1
|
Yang CH, Song AL, Qiu Y, Ge XY. Cross-species transmission and host range genes in poxviruses. Virol Sin 2024; 39:177-193. [PMID: 38272237 PMCID: PMC11074647 DOI: 10.1016/j.virs.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The persistent epidemic of human mpox, caused by mpox virus (MPXV), raises concerns about the future spread of MPXV and other poxviruses. MPXV is a typical zoonotic virus which can infect human and cause smallpox-like symptoms. MPXV belongs to the Poxviridae family, which has a relatively broad host range from arthropods to vertebrates. Cross-species transmission of poxviruses among different hosts has been frequently reported and resulted in numerous epidemics. Poxviruses have a complex linear double-strand DNA genome that encodes hundreds of proteins. Genes related to the host range of poxvirus are called host range genes (HRGs). This review briefly introduces the taxonomy, phylogeny and hosts of poxviruses, and then comprehensively summarizes the current knowledge about the cross-species transmission of poxviruses. In particular, the HRGs of poxvirus are described and their impacts on viral host range are discussed in depth. We hope that this review will provide a comprehensive perspective about the current progress of researches on cross-species transmission and HRG variation of poxviruses, serving as a valuable reference for academic studies and disease control in the future.
Collapse
Affiliation(s)
- Chen-Hui Yang
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - A-Ling Song
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - Ye Qiu
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| | - Xing-Yi Ge
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| |
Collapse
|
2
|
Reus JB, Rex EA, Gammon DB. How to Inhibit Nuclear Factor-Kappa B Signaling: Lessons from Poxviruses. Pathogens 2022; 11:pathogens11091061. [PMID: 36145493 PMCID: PMC9502310 DOI: 10.3390/pathogens11091061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The Nuclear Factor-kappa B (NF-κB) family of transcription factors regulates key host inflammatory and antiviral gene expression programs, and thus, is often activated during viral infection through the action of pattern-recognition receptors and cytokine–receptor interactions. In turn, many viral pathogens encode strategies to manipulate and/or inhibit NF-κB signaling. This is particularly exemplified by vaccinia virus (VV), the prototypic poxvirus, which encodes at least 18 different inhibitors of NF-κB signaling. While many of these poxviral NF-κB inhibitors are not required for VV replication in cell culture, they virtually all modulate VV virulence in animal models, underscoring the important influence of poxvirus–NF-κB pathway interactions on viral pathogenesis. Here, we review the diversity of mechanisms through which VV-encoded antagonists inhibit initial NF-κB pathway activation and NF-κB signaling intermediates, as well as the activation and function of NF-κB transcription factor complexes.
Collapse
|
3
|
van Diepen M, Chapman R, Douglass N, Whittle L, Chineka N, Galant S, Cotchobos C, Suzuki A, Williamson AL. Advancements in the Growth and Construction of Recombinant Lumpy Skin Disease Virus (LSDV) for Use as a Vaccine Vector. Vaccines (Basel) 2021; 9:vaccines9101131. [PMID: 34696239 PMCID: PMC8539341 DOI: 10.3390/vaccines9101131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023] Open
Abstract
Attenuated vaccine strains of lumpy skin disease virus (LSDV) have become increasingly popular as recombinant vaccine vectors, to target both LSDV, as well as other pathogens, including human infectious agents. Historically, these vaccine strains and recombinants were generated in primary (lamb) testis (LT) cells, Madin–Darby bovine kidney (MDBK) cells or in eggs. Growth in eggs is a laborious process, the use of primary cells has the potential to introduce pathogens and MDBK cells are known to harbor bovine viral diarrhea virus (BVDV). In this study, data is presented to show the growth of an attenuated LSDV strain in baby hamster kidney (BHK-21) cells. Subsequently, a recombinant LSDV vaccine was generated in BHK-21 cells. Partial growth was also observed in rabbit kidney cells (RK13), but only when the vaccinia virus host range gene K1L was expressed. Despite the limited growth, the expression of K1L was enough to serve as a positive selection marker for the generation of recombinant LSDV vaccines in RK13 cells. The simplification of generating (recombinant) LSDV vaccines shown here should increase the interest for this platform for future livestock vaccine development and, with BHK-21 cells approved for current good manufacturing practice, this can be expanded to human vaccines as well.
Collapse
Affiliation(s)
- Michiel van Diepen
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Rosamund Chapman
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Nicola Douglass
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: (N.D.); (A.-L.W.); Tel.: +27-832310553 (N.D.)
| | - Leah Whittle
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Nicole Chineka
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Shireen Galant
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Christian Cotchobos
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Akiko Suzuki
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Anna-Lise Williamson
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: (N.D.); (A.-L.W.); Tel.: +27-832310553 (N.D.)
| |
Collapse
|
4
|
Ho TY, Mealiea D, Okamoto L, Stojdl DF, McCart JA. Deletion of immunomodulatory genes as a novel approach to oncolytic vaccinia virus development. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:85-97. [PMID: 34514091 PMCID: PMC8411212 DOI: 10.1016/j.omto.2021.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Vaccinia virus (VV) has emerged as a promising platform for oncolytic virotherapy. Many clinical VV candidates, such as the double-deleted VV, vvDD, are engineered with deletions that enhance viral tumor selectivity based on cellular proliferation rates. An alternative approach is to exploit the dampened interferon-based innate immune responses of tumor cells by deleting one of the many VV immunomodulatory genes expressed to dismantle the antiviral response. We hypothesized that such a VV mutant would be attenuated in non-tumor cells but retain the ability to effectively propagate in and kill tumor cells, yielding a tumor-selective oncolytic VV with significant anti-tumor potency. In this study, we demonstrated that VVs with a deletion in one of several VV immunomodulatory genes (N1L, K1L, K3L, A46R, or A52R) have similar or improved in vitro replication, spread, and cytotoxicity in colon and ovarian cancer cells compared to vvDD. These deletion mutants are tumor selective, and the best performing candidates (ΔK1L, ΔA46R, and ΔA52R VV) are associated with significant improvement in survival, as well as immunomodulation, within the tumor environment. Overall, we show that exploiting the diminished antiviral responses in tumors serves as an effective strategy for generating tumor-selective and potent oncolytic VVs, with important implications in future oncolytic virus (OV) design.
Collapse
Affiliation(s)
- Tiffany Y Ho
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - David Mealiea
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada.,Department of Surgery, University of Toronto, Stewart Building, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Lili Okamoto
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - David F Stojdl
- Department of Biology, Microbiology, and Immunology, Children's Hospital of Eastern Ontario (CHEO) Research Institute, 401 Smyth Road, Ottawa ON K1H 5B2, Canada
| | - J Andrea McCart
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada.,Department of Surgery, University of Toronto, Stewart Building, 149 College Street, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
5
|
Lim H, In HJ, Kim YJ, Jang S, Lee YH, Kim SH, Lee SH, Park JH, Yang HJ, Yoo JS, Lee SW, Kim MY, Chung GT, Yeo SG. Development of an attenuated smallpox vaccine candidate: The KVAC103 strain. Vaccine 2021; 39:5214-5223. [PMID: 34334254 DOI: 10.1016/j.vaccine.2021.06.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
Smallpox, a disease caused by the variola virus, is one of the most dangerous diseases and had killed numerous people before it was eradicated in 1980. However, smallpox has emerged as the most threatening bio-terrorism agent; as the first- and second-generation smallpox vaccines have been controversial and have caused severe adverse reactions, new demands for safe smallpox vaccines have been raised and some attenuated smallpox vaccines have been developed. We have developed a cell culture-based highly attenuated third-generation smallpox vaccine candidate KVAC103 strain by 103 serial passages of the Lancy-Vaxina strain derived from the Lister in Vero cells. Several clones were selected, taking into consideration their shape, size, and growth rate in mammalian cells. The clones were then inoculated intracerebrally in suckling mice to test for neurovirulence by observing survival. Protective immune responses in adult mice were examined by measuring the levels of neutralization antibodies and IFN-γ expression. Among several clones, clone 7 was considered the best alternative candidate because there was no mortality in suckling mice against a lethal challenge. In addition, enhanced neutralizing antibodies and T-cell mediated IFN-γ production were observed in clone 7-immunized mice. Clone 7 was named "KVAC103" and was used for the skin toxicity test and full-genome analysis. KVAC103-inoculated rabbits showed reduced skin lesions compared to those inoculated with the Lister strain, Lancy-Vaxina. A whole genome analysis of KVAC103 revealed two major deleted regions that might contribute to the reduced virulence of KVAC103 compared to the Lister strain. Phylogenetic inference supported the close relationship with the Lister strain. Collectively, our data demonstrate that KVAC103 holds promise for use as a third-generation smallpox vaccine strain due to its enhanced safety and efficacy.
Collapse
Affiliation(s)
- Heeji Lim
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Hyun Ju In
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - You-Jin Kim
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Sundong Jang
- College of Pharmacy, Chungbuk National University, CheongJu, Chungbuk 28160, Republic of Korea
| | - Yun Ha Lee
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Su Hwan Kim
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Sun Hwa Lee
- Department of Laboratory Medicine, KU Medicine, Seoul 02841, Republic of Korea
| | - Jun Hyuk Park
- Department of Laboratory Medicine Chungcheongnam-do Institute of Health and Environment Research, Hongseong 32254, Republic of Korea
| | - Hyo Jin Yang
- Korea Disease Control and Prevention Agency, CheongJu, Chungbuk 28159, Republic of Korea
| | - Jung-Sik Yoo
- Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Sang-Won Lee
- Korea Disease Control and Prevention Agency, CheongJu, Chungbuk 28159, Republic of Korea
| | - Mi Young Kim
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Gyung Tae Chung
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Sang Gu Yeo
- Division of Infectious Diseases, Sejong Institute of Health and Environment Research, Sejong City 30015, Republic of Korea.
| |
Collapse
|
6
|
Struzik J, Szulc-Dąbrowska L. NF-κB as an Important Factor in Optimizing Poxvirus-Based Vaccines against Viral Infections. Pathogens 2020; 9:pathogens9121001. [PMID: 33260450 PMCID: PMC7760304 DOI: 10.3390/pathogens9121001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Poxviruses are large dsDNA viruses that are regarded as good candidates for vaccine vectors. Because the members of the Poxviridae family encode numerous immunomodulatory proteins in their genomes, it is necessary to carry out certain modifications in poxviral candidates for vaccine vectors to improve the vaccine. Currently, several poxvirus-based vaccines targeted at viral infections are under development. One of the important aspects of the influence of poxviruses on the immune system is that they encode a large array of inhibitors of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which is the key element of both innate and adaptive immunity. Importantly, the NF-κB transcription factor induces the mechanisms associated with adaptive immunological memory involving the activation of effector and memory T cells upon vaccination. Since poxviruses encode various NF-κB inhibitor proteins, before the use of poxviral vaccine vectors, modifications that influence NF-κB activation and consequently affect the immunogenicity of the vaccine should be carried out. This review focuses on NF-κB as an essential factor in the optimization of poxviral vaccines against viral infections.
Collapse
|
7
|
Sheean ME, Malikova E, Duarte D, Capovilla G, Fregonese L, Hofer MP, Magrelli A, Mariz S, Mendez-Hermida F, Nistico R, Leest T, Sipsas NV, Tsigkos S, Vitezic D, Larsson K, Sepodes B, Stoyanova-Beninska V. Nonclinical data supporting orphan medicinal product designations in the area of rare infectious diseases. Drug Discov Today 2019; 25:274-291. [PMID: 31704277 DOI: 10.1016/j.drudis.2019.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 01/13/2023]
Abstract
This review provides an overview of nonclinical in vivo models that can be used to support orphan designation in selected rare infectious diseases in Europe, with the aim to inform and stimulate the planning of nonclinical development in this area of often neglected diseases.
Collapse
Affiliation(s)
- Maria E Sheean
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands; Max-Delbrück Center for Molecular Medicine in Helmholz Association, Berlin, Germany.
| | - Eva Malikova
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; State Institute for Drug Control, Bratislava, Slovak Republic; Comenius University, Department of Pharmacology and Toxicology, Bratislava, Slovak Republic
| | - Dinah Duarte
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; INFARMED - Autoridade Nacional do Medicamento, Lisbon, Portugal
| | - Giuseppe Capovilla
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; C. Poma Hospital, Mantova, Italy; Fondazione Poliambulanza, Brescia, Italy
| | - Laura Fregonese
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Matthias P Hofer
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Armando Magrelli
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Segundo Mariz
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Fernando Mendez-Hermida
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain
| | - Robert Nistico
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; Malta Medicines Authority, San Ġwann, Malta
| | - Tim Leest
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; The Federal Agency for Medicines and Health Products, Brussels, Belgium
| | - Nikolaos V Sipsas
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stelios Tsigkos
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Dinko Vitezic
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; University of Rijeka Medical School and University Hospital Centre Rijeka, Rijeka, Croatia
| | - Kristina Larsson
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Bruno Sepodes
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; INFARMED - Autoridade Nacional do Medicamento, Lisbon, Portugal; Universidade de Lisboa - Faculdade de Farmácia, Lisbon, Portugal
| | - Violeta Stoyanova-Beninska
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; Medicines Evaluation Board, Utrecht, The Netherlands
| |
Collapse
|
8
|
Biswas S, Smith GL, Roy EJ, Ward B, Shisler JL. A comparison of the effect of molluscum contagiosum virus MC159 and MC160 proteins on vaccinia virus virulence in intranasal and intradermal infection routes. J Gen Virol 2019; 99:246-252. [PMID: 29393023 DOI: 10.1099/jgv.0.001006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Molluscum contagiosum virus (MCV) causes persistent, benign skin neoplasm in children and adults. MCV is refractive to growth in standard tissue culture and there is no relevant animal model of infection. Here we investigated whether another poxvirus (vaccinia virus; VACV) could be used to examine MCV immunoevasion protein properties in vivo. The MCV MC159L or MC160L genes, which encode NF-κB antagonists, were inserted into an attenuated VACV lacking an NF-κB antagonist (vΔA49), creating vMC159 and vMC160. vMC160 slightly increased vΔA49 virulence in the intranasal and intradermal routes of inoculation. vMC159 infection was less virulent than vΔA49 in both inoculation routes. vMC159-infected ear pinnae did not form lesions, but virus replication still occurred. Thus, the lack of lesions was not due to abortive virus replication. This system provides a new approach to examine MCV immunoevasion proteins within the context of a complete and complex immune system.
Collapse
Affiliation(s)
- Sunetra Biswas
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Geoffrey L Smith
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, UK
| | - Edward J Roy
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, USA
| | - Brian Ward
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Rowles JL, Han A, Miller RJ, Kelly JR, Applegate CC, Wallig MA, O'Brien WD, Erdman JW. Low fat but not soy protein isolate was an effective intervention to reduce nonalcoholic fatty liver disease progression in C57BL/6J mice: monitored by a novel quantitative ultrasound (QUS) method. Nutr Res 2019; 63:95-105. [PMID: 30824402 DOI: 10.1016/j.nutres.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
Untreated nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) lead to irreversible liver damage. We hypothesized that a low-fat diet (LFD) or a high-fat diet (HFD) with soy protein isolate (SPI) would be an effective intervention to halt or reverse NAFLD progression. To test these hypotheses, we conducted 2 studies. In the first study, we fed an HFD to 7-week-old C57BL/6J mice to induce NAFLD compared to an LFD (control). Hepatic steatosis was monitored by quantitative ultrasound (QUS) scans (in vivo and ex vivo). Animals were euthanized after 0, 2, 4, and 6 weeks of feeding. In the second study, 7-week-old mice were randomized onto an LFD or HFD with SPI intervention after 4 weeks of feeding HFD. Animals from each group were scanned with QUS and euthanized after 4, 9, and 12 weeks of feeding. Animals fed the HFD developed NAFLD (100%) and NASH (80%) characterized by increased liver weight, lipid accumulation, and histological scores for inflammation by 4 weeks in the first study. In the second study, the LFD ameliorated this NAFLD phenotype after 5 weeks of feeding; however, the SPI intervention failed to significantly attenuate NAFLD. QUS parameters were significantly increased with the HFDs (P < .05) and steatosis grade (P < .05) and were positively correlated with hepatic lipid concentrations. In conclusion, dietary modification may be effective at reversing NAFLD and NASH at early stages. Furthermore, QUS may become a valuable tool to track hepatic steatosis. Additional studies are needed to further evaluate the effectiveness of these interventions.
Collapse
Affiliation(s)
- Joe L Rowles
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign
| | - Aiguo Han
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
| | - Rita J Miller
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
| | - Jamie R Kelly
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
| | | | - Matthew A Wallig
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign; Department of Pathobiology, University of Illinois at Urbana-Champaign
| | - William D O'Brien
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign.
| |
Collapse
|
10
|
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, Liu W, Storkus WJ, He Y, Liu Z, Bartlett DL. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer 2019; 7:6. [PMID: 30626434 PMCID: PMC6325819 DOI: 10.1186/s40425-018-0495-7] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines and oncolytic immunotherapy are promising treatment strategies with potential to provide greater clinical benefit to patients with advanced-stage cancer. In particular, recombinant vaccinia viruses (VV) hold great promise as interventional agents. In this article, we first summarize the current understanding of virus biology and viral genes involved in host-virus interactions to further improve the utility of these agents in therapeutic applications. We then discuss recent findings from basic and clinical studies using VV as cancer vaccines and oncolytic immunotherapies. Despite encouraging results gleaned from translational studies in animal models, clinical trials implementing VV vectors alone as cancer vaccines have yielded largely disappointing results. However, the combination of VV vaccines with alternate forms of standard therapies has resulted in superior clinical efficacy. For instance, combination regimens using TG4010 (MVA-MUC1-IL2) with first-line chemotherapy in advanced-stage non-small cell lung cancer or combining PANVAC with docetaxel in the setting of metastatic breast cancer have clearly provided enhanced clinical benefits to patients. Another novel cancer vaccine approach is to stimulate anti-tumor immunity via STING activation in Batf3-dependent dendritic cells (DC) through the use of replication-attenuated VV vectors. Oncolytic VVs have now been engineered for improved safety and superior therapeutic efficacy by arming them with immune-stimulatory genes or pro-apoptotic molecules to facilitate tumor immunogenic cell death, leading to enhanced DC-mediated cross-priming of T cells recognizing tumor antigens, including neoantigens. Encouraging translational and early phase clinical results with Pexa-Vec have matured into an ongoing global phase III trial for patients with hepatocellular carcinoma. Combinatorial approaches, most notably those using immune checkpoint blockade, have produced exciting pre-clinical results and warrant the development of innovative clinical studies. Finally, we discuss major hurdles that remain in the field and offer some perspectives regarding the development of next generation VV vectors for use as cancer therapeutics.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zongbi Guo
- Fujian Tianjian Pharmaceutical Co. Ltd., Sanming, Fujian, China
| | - Esther Giehl
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enyong Dai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weilin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zuqiang Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Ectromelia virus lacking the E3L ortholog is replication-defective and nonpathogenic but does induce protective immunity in a mouse strain susceptible to lethal mousepox. Virology 2018; 518:335-348. [PMID: 29602068 DOI: 10.1016/j.virol.2018.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 01/16/2023]
Abstract
All known orthopoxviruses, including ectromelia virus (ECTV), contain a gene in the E3L family. The protein product of this gene, E3, is a double-stranded RNA-binding protein. It can impact host range and is used by orthopoxviruses to combat cellular defense pathways, such as PKR and RNase L. In this work, we constructed an ECTV mutant with a targeted disruption of the E3L open reading frame (ECTVΔE3L). Infection with this virus resulted in an abortive replication cycle in all cell lines tested. We detected limited transcription of late genes but no significant translation of these mRNAs. Notably, the replication defects of ECTVΔE3L were rescued in human and mouse cells lacking PKR. ECTVΔE3L was nonpathogenic in BALB/c mice, a strain susceptible to lethal mousepox disease. However, infection with ECTVΔE3L induced protective immunity upon subsequent challenge with wild-type virus. In summary, E3L is an essential gene for ECTV.
Collapse
|
12
|
Albarnaz JD, Torres AA, Smith GL. Modulating Vaccinia Virus Immunomodulators to Improve Immunological Memory. Viruses 2018; 10:E101. [PMID: 29495547 PMCID: PMC5869494 DOI: 10.3390/v10030101] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022] Open
Abstract
The increasing frequency of monkeypox virus infections, new outbreaks of other zoonotic orthopoxviruses and concern about the re-emergence of smallpox have prompted research into developing antiviral drugs and better vaccines against these viruses. This article considers the genetic engineering of vaccinia virus (VACV) to enhance vaccine immunogenicity and safety. The virulence, immunogenicity and protective efficacy of VACV strains engineered to lack specific immunomodulatory or host range proteins are described. The ultimate goal is to develop safer and more immunogenic VACV vaccines that induce long-lasting immunological memory.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Alice A Torres
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
13
|
Ryerson MR, Shisler JL. Characterizing the effects of insertion of a 5.2 kb region of a VACV genome, which contains known immune evasion genes, on MVA immunogenicity. Virus Res 2018; 246:55-64. [PMID: 29341877 DOI: 10.1016/j.virusres.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Modified Vaccinia virus Ankara (MVA) is an attenuated Vaccinia virus (VACV) that is a popular vaccine vector candidate against many different pathogens. Its replication-restricted nature makes it a safe vaccine. However, higher doses or multiple boosts of MVA are necessary to elicit an immune response similar to wild-type VACV. Multiple strategies have been used to create modified MVA viruses that remain safe, but have increased immunogenicity. For example, one common strategy is to delete MVA immunomodulatory proteins in hopes of increasing the host immune response. Here, we take the opposite approach and examine, for the first time, how re-introduction of a 5.2 kb region of VACV DNA (that codes for multiple immunomodulatory proteins) into MVA alters viral immunogenicity. Since antigen presenting cells (APCs) are critical connectors between the innate and adaptive immune system, we examined the effect of MVA/5.2 kb infection in these cells in vitro. MVA/5.2 kb infection decreased virus-induced apoptosis and virus-induced NF-κB activation. MVA.5.2 kb infection decreased TNF production. However, MVA/5.2 kb infection did not alter APC maturation or IL-6 and IL-8 production in vitro. We further explored MVA/5.2 kb immunogenicity in vivo. VACV-specific CD8+ T cells were decreased after in vivo infection with MVA/5.2 kb versus MVA, suggesting that the MVA/5.2 kb construct is less immunogenic than MVA. These results demonstrate the limitations of in vitro studies for predicting the effects of genetic manipulation of MVA on immunogenicity. Although MVA/5.2 kb did not enhance MVA's immunogenicity, this study examined an unexplored strategy for optimizing MVA, and the insight gained from these results can help direct how to modify MVA in the future.
Collapse
Affiliation(s)
- Melissa R Ryerson
- Department of Microbiology, B103 Chemical and Life Science Building, 601 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA
| | - Joanna L Shisler
- Department of Microbiology, B103 Chemical and Life Science Building, 601 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
14
|
Vaccinia Virus Encodes a Novel Inhibitor of Apoptosis That Associates with the Apoptosome. J Virol 2017; 91:JVI.01385-17. [PMID: 28904196 DOI: 10.1128/jvi.01385-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is an important antiviral host defense mechanism. Here we report the identification of a novel apoptosis inhibitor encoded by the vaccinia virus (VACV) M1L gene. M1L is absent in the attenuated modified vaccinia virus Ankara (MVA) strain of VACV, a strain that stimulates apoptosis in several types of immune cells. M1 expression increased the viability of MVA-infected THP-1 and Jurkat cells and reduced several biochemical hallmarks of apoptosis, such as PARP-1 and procaspase-3 cleavage. Furthermore, ectopic M1L expression decreased staurosporine-induced (intrinsic) apoptosis in HeLa cells. We then identified the molecular basis for M1 inhibitory function. M1 allowed mitochondrial depolarization but blocked procaspase-9 processing, suggesting that M1 targeted the apoptosome. In support of this model, we found that M1 promoted survival in Saccharomyces cerevisiae overexpressing human Apaf-1 and procaspase-9, critical components of the apoptosome, or overexpressing only conformationally active caspase-9. In mammalian cells, M1 coimmunoprecipitated with Apaf-1-procaspase-9 complexes. The current model is that M1 associates with and allows the formation of the apoptosome but prevents apoptotic functions of the apoptosome. The M1 protein features 14 predicted ankyrin (ANK) repeat domains, and M1 is the first ANK-containing protein reported to use this inhibitory strategy. Since ANK-containing proteins are encoded by many large DNA viruses and found in all domains of life, studies of M1 may lead to a better understanding of the roles of ANK proteins in virus-host interactions.IMPORTANCE Apoptosis selectively eliminates dangerous cells such as virus-infected cells. Poxviruses express apoptosis antagonists to neutralize this antiviral host defense. The vaccinia virus (VACV) M1 ankyrin (ANK) protein, a protein with no previously ascribed function, inhibits apoptosis. M1 interacts with the apoptosome and prevents procaspase-9 processing as well as downstream procaspase-3 cleavage in several cell types and under multiple conditions. M1 is the first poxviral protein reported to associate with and prevent the function of the apoptosome, giving a more detailed picture of the threats VACV encounters during infection. Dysregulation of apoptosis is associated with several human diseases. One potential treatment of apoptosis-related diseases is through the use of designed ANK repeat proteins (DARPins), similar to M1, as caspase inhibitors. Thus, the study of the novel antiapoptosis effects of M1 via apoptosome association will be helpful for understanding how to control apoptosis using either natural or synthetic molecules.
Collapse
|