1
|
Papp H, Tóth E, Bóvári-Biri J, Bánfai K, Juhász P, Mahdi M, Russo LC, Bajusz D, Sipos A, Petri L, Szalai TV, Kemény Á, Madai M, Kuczmog A, Batta G, Mózner O, Vaskó D, Hirsch E, Bohus P, Méhes G, Tőzsér J, Curtin NJ, Helyes Z, Tóth A, Hoch NC, Jakab F, Keserű GM, Pongrácz JE, Bai P. The PARP inhibitor rucaparib blocks SARS-CoV-2 virus binding to cells and the immune reaction in models of COVID-19. Br J Pharmacol 2024; 181:4782-4803. [PMID: 39191429 DOI: 10.1111/bph.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND AND PURPOSE To date, there are limited options for severe Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 virus. As ADP-ribosylation events are involved in regulating the life cycle of coronaviruses and the inflammatory reactions of the host; we have, here, assessed the repurposing of registered PARP inhibitors for the treatment of COVID-19. EXPERIMENTAL APPROACH The effects of PARP inhibitors on virus uptake were assessed in cell-based experiments using multiple variants of SARS-CoV-2. The binding of rucaparib to spike protein was tested by molecular modelling and microcalorimetry. The anti-inflammatory properties of rucaparib were demonstrated in cell-based models upon challenging with recombinant spike protein or SARS-CoV-2 RNA vaccine. KEY RESULTS We detected high levels of oxidative stress and strong PARylation in all cell types in the lungs of COVID-19 patients, both of which negatively correlated with lymphocytopaenia. Interestingly, rucaparib, unlike other tested PARP inhibitors, reduced the SARS-CoV-2 infection rate through binding to the conserved 493-498 amino acid region located in the spike-ACE2 interface in the spike protein and prevented viruses from binding to ACE2. In addition, the spike protein and viral RNA-induced overexpression of cytokines was down-regulated by the inhibition of PARP1 by rucaparib at pharmacologically relevant concentrations. CONCLUSION AND IMPLICATIONS These results point towards repurposing rucaparib for treating inflammatory responses in COVID-19.
Collapse
Affiliation(s)
- Henrietta Papp
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Judit Bóvári-Biri
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Krisztina Bánfai
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Péter Juhász
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lilian Cristina Russo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tibor Viktor Szalai
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ágnes Kemény
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Medical Biology, Medical School, Pécs, Hungary
| | - Mónika Madai
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Anett Kuczmog
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Orsolya Mózner
- Doctoral School of Molecular Medicine, Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dorottya Vaskó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nicola J Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Hungarian Research Network, Chronic Pain Research Group, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Attila Tóth
- Section of Clinical Physiology, Department of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Nicolas C Hoch
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ferenc Jakab
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Judit E Pongrácz
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Péter Bai
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Yapo V, Majumder K, Tedbury PR, Wen X, Ong YT, Johnson MC, Sarafianos SG. HIV-2 inhibits HIV-1 gene expression via two independent mechanisms during cellular co-infection. J Virol 2023; 97:e0187022. [PMID: 37991365 PMCID: PMC10734542 DOI: 10.1128/jvi.01870-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/28/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.
Collapse
Affiliation(s)
- Vincent Yapo
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Kinjal Majumder
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Philip R. Tedbury
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Xin Wen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Yee T. Ong
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Marc C. Johnson
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Hønge BL, Andersen MN, Petersen MS, Jespersen S, Medina C, Té DDS, Kjerulff B, Laursen AL, Møller HJ, Wejse C, Krarup H, Møller BK, Erikstrup C. Monocyte phenotype and extracellular vesicles in HIV-1, HIV-2, and HIV-1/2 dual infection. AIDS 2023; 37:1773-1781. [PMID: 37475710 DOI: 10.1097/qad.0000000000003660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
OBJECTIVE AIDS-defining illness develops at higher CD4 + T-cell counts in individuals infected with HIV-2 compared with HIV-1-infected, which suggests that the two types of HIV may have different effects on other compartments of the immune system. We here investigate monocyte phenotype, activation and macrophage-derived extracellular vesicles in individuals with different HIV types. DESIGN Cross-sectional. METHODS ART-naive HIV-1 ( n = 83), HIV-2 ( n = 63), and HIV-1/2 dually positive ( n = 27) participants were recruited in Bissau, Guinea-Bissau, together with HIV-negative controls ( n = 26). Peripheral blood mononuclear cells (PBMCs) were isolated and analyzed by flow cytometry for monocyte phenotype and activation, and plasma was analyzed for extracellular vesicle forms of CD163 and CD206. RESULTS Compared with HIV-negative controls, all groups of HIV-positive participants had a skewed monocyte phenotype with a higher proportion of intermediate monocytes, increased CD163 expression and elevated serum levels of the inflammatory biomarkers soluble (s)CD163 and sCD206. HIV-2-positive participants had lower CD163 monocyte expression than HIV-1-positive participants, regardless of HIV RNA or CD4 + cell count. Levels of sCD206 extracellular vesicles were increased in all HIV groups, and higher in HIV-1 compared with HIV-2-positive participants. CONCLUSION The monocyte phenotype of HIV-2-positive participants deviated less from healthy controls than did HIV-1 participants. HIV-2-positive participants also had a lower concentration of extracellular CD206 vesicles compared with HIV-1-positive participants. This does not explain the difference in AIDS development.
Collapse
Affiliation(s)
- Bo L Hønge
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
- Department of Clinical Immunology
- Department of Infectious Diseases
| | - Morten N Andersen
- Department of Clinical Biochemistry, Aarhus University Hospital
- Department of Biomedicine, Aarhus University
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sanne Jespersen
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
- Department of Infectious Diseases
| | - Candida Medina
- National HIV Programme, Ministry of Health, Bissau, Guinea-Bissau
| | - David D S Té
- National HIV Programme, Ministry of Health, Bissau, Guinea-Bissau
| | | | | | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital
- Department of Clinical Medicine
| | - Christian Wejse
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
- Department of Infectious Diseases
- GloHAU, Center for Global Health, School of Public Health, Aarhus University
| | - Henrik Krarup
- Department of Molecular Diagnostics, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
4
|
da Costa APL, Cardoso FJB, Molfetta FAD. An in silico molecular modeling approach of halolactone derivatives as potential inhibitors for human immunodeficiency virus type-1 reverse transcriptase enzyme. J Biomol Struct Dyn 2023; 41:1715-1729. [PMID: 34996334 DOI: 10.1080/07391102.2021.2024256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acquired Immune Deficiency Syndrome (AIDS) is an infectious disease caused by Human Immunodeficiency Virus (HIV) infection and its replication requires the Reverse Transcriptase (RT) enzyme. RT plays a key role in the HIV life cycle, making it one of the most important targets for designing new drugs. Thus, in order to increase therapeutic options against AIDS, halolactone derivatives (D-halolactone) that have been showed as potential non-nucleoside inhibitors of the RT enzyme were studied. In the present work, a series of D-halolactone were investigated by molecular modeling studies, combining Three-dimensional Quantitative Structure-Activity Relationship (3 D-QSAR), molecular docking and Molecular Dynamics (MD) techniques, to understand the molecular characteristics that promote biological activity. The internal and external validation parameters indicated that the 3 D-QSAR model has good predictive capacity and statistical significance. Contour maps provided useful information on the structural characteristics of compounds for anti-HIV-1 activity. The docking results showed that D-halolactone present good complementarity by the RT allosteric site. In MD simulations it was observed that the formation of enzyme-ligand complexes were favorable, and from the free energy decomposition it was found that Leu100, Val106, Tyr181, Try188, and Trp229 are key residues for stabilization in the enzymatic site. Thus, the results showed that the proposed models can be used to design promising HIV-1 RT inhibitors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ana Paula Lima da Costa
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Fábio José Bonfim Cardoso
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Fábio Alberto de Molfetta
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
5
|
Szojka Z, Mótyán JA, Miczi M, Mahdi M, Tőzsér J. Y44A Mutation in the Acidic Domain of HIV-2 Tat Impairs Viral Reverse Transcription and LTR-Transactivation. Int J Mol Sci 2020; 21:ijms21165907. [PMID: 32824587 PMCID: PMC7460587 DOI: 10.3390/ijms21165907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 11/28/2022] Open
Abstract
HIV transactivator protein (Tat) plays a pivotal role in viral replication through modulation of cellular transcription factors and transactivation of viral genomic transcription. The effect of HIV-1 Tat on reverse transcription has long been described in the literature, however, that of HIV-2 is understudied. Sequence homology between Tat proteins of HIV-1 and 2 is estimated to be less than 30%, and the main difference lies within their N-terminal region. Here, we describe Y44A-inactivating mutation of HIV-2 Tat, studying its effect on capsid production, reverse transcription, and the efficiency of proviral transcription. Investigation of the mutation was performed using sequence- and structure-based in silico analysis and in vitro experiments. Our results indicate that the Y44A mutant HIV-2 Tat inhibited the activity and expression of RT (reverse transcriptase), in addition to diminishing Tat-dependent LTR (long terminal repeat) transactivation. These findings highlight the functional importance of the acidic domain of HIV-2 Tat in the regulation of reverse transcription and transactivation of the integrated provirions.
Collapse
Affiliation(s)
- Zsófia Szojka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
| | - Márió Miczi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
- Correspondence: (M.M.); (J.T.)
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (J.A.M.); (M.M.)
- Correspondence: (M.M.); (J.T.)
| |
Collapse
|