1
|
Ghorbani A, Ngunjiri JM, Rendon G, Brooke CB, Kenney SP, Lee CW. Diversity and Complexity of Internally Deleted Viral Genomes in Influenza A Virus Subpopulations with Enhanced Interferon-Inducing Phenotypes. Viruses 2023; 15:2107. [PMID: 37896883 PMCID: PMC10612045 DOI: 10.3390/v15102107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza A virus (IAV) populations harbor large subpopulations of defective-interfering particles characterized by internally deleted viral genomes. These internally deleted genomes have demonstrated the ability to suppress infectivity and boost innate immunity, rendering them promising for therapeutic and immunogenic applications. In this study, we aimed to investigate the diversity and complexity of the internally deleted IAV genomes within a panel of plaque-purified avian influenza viruses selected for their enhanced interferon-inducing phenotypes. Our findings unveiled that the abundance and diversity of internally deleted viral genomes were contingent upon the viral subculture and plaque purification processes. We observed a heightened occurrence of internally deleted genomes with distinct junctions in viral clones exhibiting enhanced interferon-inducing phenotypes, accompanied by additional truncation in the nonstructural 1 protein linker region (NS1Δ76-86). Computational analyses suggest the internally deleted IAV genomes can encode a broad range of carboxy-terminally truncated and intrinsically disordered proteins with variable lengths and amino acid composition. Further research is imperative to unravel the underlying mechanisms driving the increased diversity of internal deletions within the genomes of viral clones exhibiting enhanced interferon-inducing capacities and to explore their potential for modulating cellular processes and immunity.
Collapse
Affiliation(s)
- Amir Ghorbani
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - John M. Ngunjiri
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Gloria Rendon
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (C.B.B.)
| | - Christopher B. Brooke
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (C.B.B.)
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Scott P. Kenney
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Chang-Won Lee
- Southeast Poultry Research Laboratory, US National Poultry Research Center, USDA, ARS, Athens, GA 30605, USA
| |
Collapse
|
2
|
Ghorbani A, Ngunjiri JM, Edward C Abundo M, Pantin-Jackwood M, Kenney SP, Lee CW. Development of in ovo-compatible NS1-truncated live attenuated influenza vaccines by modulation of hemagglutinin cleavage and polymerase acidic X frameshifting sites. Vaccine 2023; 41:1848-1858. [PMID: 36669965 DOI: 10.1016/j.vaccine.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
Emerging avian influenza viruses pose a high risk to poultry production, necessitating the need for more broadly protective vaccines. Live attenuated influenza vaccines offer excellent protective efficacies but their use in poultry farms is discouraged due to safety concerns related to emergence of reassortant viruses. Vaccination of chicken embryos inside eggs (in ovo) induces early immunity in young chicks while reduces the safety concerns related to the use of live vaccines on farms. However, in ovo vaccination using influenza viruses severely affects the egg hatchability. We previously engineered a high interferon-inducing live attenuated influenza vaccine candidate with an enhanced protective efficacy in chickens. Here, we asked whether we could further modify this high interferon-inducing vaccine candidate to develop an in ovo-compatible live attenuated influenza vaccine. We first showed that the enhanced interferon responses induced by the vaccine is not enough to attenuate the virus in ovo. To reduce the pathogenicity of the virus for chicken embryos, we replaced the hemagglutinin cleavage site of the H7 vaccine virus (PENPKTR/GL) with that of the H6-subtype viruses (PQIETR/GL) and disrupted the ribosomal frameshifting site responsible for viral polymerase acidic X protein expression. In ovo vaccination of chickens with up to 105 median egg infectious dose of the modified vaccine had minimal effects on hatchability while protecting the chickens against a heterologous challenge virus at two weeks of age. This study demonstrates that targeted genetic mutations can be applied to further attenuate and enhance the safety of live attenuated influenza vaccines to develop future in ovo vaccines for poultry.
Collapse
Affiliation(s)
- Amir Ghorbani
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA; Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - John M Ngunjiri
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Michael Edward C Abundo
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - Scott P Kenney
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA; Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA.
| | - Chang-Won Lee
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA.
| |
Collapse
|
3
|
Abstract
Viral quasispecies are dynamic distributions of nonidentical but closely related mutant and recombinant viral genomes subjected to a continuous process of genetic variation, competition, and selection that may act as a unit of selection. The quasispecies concept owes its theoretical origins to a model for the origin of life as a collection of mutant RNA replicators. Independently, experimental evidence for the quasispecies concept was obtained from sampling of bacteriophage clones, which revealed that the viral populations consisted of many mutant genomes whose frequency varied with time of replication. Similar findings were made in animal and plant RNA viruses. Quasispecies became a theoretical framework to understand viral population dynamics and adaptability. The evidence came at a time when mutations were considered rare events in genetics, a perception that was to change dramatically in subsequent decades. Indeed, viral quasispecies was the conceptual forefront of a remarkable degree of biological diversity, now evident for cell populations and organisms, not only for viruses. Quasispecies dynamics unveiled complexities in the behavior of viral populations,with consequences for disease mechanisms and control strategies. This review addresses the origin of the quasispecies concept, its major implications on both viral evolution and antiviral strategies, and current and future prospects.
Collapse
Affiliation(s)
- Esteban Domingo
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Celia Perales
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
4
|
Mahesh KC, Ngunjiri JM, Ghorbani A, Abundo MEC, Wilbanks KQ, Lee K, Lee CW. Assessment of TLR3 and MDA5-Mediated Immune Responses Using Knockout Quail Fibroblast Cells. Avian Dis 2021; 65:419-428. [PMID: 34427417 DOI: 10.1637/0005-2086-65.3.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/21/2021] [Indexed: 11/05/2022]
Abstract
Toll-like receptor 3 (TLR3) and melanoma differentiation-associated gene 5 (MDA5) are double-stranded RNA (dsRNA)-recognizing receptors that mediate innate immune responses to virus infection. However, the roles played by these receptors in the pathogenesis of avian viruses are poorly understood. In this study, we generated TLR3 and MDA5 single knockout (SKO) and TLR3-MDA5 double knockout (DKO) quail fibroblast cells and examined dsRNA receptor-mediated innate immune responses in vitro. The knockout cells were then stimulated with a synthetic dsRNA ligand polyinosinic:polycytidylic acid [poly(I:C)] or influenza A virus. Endosomal stimulation of TLR3 by adding poly(I:C) in cell culture media or cytoplasmic stimulation of MDA5 by transfecting poly(I:C) resulted in significant increases of TLR3, MDA5, interferon (IFN) β, and interleukin 8 gene expression levels in wild type (WT) cells. Endosomal poly(I:C) treatment induced a higher level expression of most of the genes tested in MDA5 SKO cells compared with WT cells, but not in TLR3 SKO and DKO cells. Cytoplasmic transfection of poly(I:C) led to significant upregulation of all four genes in WT, TLR3 SKO, and MDA5 SKO cells at 8 hr posttransfection and negligible gene expression changes in TLR3-MDA5 DKO cells. Upon infection with a strain of influenza virus with compromised IFN antagonistic capability, WT cells produced the highest amount of biologically active type I IFN followed by TLR3 SKO and MDA5 SKO cells. DKO cells did not produce detectable amounts of type I IFN. However, the IFN did not induce an antiviral state fast enough to block virus replication, even in WT cells under the experimental conditions employed. In summary, our data demonstrate that TLR3 and MDA5 are the key functional dsRNA receptors in quail and imply their coordinated roles in the induction of innate immune responses upon virus infection.
Collapse
Affiliation(s)
- K C Mahesh
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Michael E C Abundo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | | | - Kichoon Lee
- Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
5
|
Ghorbani A, Abundo MC, Ji H, Taylor KJM, Ngunjiri JM, Lee CW. Viral Subpopulation Screening Guides in Designing a High Interferon-Inducing Live Attenuated Influenza Vaccine by Targeting Rare Mutations in NS1 and PB2 Proteins. J Virol 2020; 95:e01722-20. [PMID: 33115873 PMCID: PMC7944443 DOI: 10.1128/jvi.01722-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Influenza A viruses continue to circulate among wild birds and poultry worldwide, posing constant pandemic threats to humans. Effective control of emerging influenza viruses requires new broadly protective vaccines. Live attenuated influenza vaccines with truncations in nonstructural protein 1 (NS1) have shown broad protective efficacies in birds and mammals, which correlate with the ability to induce elevated interferon responses in the vaccinated hosts. Given the extreme diversity of influenza virus populations, we asked if we could improve an NS1-truncated live attenuated influenza vaccine developed for poultry (PC4) by selecting viral subpopulations with enhanced interferon-inducing capacities. Here, we deconstructed a de novo population of PC4 through plaque isolation, created a large library of clones, and assessed their interferon-inducing phenotypes. While most of the clones displayed the parental interferon-inducing phenotype in cell culture, few clones showed enhanced interferon-inducing phenotypes in cell culture and chickens. The enhanced interferon-inducing phenotypes were linked to either a deletion in NS1 (NS1Δ76-86) or a substitution in polymerase basic 2 protein (PB2-D309N). The NS1Δ76-86 deletion disrupted the putative eukaryotic translation initiation factor 4GI-binding domain and promoted the synthesis of biologically active interferons. The PB2-D309N substitution enhanced the early transcription of interferon mRNA, revealing a novel role for the 309D residue in suppression of interferon responses. We combined these mutations to engineer a novel vaccine candidate that induced additive amounts of interferons and stimulated protective immunity in chickens. Therefore, viral subpopulation screening approaches can guide the design of live vaccines with strong immunostimulatory properties.IMPORTANCE Effectiveness of NS1-truncated live attenuated influenza vaccines relies heavily on their ability to induce elevated interferon responses in vaccinated hosts. Influenza viruses contain diverse particle subpopulations with distinct phenotypes. We show that live influenza vaccines can contain underappreciated subpopulations with enhanced interferon-inducing phenotypes. The genomic traits of such virus subpopulations can be used to further improve the efficacy of the current live vaccines.
Collapse
Affiliation(s)
- Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Michael C Abundo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Hana Ji
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kara J M Taylor
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Ghorbani A, Ngunjiri JM, Lee CW. Influenza A Virus Subpopulations and Their Implication in Pathogenesis and Vaccine Development. Annu Rev Anim Biosci 2019; 8:247-267. [PMID: 31479617 DOI: 10.1146/annurev-animal-021419-083756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The concept of influenza A virus (IAV) subpopulations emerged approximately 75 years ago, when Preben von Magnus described "incomplete" virus particles that interfere with the replication of infectious virus. It is now widely accepted that infectious particles constitute only a minor portion of biologically active IAV subpopulations. The IAV quasispecies is an extremely diverse swarm of biologically and genetically heterogeneous particle subpopulations that collectively influence the evolutionary fitness of the virus. This review summarizes the current knowledge of IAV subpopulations, focusing on their biologic and genomic diversity. It also discusses the potential roles IAV subpopulations play in virus pathogenesis and live attenuated influenza vaccine development.
Collapse
Affiliation(s)
- Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA; , , .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA; , ,
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA; , , .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
7
|
Heterosubtypic protection against avian influenza virus by live attenuated and chimeric norovirus P-particle-M2e vaccines in chickens. Vaccine 2019; 37:1356-1364. [PMID: 30691981 DOI: 10.1016/j.vaccine.2019.01.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/01/2019] [Accepted: 01/05/2019] [Indexed: 12/18/2022]
Abstract
Avian influenza in poultry continues to be a great concern worldwide, and the currently licensed inactivated influenza vaccines are not effective against the novel strains of influenza virus that continue to emerge in the field. This warrants the development of more broadly protective influenza vaccines or vaccination regimens. Live attenuated influenza vaccines (LAIVs) and subunit vaccines derived from viral peptides, such as the highly conserved ectodomain of influenza virus matrix protein 2 (M2e), can offer a more broadly reactive immune response. In chickens, we previously showed that a chimeric norovirus P particle containing M2e (M2eP) could provide partial but broad immunity, when administered as a standalone vaccine, and also enhanced the protective efficacy of inactivated vaccine when used in a combination regimen. We also demonstrated that a naturally-selected NS1-truncated H7N3 LAIV (pc4-LAIV) was highly efficacious against antigenically distant heterologous H7N2 low pathogenicity avian influenza virus challenge, especially when used as the priming vaccine in a prime-boost vaccination regimen. In this study, we investigated the cross-subtype protective efficacy of pc4-LAIV in conjunction with M2eP using single vaccination, combined treatment, and prime-boost approaches. Chickens vaccinated with pc4-LAIV showed significant reduction of tracheal shedding of a low pathogenicity H5N2 challenge virus. This cross-subtype protective efficacy was further enhanced, during the initial stages of challenge virus replication, in chickens that received a vaccination regimen consisting of priming with pc4-LAIV at 1 day of age and boosting with M2eP. Further, H5N2-specific serum IgG and pc4-LAIV-specific hemagglutination-inhibition antibody titers were enhanced in LAIV-primed and M2eP boost-vaccinated chickens. Taken together, our data point to the need of further investigation into the benefits of combined and prime-boost vaccination schemes utilizing LAIV and epitope-based vaccines, to develop more broadly protective vaccination regimens.
Collapse
|
8
|
Jang H, Elaish M, KC M, Abundo MC, Ghorbani A, Ngunjiri JM, Lee CW. Efficacy and synergy of live-attenuated and inactivated influenza vaccines in young chickens. PLoS One 2018; 13:e0195285. [PMID: 29624615 PMCID: PMC5889186 DOI: 10.1371/journal.pone.0195285] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/19/2018] [Indexed: 01/07/2023] Open
Abstract
Outbreaks of novel highly pathogenic avian influenza viruses have been reported in poultry species in the United States since 2014. These outbreaks have proven the limitations of biosecurity control programs, and new tools are needed to reinforce the current avian influenza control arsenal. Some enzootic countries have implemented inactivated influenza vaccine (IIV) in their control programs, but there are serious concerns that a long-term use of IIV without eradication may result in the selection of novel antigenically divergent strains. A broadly protective vaccine is needed, such as live-attenuated influenza vaccine (LAIV). We showed in our previous studies that pc4-LAIV (a variant that encodes a C-terminally truncated NS1 protein) can provide significant protection against heterologous challenge virus in chickens vaccinated at 2–4 weeks of age through upregulation of innate and adaptive immune responses. The current study was conducted to compare the performances of pc4-LAIV and IIV in young chickens vaccinated at 1 day of age. A single dose of pc4-LAIV was able to induce stronger innate and mucosal IgA responses and protect young immunologically immature chickens better than a single dose of IIV. Most importantly, when 1-day-old chickens were intranasally primed with pc4-LAIV and subcutaneously boosted with IIV three weeks later, they showed a rapid, robust, and highly cross-reactive serum antibody response and a high level of mucosal IgA antibody response. This vaccination regimen warrants further optimization to increase its range of protection.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Antibodies, Viral/genetics
- Antigens, Viral/genetics
- Chickens/immunology
- Cross Reactions
- Immunity, Innate/genetics
- Immunity, Mucosal/genetics
- Immunization, Secondary/methods
- Immunization, Secondary/veterinary
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Poultry Diseases/immunology
- Poultry Diseases/prevention & control
- Vaccination/methods
- Vaccination/veterinary
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/genetics
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Hyesun Jang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Mohamed Elaish
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Mahesh KC
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael C. Abundo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - John M. Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail: (JMN); (CWL)
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (JMN); (CWL)
| |
Collapse
|
9
|
The viral innate immune antagonism and an alternative vaccine design for PRRS virus. Vet Microbiol 2017; 209:75-89. [PMID: 28341332 PMCID: PMC7111430 DOI: 10.1016/j.vetmic.2017.03.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
PRRS virus has evolved to suppress the antiviral innate immunity during infection. Type I interferons are potent antiviral cytokines and function to stimulate the adaptive immune responses. Six viral proteins have been identified as interferon antagonists and characterized for their molecular actions. Interferon antagonism-negative viruses are attenuated and have been proven induce protective immunity. Interferon suppression-negative PRRS virus may serve as an alternative vaccine for PRRS.
Porcine reproductive and respiratory syndrome (PRRS) remains one of the most economically significant diseases in the swine industry worldwide. The current vaccines are less satisfactory to confer protections from heterologous infections and long-term persistence, and the need for better vaccines are urgent. The immunological hallmarks in PRRSV-infected pigs include the unusually poor production of type I interferons (IFNs-α/β) and the aberrant and delayed adaptive immune responses, indicating that PRRSV has the ability to suppress both innate and adaptive immune responses in the host. Type I IFNs are the potent antiviral cytokines and recent studies reveal their pleiotropic functions in the priming of expansion and maturation of adaptive immunity. Thus, IFN antagonism-negative PRRSV is hypothesized to be attenuated and to build effective and broad- spectrum innate and adaptive immune responses in pigs. Such vaccines are promising alternatives to traditional vaccines for PRRSV.
Collapse
|
10
|
Spatial-Temporal Patterns of Viral Amplification and Interference Initiated by a Single Infected Cell. J Virol 2016; 90:7552-7566. [PMID: 27279621 PMCID: PMC4984635 DOI: 10.1128/jvi.00807-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/02/2016] [Indexed: 11/20/2022] Open
Abstract
When viruses infect their host cells, they can make defective virus-like particles along with intact virus. Cells coinfected with virus and defective particles often exhibit interference with virus growth caused by the competition for resources by defective genomes. Recent reports of the coexistence and cotransmission of such defective interfering particles (DIPs) in vivo, across epidemiological length and time scales, suggest a role in viral pathogenesis, but it is not known how DIPs impact infection spread, even under controlled culture conditions. Using fluorescence microscopy, we quantified coinfections of vesicular stomatitis virus (VSV) expressing a fluorescent reporter protein and its DIPs on BHK-21 host cell monolayers. We found that viral gene expression was more delayed, infections spread more slowly, and patterns of spread became more “patchy” with higher DIP inputs to the initial cell. To examine how infection spread might depend on the behavior of the initial coinfected cell, we built a computational model, adapting a cellular automaton (CA) approach to incorporate kinetic data on virus growth for the first time. Specifically, changes in observed patterns of infection spread could be directly linked to previous high-throughput single-cell measures of virus-DIP coinfection. The CA model also provided testable hypotheses on the spatial-temporal distribution of the DIPs, which remain governed by their predator-prey interaction. More generally, this work offers a data-driven computational modeling approach for better understanding of how single infected cells impact the multiround spread of virus infections across cell populations.
IMPORTANCE Defective interfering particles (DIPs) compete with intact virus, depleting host cell resources that are essential for virus growth and infection spread. However, it is not known how such competition, strong or weak, ultimately affects the way in which infections spread and cause disease. In this study, we address this unmet need by developing an integrated experimental-computational approach, which sheds new light on how infections spread. We anticipate that our approach will also be useful in the development of DIPs as therapeutic agents to manage the spread of viral infections.
Collapse
|
11
|
Jang H, Ngunjiri JM, Lee CW. Association between Interferon Response and Protective Efficacy of NS1-Truncated Mutants as Influenza Vaccine Candidates in Chickens. PLoS One 2016; 11:e0156603. [PMID: 27257989 PMCID: PMC4892592 DOI: 10.1371/journal.pone.0156603] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/17/2016] [Indexed: 11/18/2022] Open
Abstract
Influenza virus mutants that encode C-terminally truncated NS1 proteins (NS1-truncated mutants) are attractive candidates for avian live attenuated influenza vaccine (LAIV) development because they are both attenuated and immunogenic in chickens. We previously showed that a high protective efficacy of NS1-truncated LAIV in chickens corresponds with induction of high levels of type I interferon (IFN) responses in chicken embryonic fibroblast cells. In this study, we investigated the relationship between induction of IFN and IFN-stimulated gene responses in vivo and the immunogenicity and protective efficacy of NS1-truncated LAIV. Our data demonstrates that accelerated antibody induction and protective efficacy of NS1-truncated LAIV correlates well with upregulation of IFN-stimulated genes. Further, through oral administration of recombinant chicken IFN alpha in drinking water, we provide direct evidence that type I IFN can promote rapid induction of adaptive immune responses and protective efficacy of influenza vaccine in chickens.
Collapse
Affiliation(s)
- Hyesun Jang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States of America
| | - John M. Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States of America
- * E-mail: (JMN); (CWL)
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States of America
- * E-mail: (JMN); (CWL)
| |
Collapse
|
12
|
Ngunjiri JM, Ali A, Boyaka P, Marcus PI, Lee CW. In vivo assessment of NS1-truncated influenza virus with a novel SLSYSINWRH motif as a self-adjuvanting live attenuated vaccine. PLoS One 2015; 10:e0118934. [PMID: 25790187 PMCID: PMC4366013 DOI: 10.1371/journal.pone.0118934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
Mutants of influenza virus that encode C-terminally truncated NS1 proteins (NS1-truncated mutants) characteristically induce high interferon responses. The dual activity of interferon in blocking virus replication and enhancing the development of adaptive immune responses makes these mutants promising as self-adjuvanting live-attenuated influenza vaccine (LAIV) candidates. Yet, among the NS1-truncated mutants, the length of NS1 is not directly correlated with the interferon-inducing efficiency, the level of attenuation, or effectiveness as LAIV. Using quantitative in vitro biologically active particle subpopulation analysis as a tool to identify potential LAIV candidates from a pool of NS1-truncated mutants, we previously predicted that a NS1-truncated mutant pc2, which was less effective as a LAIV in chickens, would be sufficiently effective as a LAIV in mammalian hosts. In this study, we confirmed that pc2 protected mice and pigs against heterologous virus challenge in terms of preventing clinical signs and reducing virus shedding. pc2 expresses a unique SLSYSINWRH motif at the C-terminus of its truncated NS1. Deletion of the SLSYSINWRH motif led to ~821-fold reduction in the peak yield of type I interferon induced in murine cells. Furthermore, replacement of the SLSYSINWRH motif with the wildtype MVKMDQAIMD sequence did not restore the interferon-inducing efficiency. The diminished interferon induction capacity in the absence of the SLSYSINWRH motif was similar to that observed in other mutants which are less effective LAIV candidates. Remarkably, pc2 induced 16-fold or more interferon in human lung and monkey kidney cells compared to the temperature-sensitive, cold-adapted Ann Arbor virus that is currently used as a master backbone for LAIVs such as FluMist. Although the mechanism by which the SLSYSINWRH motif regulates the vaccine properties of pc2 has not been elucidated, this motif has potential use in engineering self-adjuvanting NS1-truncated-based LAIVs.
Collapse
Affiliation(s)
- John M Ngunjiri
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States of America; Food Animal Health Research Program, The Ohio State University, Wooster, OH, United States of America
| | - Ahmed Ali
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt; Department of Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Prosper Boyaka
- Department of Veterinary Bioscience, The Ohio State University, Columbus, OH, United States of America
| | - Philip I Marcus
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States of America
| | - Chang-Won Lee
- Food Animal Health Research Program, The Ohio State University, Wooster, OH, United States of America; Department of Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
13
|
Frensing T. Defective interfering viruses and their impact on vaccines and viral vectors. Biotechnol J 2015; 10:681-9. [PMID: 25728309 DOI: 10.1002/biot.201400429] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/13/2015] [Accepted: 01/27/2015] [Indexed: 11/12/2022]
|
14
|
Abstract
Only a small fraction of influenza A virus (IAV) particles within a viral population register as infectious by traditional infectivity assays. Despite constituting the most abundant product of influenza infection, the role that the 'noninfectious' particle fraction plays in the biology of the virus has largely been ignored. This review shines a light on this oft-ignored population by highlighting studies, both old and new, that describe the unique biological activities of these particles, and discussing what this population can tell us about the biology of IAV evolution and disease.
Collapse
Affiliation(s)
- Christopher B Brooke
- Laboratory of Viral Diseases, National Institute of Allergy & Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
15
|
Thepmalee C, Sanguansermsri P, Suwanankhon N, Chamnanpood C, Chamnanpood P, Pongcharoen S, Niumsap PR, Surangkul D, Sanguansermsri D. Changes in the NS1 gene of avian influenza viruses isolated in Thailand affect expression of type I interferon in primary chicken embryonic fibroblast cells. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:365-372. [PMID: 24426299 PMCID: PMC3832696 DOI: 10.1007/s13337-013-0158-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/17/2013] [Indexed: 01/08/2023]
Abstract
The non-structural protein 1 (NS1) of avian influenza virus was defined as one of the virulent factors. To understand the effect of NS1 protein of influenza virus H5N1 isolated in Thailand on type I (α/β) interferon (IFN) synthesis, five reverse genetic viruses were constructed and used as models. The viruses were generated using NS genomic segment from A/Peurto Rico/8/1934 (H1N1) and four avian influenza viruses isolated from the first outbreak in Thailand. All the viruses have the rest of the genome from A/Peurto Rico/8/1934 (H1N1). The constructed viruses were named (1) NS1 PR8/34, (2) NS1 wild type, (3) NS1 L15FD53G, (4) NS1 N171I and (5) NS1 E71K, respectively. The type I (α/β) IFN gene expression in control and infected primary chicken embryonic fibroblast cells were analyzed by quantitative polymerase chain reaction. The results show that the inhibition of IFN-β gene expression by NS1 wild type infected cells is stronger than NS1 N171I, NS1 E71K, NS1 PR8/34 and NS1 L15FD53G, respectively. The data suggest that the difference of amino acid sequence of NS1 protein contributes to the IFN-β antagonist. In contrast, the difference of the NS1 protein does not influence in the IFN-α antagonistic activity.
Collapse
Affiliation(s)
- Chutamas Thepmalee
- />Department of Biochemistry, Faculty of Medical Sciences, Naresuan University, Phitsanulok, 65000 Thailand
- />Department of Biochemistry, Faculty of Medical Sciences, University of Phayao, Phayao, 56000 Thailand
| | - Phanchana Sanguansermsri
- />Department of Biochemistry, Faculty of Medical Sciences, Naresuan University, Phitsanulok, 65000 Thailand
| | - Naratchala Suwanankhon
- />Department of Biochemistry, Faculty of Medical Sciences, Naresuan University, Phitsanulok, 65000 Thailand
- />Department of Biology, Faculty of Sciences, University of Phayao, Phayao, 56000 Thailand
| | - Chanpen Chamnanpood
- />Veterinary Research and Development Centre Lower Northern Region, Phitsanulok, 65130 Thailand
| | | | - Sutatip Pongcharoen
- />Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, 65000 Thailand
| | - Pannika R. Niumsap
- />Department of Microbiology and Parasitology, Faculty of Medical Sciences, Naresuan University, Phitsanulok, 65000 Thailand
| | - Damratsamon Surangkul
- />Department of Biochemistry, Faculty of Medical Sciences, Naresuan University, Phitsanulok, 65000 Thailand
| | - Donruedee Sanguansermsri
- />Department of Microbiology and Parasitology, Faculty of Medical Sciences, Naresuan University, Phitsanulok, 65000 Thailand
- />Centre of Excellence in Medical Biotechnology, Faculty of Medical Sciences, Naresuan University, Phitsanulok, 65000 Thailand
| |
Collapse
|
16
|
Malinoski CP, Marcus PI. Influenza Virus Subpopulations: Interferon Induction-Suppressing Particles Require Expression of NS1 and Act Globally in Cells; UV Irradiation of Interferon-Inducing Particles Blocks Global Shut-Off and Enhances Interferon Production. J Interferon Cytokine Res 2013; 33:72-9. [PMID: 23131171 DOI: 10.1089/jir.2012.0075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Christopher P Malinoski
- Department of Molecular and Cell Biology, Virus and Interferon Research Laboratory, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
17
|
Lethal H5N1 influenza viruses are not resistant to interferon action in human, simian, porcine or chicken cells. Nat Med 2013; 18:1456-7. [PMID: 23042343 DOI: 10.1038/nm.2879] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Ngunjiri JM, Buchek GM, Mohni KN, Sekellick MJ, Marcus PI. Influenza virus subpopulations: exchange of lethal H5N1 virus NS for H1N1 virus NS triggers de novo generation of defective-interfering particles and enhances interferon-inducing particle efficiency. J Interferon Cytokine Res 2012; 33:99-107. [PMID: 23215782 DOI: 10.1089/jir.2012.0070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reassortment of influenza A viruses is known to affect viability, replication efficiency, antigenicity, host range, and virulence, and can generate pandemic strains. In this study, we demonstrated that the specific exchange of the NS gene segment from highly pathogenic A/HK/156/97 (H5N1) [E92 or E92D NS1] virus for the cognate NS gene segment of A/PR/834(H1N1) [D92 NS1] virus did not cause a significant change in the sizes of infectious particle subpopulations. However, it resulted in 2 new phenotypic changes: (1) de novo generation of large subpopulations of defective-interfering particles (DIPs); and (2) enhancement of interferon (IFN)-inducing particle efficiency leading to an order of magnitude or higher quantum (peak) yield of IFN in both avian and mammalian cells. These changes were attributed to loss of function of the H5N1-NS gene products. Most notably, the NS exchange obliterated the usual IFN-induction-suppressing capacity associated with expression of full-size NS1 proteins, and hence functionally mimicked deletions in the NS1 gene. The loss of NS1-mediated suppression of IFN induction, de novo generation of DIPs, and the concomitant enhancement of IFN-inducing particle efficiency suggest that in an attenuated background, the H5N1-NS could be used to formulate a self-adjuvanting live attenuated influenza vaccine similar to viruses with deletions in the NS1 gene.
Collapse
Affiliation(s)
- John M Ngunjiri
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | |
Collapse
|
19
|
Isken B, Genzel Y, Reichl U. Productivity, apoptosis, and infection dynamics of influenza A/PR/8 strains and A/PR/8-based reassortants. Vaccine 2012; 30:5253-61. [PMID: 22698452 DOI: 10.1016/j.vaccine.2012.05.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/16/2012] [Accepted: 05/25/2012] [Indexed: 01/18/2023]
Abstract
In cell culture-based influenza vaccine production significant efforts are directed towards virus seed optimization for maximum yields. Typically, high growth reassortants (HGR) containing backbones of six gene segments of e.g. influenza A/PR/8, are generated from wild type strains. Often, however, HA and TCID₅₀ titres obtained do not meet expectations and further optimization measures are required. Flow cytometry is an invaluable tool to improve our understanding of mechanism related to progress of infection, virus-induced apoptosis, and cell-specific productivity. In this study, we performed infections with two influenza A/PR/8 variants (from NIBSC and RKI) and two A/PR/8-based HGRs (Wisconsin-like and Uruguay-like) to investigate virus replication, apoptosis and virus titres at different multiplicities of infection (MOI 0.0001, 0.1, 3). Flow cytometric analyses showed similar dynamics in the time course of infected and apoptotic cell populations for all four tested strains at MOI 0.0001. Interestingly, higher MOI resulted in an earlier increase of the populations of infected and apoptotic cells and showed strain-specific differences. Infections with A/PR/8 NIBSC resulted in an earlier increase in both cell populations compared to A/PR/8 RKI. The Uruguay-like reassortant showed the earliest increase in the concentration of infected cells and a late induction of apoptosis at all tested MOIs. In contrast, the Wisconsin-like reassortant showed strong apoptosis induction at high MOIs resulting in reduced titres compared to lower MOI. Maximum HA titres were unaffected by changes in the MOI for the two A/PR/8 and the Uruguay-like reassortant. Maximum TCID₅₀ titres, however, decreased with increasing MOI for all strains. Overall, infections at very low MOI (0.0001) resulted not only in similar dynamics concerning progress of infection and induction of apoptosis but also in maximum virus yields. Highest HA titres were obtained for virus seed strains combining a fast progress in infection with a late onset of apoptosis. Therefore, both factors should be considered for the establishment of robust influenza vaccine production processes.
Collapse
Affiliation(s)
- B Isken
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | | | | |
Collapse
|
20
|
Ngunjiri JM, Lee CW, Ali A, Marcus PI. Influenza virus interferon-inducing particle efficiency is reversed in avian and mammalian cells, and enhanced in cells co-infected with defective-interfering particles. J Interferon Cytokine Res 2012; 32:280-5. [PMID: 22385205 DOI: 10.1089/jir.2011.0102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Naturally selected variants of influenza virus encoding truncated NS1 proteins were tested in chickens as candidate live-attenuated influenza vaccines. Their effectiveness correlated with the amount of interferon (IFN) induced in chicken cells. Effective variants induced large amounts of IFN and contained subpopulations with high ratios of defective-interfering particles:IFN-inducing particles (DIP:IFP). Ineffective variants induced less IFN and contained lower ratios of DIP:IFP. Unexpectedly, there was a reversal of phenotypes in mammalian cells. Variants that induced low amounts of IFN and had low DIP:IFP ratios in chicken cells were excellent IFN inducers with high DIP:IFP ratios in mammalian cells, and vice versa. The high DIP:IFP ratios and computer-simulated dynamics of infection suggested that DIP, as an individual particle, did not function as an IFP. The higher efficiency of IFPs in the presence of DIPs was attributed to reduced amounts of newly synthesized viral polymerase known to result from out-competition by defective-interfering RNAs, and the subsequent failure of that polymerase to turn-off cellular mRNA transcription-including IFN-mRNA.
Collapse
Affiliation(s)
- John M Ngunjiri
- Virus and Interferon Research Laboratory, Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | |
Collapse
|
21
|
Malinoski CP, Marcus PI. Influenza Virus: A Single Noninfectious Interferon Induction-Suppressing Particle Blocks Expression of Interferon-Inducing Particles. J Interferon Cytokine Res 2012; 32:121-6. [PMID: 22136418 DOI: 10.1089/jir.2011.0078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christopher P. Malinoski
- Laboratory for Virus and Interferon Research, Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Philip I. Marcus
- Laboratory for Virus and Interferon Research, Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|