembly. However, the molecular details of the multimerization process, especially in the presence of RNA and the cell membrane, have remained unclear. In this work, we investigate the mechanisms that work in concert between the polyproteins, RNA, and membrane to promote immature lattice growth. We develop a coarse-grained (CG) computational model that is derived from subnanometer resolution structural data. Our simulations recapitulate contiguous and hexameric lattice assembly driven only by weak anisotropic attractions at the helical CA-SP1 junction. Importantly, analysis from CG and single-particle tracking photoactivated localization (spt-PALM) trajectories indicates that viral RNA and the membrane are critical constituents that actively promote Gag multimerization through scaffolding, while overexpression of short competitor RNA can suppress assembly. We also find that the CA amino-terminal domain imparts intrinsic curvature to the Gag lattice. As a consequence, immature lattice growth appears to be coupled to the dynamics of spontaneous membrane deformation. Our findings elucidate a simple network of interactions that regulate the early stages of HIV-1 assembly and budding.
Collapse
|
11
|
Liu X, Ouyang T, Ouyang H, Ren L. Single particle labeling of RNA virus in live cells. Virus Res 2017; 237:14-21. [PMID: 28506790 DOI: 10.1016/j.virusres.2017.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/17/2022]
Abstract
Real-time and visual tracking of viral infection is crucial for elucidating the infectious and pathogenesis mechanisms. To track the virus successfully, an efficient labeling method is necessary. In this review, we first discuss the practical labeling techniques for virus tracking in live cells. We then describe the current knowledge of interactions between RNA viruses (especially influenza viruses, immunodeficiency viruses, and Flaviviruses) and host cellular structures, obtained using single particle labeling techniques combined with real-time fluorescence microscopy. Single particle labeling provides an easy system for understanding the RNA virus life cycle.
Collapse
Affiliation(s)
- Xiaohui Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Ting Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
12
|
Virion-incorporated alpha-enolase suppresses the early stage of HIV-1 reverse transcription. Biochem Biophys Res Commun 2017; 484:278-284. [DOI: 10.1016/j.bbrc.2017.01.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/19/2017] [Indexed: 11/22/2022]
|
13
|
The Life-Cycle of the HIV-1 Gag-RNA Complex. Viruses 2016; 8:v8090248. [PMID: 27626439 PMCID: PMC5035962 DOI: 10.3390/v8090248] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication is a highly regulated process requiring the recruitment of viral and cellular components to the plasma membrane for assembly into infectious particles. This review highlights the recent process of understanding the selection of the genomic RNA (gRNA) by the viral Pr55Gag precursor polyprotein, and the processes leading to its incorporation into viral particles.
Collapse
|
14
|
Joshi P, Maidji E, Stoddart CA. Inhibition of Heat Shock Protein 90 Prevents HIV Rebound. J Biol Chem 2016; 291:10332-46. [PMID: 26957545 PMCID: PMC4858980 DOI: 10.1074/jbc.m116.717538] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/06/2016] [Indexed: 12/21/2022] Open
Abstract
HIV evades eradication because transcriptionally dormant proviral genomes persist in long-lived reservoirs of resting CD4(+) T cells and myeloid cells, which are the source of viral rebound after cessation of antiretroviral therapy. Dormant HIV genomes readily produce infectious virus upon cellular activation because host transcription factors activated specifically by cell stress and heat shock mediate full-length HIV transcription. The molecular chaperone heat shock protein 90 (Hsp90) is overexpressed during heat shock and activates inducible cellular transcription factors. Here we show that heat shock accelerates HIV transcription through induction of Hsp90 activity, which activates essential HIV-specific cellular transcription factors (NF-κB, NFAT, and STAT5), and that inhibition of Hsp90 greatly reduces gene expression mediated by these factors. More importantly, we show that Hsp90 controls virus transcription in vivo by specific Hsp90 inhibitors in clinical development, tanespimycin (17-(allylamino)-17-demethoxygeldanamycin) and AUY922, which durably prevented viral rebound in HIV-infected humanized NOD scid IL-2Rγ(-/-) bone marrow-liver-thymus mice up to 11 weeks after treatment cessation. Despite the absence of rebound viremia, we were able to recover infectious HIV from PBMC with heat shock. Replication-competent virus was detected in spleen cells from these nonviremic Hsp90 inhibitor-treated mice, indicating the presence of a tissue reservoir of persistent infection. Our novel findings provide in vivo evidence that inhibition of Hsp90 activity prevents HIV gene expression in replication-competent cellular reservoirs that would typically cause rebound in plasma viremia after antiretroviral therapy cessation. Alternating or supplementing Hsp90 inhibitors with current antiretroviral therapy regimens could conceivably suppress rebound viremia from persistent HIV reservoirs.
Collapse
Affiliation(s)
- Pheroze Joshi
- From the Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94110
| | - Ekaterina Maidji
- From the Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94110
| | - Cheryl A Stoddart
- From the Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94110
| |
Collapse
|
15
|
Involvement of the Rac1-IRSp53-Wave2-Arp2/3 Signaling Pathway in HIV-1 Gag Particle Release in CD4 T Cells. J Virol 2015; 89:8162-81. [PMID: 26018170 DOI: 10.1128/jvi.00469-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/14/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED During HIV-1 assembly, the Gag viral proteins are targeted and assemble at the inner leaflet of the cell plasma membrane. This process could modulate the cortical actin cytoskeleton, located underneath the plasma membrane, since actin dynamics are able to promote localized membrane reorganization. In addition, activated small Rho GTPases are known for regulating actin dynamics and membrane remodeling. Therefore, the modulation of such Rho GTPase activity and of F-actin by the Gag protein during virus particle formation was considered. Here, we studied the implication of the main Rac1, Cdc42, and RhoA small GTPases, and some of their effectors, in this process. The effect of small interfering RNA (siRNA)-mediated Rho GTPases and silencing of their effectors on Gag localization, Gag membrane attachment, and virus-like particle production was analyzed by immunofluorescence coupled to confocal microscopy, membrane flotation assays, and immunoblot assays, respectively. In parallel, the effect of Gag expression on the Rac1 activation level was monitored by G-LISA, and the intracellular F-actin content in T cells was monitored by flow cytometry and fluorescence microscopy. Our results revealed the involvement of activated Rac1 and of the IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 Gag membrane localization and particle release in T cells as well as a role for actin branching and polymerization, and this was solely dependent on the Gag viral protein. In conclusion, our results highlight a new role for the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in the late steps of HIV-1 replication in CD4 T lymphocytes. IMPORTANCE During HIV-1 assembly, the Gag proteins are targeted and assembled at the inner leaflet of the host cell plasma membrane. Gag interacts with specific membrane phospholipids that can also modulate the regulation of cortical actin cytoskeleton dynamics. Actin dynamics can promote localized membrane reorganization and thus can be involved in facilitating Gag assembly and particle formation. Activated small Rho GTPases and effectors are regulators of actin dynamics and membrane remodeling. We thus studied the effects of the Rac1, Cdc42, and RhoA GTPases and their specific effectors on HIV-1 Gag membrane localization and viral particle release in T cells. Our results show that activated Rac1 and the IRSp53-Wave2-Arp2/3 signaling pathway are involved in Gag plasma membrane localization and viral particle production. This work uncovers a role for cortical actin through the activation of Rac1 and the IRSp53/Wave2 signaling pathway in HIV-1 particle formation in CD4 T lymphocytes.
Collapse
|
16
|
Mercenne G, Alam SL, Arii J, Lalonde MS, Sundquist WI. Angiomotin functions in HIV-1 assembly and budding. eLife 2015; 4. [PMID: 25633977 PMCID: PMC4337731 DOI: 10.7554/elife.03778] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/28/2015] [Indexed: 11/24/2022] Open
Abstract
Many retroviral Gag proteins contain PPXY late assembly domain motifs that recruit proteins of the NEDD4 E3 ubiquitin ligase family to facilitate virus release. Overexpression of NEDD4L can also stimulate HIV-1 release but in this case the Gag protein lacks a PPXY motif, suggesting that NEDD4L may function through an adaptor protein. Here, we demonstrate that the cellular protein Angiomotin (AMOT) can bind both NEDD4L and HIV-1 Gag. HIV-1 release and infectivity are stimulated by AMOT overexpression and inhibited by AMOT depletion, whereas AMOT mutants that cannot bind NEDD4L cannot function in virus release. Electron microscopic analyses revealed that in the absence of AMOT assembling Gag molecules fail to form a fully spherical enveloped particle. Our experiments indicate that AMOT and other motin family members function together with NEDD4L to help complete immature virion assembly prior to ESCRT-mediated virus budding. DOI:http://dx.doi.org/10.7554/eLife.03778.001 To multiply and spread infections, viruses must enter and exit cells. Once inside a cell, many viruses conscript the cell's machinery to produce new viral particles and release them into the surroundings. Some viruses—like HIV-1—exit the cell in a way that leads to them being wrapped (or ‘enveloped’) in membrane from the host cell. A virus protein called Gag is required for the release of HIV-1 and other enveloped viruses. In some cases, Gag proteins bind directly to members of the NEDD4 protein family to enable the viruses to be released. However, the Gag protein from HIV-1 does not appear to be able to interact directly with NEDD4 proteins, so it was not clear how Gag works in this case. Mercenne et al. studied how HIV-1 is released from human cells grown in the laboratory. The experiments show that members of a human protein family called the Angiomotins bind to both Gag and NEDD4L (a member of the NEDD4 family) and are required for the efficient release of viruses. Using a technique called electron microscopy, Mercenne et al. observed that when Angiomotins are present, Gag proteins assemble in spheres at the cell membrane and viruses are able to exit the cell. However, when Angiomotins are depleted or absent, incomplete spheres of Gag proteins accumulate on the inner membrane surface and viruses are not released. These findings show that Angiomotins act as a link between Gag and NEDD4L to promote the release of HIV-1 from human cells. The next step will be to learn precisely how this works. There are indications that the Angiomotins may also be involved in the release of other enveloped viruses, so the findings may be useful for the development of treatments for a variety of viral infections. DOI:http://dx.doi.org/10.7554/eLife.03778.002
Collapse
Affiliation(s)
- Gaelle Mercenne
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Steven L Alam
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Jun Arii
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Matthew S Lalonde
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| |
Collapse
|
17
|
Stauffer S, Rahman SA, de Marco A, Carlson LA, Glass B, Oberwinkler H, Herold N, Briggs JAG, Müller B, Grünewald K, Kräusslich HG. The nucleocapsid domain of Gag is dispensable for actin incorporation into HIV-1 and for association of viral budding sites with cortical F-actin. J Virol 2014; 88:7893-903. [PMID: 24789788 PMCID: PMC4097806 DOI: 10.1128/jvi.00428-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/24/2014] [Indexed: 12/24/2022] Open
Abstract
Actin and actin-binding proteins are incorporated into HIV-1 particles, and F-actin has been suggested to bind the NC domain in HIV-1 Gag. Furthermore, F-actin has been frequently observed in the vicinity of HIV-1 budding sites by cryo-electron tomography (cET). Filamentous structures emanating from viral buds and suggested to correspond to actin filaments have been observed by atomic force microscopy. To determine whether the NC domain of Gag is required for actin association with viral buds and for actin incorporation into HIV-1, we performed comparative analyses of virus-like particles (VLPs) obtained by expression of wild-type HIV-1 Gag or a Gag variant where the entire NC domain had been replaced by a dimerizing leucine zipper [Gag(LZ)]. The latter protein yielded efficient production of VLPs with near-wild-type assembly kinetics and size and exhibited a regular immature Gag lattice. Typical HIV-1 budding sites were detected by using cET in cells expressing either Gag or Gag(LZ), and no difference was observed regarding the association of buds with the F-actin network. Furthermore, actin was equally incorporated into wild-type HIV-1 and Gag- or Gag(LZ)-derived VLPs, with less actin per particle observed than had been reported previously. Incorporation appeared to correlate with the relative intracellular actin concentration, suggesting an uptake of cytosol rather than a specific recruitment of actin. Thus, the NC domain in HIV-1 Gag does not appear to have a role in actin recruitment or actin incorporation into HIV-1 particles. Importance: HIV-1 particles bud from the plasma membrane, which is lined by a network of actin filaments. Actin was found to interact with the nucleocapsid domain of the viral structural protein Gag and is incorporated in significant amounts into HIV-1 particles, suggesting that it may play an active role in virus release. Using electron microscopy techniques, we previously observed bundles of actin filaments near HIV-1 buds, often seemingly in contact with the Gag layer. Here, we show that this spatial association is observed independently of the proposed actin-binding domain of HIV-1. The absence of this domain also did not affect actin incorporation and had a minor effect on the viral assembly rate. Furthermore, actin was not enriched in the virus compared to the average levels in the respective producing cell. Our data argue against a specific recruitment of actin to HIV-1 budding sites by the nucleocapsid domain of Gag.
Collapse
Affiliation(s)
- Sarah Stauffer
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sheikh Abdul Rahman
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Alex de Marco
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Lars-Anders Carlson
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Bärbel Glass
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Heike Oberwinkler
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nikolas Herold
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kay Grünewald
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany Molecular Medicine Partnership Unit, Heidelberg, Germany
| |
Collapse
|