1
|
Citron MP, Zang X, Leithead A, Meng S, Rose Ii WA, Murray E, Fontenot J, Bilello J, Beshore DC, Howe JA. Evaluation of A Non-Nucleoside Inhibitor of the RSV RNA-Dependent RNA Polymerase in Translatable Animals Models. J Infect 2024:106325. [PMID: 39454831 DOI: 10.1016/j.jinf.2024.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Respiratory Syncytial Virus (RSV) causes severe respiratory infections and concomitant disease resulting in significant morbidity and mortality in infants, elderly, and immunocompromised adults. Vaccines, monoclonal antibodies, and small molecule antivirals are now either available, or in development, to prevent and treat RSV infections. Although, rodent and non-rodent preclinical animal models have been used to evaluate these emerging agents there is still a need to improve our understanding of the pharmacokinetic (PK)-pharmacodynamic (PD) relationships, within and between animal models to enable better design of human challenge studies and clinical trials. Herein, we report a PKPD evaluation of MRK-1, a novel small molecule non-nucleoside inhibitor of the RSV L polymerase protein, in the semi-permissive cotton rat and African green monkey models of RSV infection. These studies demonstrate a strong relationship between in vitro activity, in vivo drug exposure, and pharmacodynamic efficacy as well as revealing limitations of the cotton rat RSV model. Additionally, we report unexpected horizontal transmission of human RSV between co-housed African green monkeys, as well as a lack of drug specific resistant mutant generation. Taken together these studies further our understanding of these semi-permissive animal models and offer the potential for expansion of their preclinical utility in evaluating novel RSV therapeutic agents.
Collapse
Affiliation(s)
- Michael P Citron
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA.
| | - Xiaowei Zang
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - Andrew Leithead
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - Shi Meng
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - William A Rose Ii
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - Edward Murray
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - Jane Fontenot
- The University of Louisiana New Iberia Research Center, New Iberia, LA 70560, United States
| | - John Bilello
- Discovery Virology, Gilead Sciences Inc., Foster City, California 94404, United States
| | - Douglas C Beshore
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - John A Howe
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
2
|
Li H, Sun H, Tao M, Han Q, Yu H, Li J, Lu X, Tong Q, Pu J, Sun Y, Liu L, Liu J, Sun H. Recombinant parainfluenza virus 5 expressing clade 2.3.4.4b H5 hemagglutinin protein confers broad protection against H5Ny influenza viruses. J Virol 2024; 98:e0112923. [PMID: 38305155 PMCID: PMC10949453 DOI: 10.1128/jvi.01129-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
The global circulation of clade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) in poultry and wild birds, increasing mammal infections, continues to pose a public health threat and may even form a pandemic. An efficacious vaccine against H5Ny HPAIVs is crucial for emergency use and pandemic preparedness. In this study, we developed a parainfluenza virus 5 (PIV5)-based vaccine candidate expressing hemagglutinin (HA) protein of clade 2.3.4.4b H5 HPAIV, termed rPIV5-H5, and evaluated its safety and efficacy in mice and ferrets. Our results demonstrated that intranasal immunization with a single dose of rPIV5-H5 could stimulate H5-specific antibody responses, moreover, a prime-boost regimen using rPIV5-H5 stimulated robust humoral, cellular, and mucosal immune responses in mice. Challenge study showed that rPIV5-H5 prime-boost regimen provided sterile immunity against lethal clade 2.3.4.4b H5N1 virus infection in mice and ferrets. Notably, rPIV5-H5 prime-boost regimen provided protection in mice against challenge with lethal doses of heterologous clades 2.2, 2.3.2, and 2.3.4 H5N1, and clade 2.3.4.4h H5N6 viruses. These results revealed that rPIV5-H5 can elicit protective immunity against a diverse clade of highly pathogenic H5Ny virus infection in mammals, highlighting the potential of rPIV5-H5 as a pan-H5 influenza vaccine candidate for emergency use.IMPORTANCEClade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) have been widely circulating in wild birds and domestic poultry all over the world, leading to infections in mammals, including humans. Here, we developed a recombinant PIV5-vectored vaccine candidate expressing the HA protein of clade 2.3.4.4b H5 virus. Intranasal immunization with rPIV5-H5 in mice induced airway mucosal IgA responses, high levels of antibodies, and robust T-cell responses. Importantly, rPIV5-H5 conferred complete protection in mice and ferrets against clade 2.3.4.4b H5N1 virus challenge, the protective immunity was extended against heterologous H5Ny viruses. Taken together, our data demonstrate that rPIV5-H5 is a promising vaccine candidate against diverse H5Ny influenza viruses in mammals.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Ferrets/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Mucosal
- Influenza A Virus, H5N1 Subtype/chemistry
- Influenza A Virus, H5N1 Subtype/classification
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N6 Subtype/chemistry
- Influenza A Virus, H5N6 Subtype/classification
- Influenza A Virus, H5N6 Subtype/genetics
- Influenza A Virus, H5N6 Subtype/immunology
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/transmission
- Influenza in Birds/virology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/transmission
- Orthomyxoviridae Infections/virology
- Pandemic Preparedness/methods
- Parainfluenza Virus 5/genetics
- Parainfluenza Virus 5/immunology
- Parainfluenza Virus 5/metabolism
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Administration, Intranasal
- Poultry/virology
- Immunoglobulin A/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Han Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haoran Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mengyan Tao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiqi Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haili Yu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaqi Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xue Lu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi Tong
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Litao Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Gingerich MC, Nair N, Azevedo JF, Samanta K, Kundu S, He B, Gomes-Solecki M. Intranasal vaccine for Lyme disease provides protection against tick transmitted Borrelia burgdorferi beyond one year. NPJ Vaccines 2024; 9:33. [PMID: 38360853 PMCID: PMC10869809 DOI: 10.1038/s41541-023-00802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 02/17/2024] Open
Abstract
Strategies for disease control are necessary to reduce incidence of Lyme Disease (LD) including development of safe vaccines for human use. Parainfluenza virus 5 (PIV5) vector has an excellent safety record in animals and PIV5-vectored vaccines are currently under clinical development. We constructed PIV5-vectored LD vaccine candidates expressing OspA from B. burgdorferi (OspAB31) and a chimeric protein containing sequences from B. burgdorferi and B. afzelii (OspABPBPk). Immunogenicity and vaccine efficacy were analyzed in C3H-HeN mice after prime-boost intranasal vaccination with live PIV5-OspAB31 or PIV5-OspABPBPk, subcutaneous (s.c.) vaccination with rOspAB31+Alum, and the respective controls. Mice vaccinated intranasally with live PIV5-AB31 or PIV5-ABPBPk had higher endpoint titers of serum antibody against OspAB31 at 6- and 12- months post vaccination, compared to mice vaccinated s.c. with rOspAB31. Neutralization activity of antibody was maintained up to 18-months post-immunization, with the response greater in live PIV5-delivered OspA vaccines, than that induced by s.c. rOspAB31. Challenge with infected ticks carrying 10-19 strains of B. burgdorferi performed at 4-, 9- or 15-months post-immunization showed increased breakthrough infections in mice vaccinated with s.c. rOspAB31 compared to intranasal PIV5-AB31 or PIV5-ABPBPk at 9- and 15-months, as determined by quantification of serologic antibodies to B. burgdorferi proteins as well as flaB DNA in tissues, and by visualization of motile B. burgdorferi in culture of tissues under dark field microscope. These findings indicate that immunization of mice with PIV5 delivered OspA generates immune responses that produce longer-lasting protection ( > 1 year) against tick-transmitted B. burgdorferi than a parenteral recombinant OspA vaccine.
Collapse
Affiliation(s)
- Maria Cristina Gingerich
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- CyanVac, LLC, Athens, GA, USA
| | - Nisha Nair
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA
| | - Jose F Azevedo
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA
- Immuno Technologies, Inc., Memphis, TN, USA
| | - Kamalika Samanta
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA
- Merck & Co., West Point, PA, USA
| | - Suman Kundu
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA
- Immuno Technologies, Inc., Memphis, TN, USA
| | - Biao He
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- CyanVac, LLC, Athens, GA, USA
| | - Maria Gomes-Solecki
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA.
- Immuno Technologies, Inc., Memphis, TN, USA.
| |
Collapse
|
4
|
Citron MP, McAnulty J, Callahan C, Knapp W, Fontenot J, Morales P, Flynn JA, Douglas CM, Espeseth AS. Transplacental Antibody Transfer of Respiratory Syncytial Virus Specific IgG in Non-Human Primate Mother-Infant Pairs. Pathogens 2021; 10:pathogens10111441. [PMID: 34832599 PMCID: PMC8624788 DOI: 10.3390/pathogens10111441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
One approach to protect new-borns against respiratory syncytial virus (RSV) is to vaccinate pregnant women in the last trimester of pregnancy. The boosting of circulating antibodies which can be transferred to the foetus would offer immune protection against the virus and ultimately the disease. Since non-human primates (NHPs) have similar reproductive anatomy, physiology, and antibody architecture and kinetics to humans, we utilized this preclinical species to evaluate maternal immunization (MI) using an RSV F subunit vaccine. Three species of NHPs known for their ability to be infected with human RSV in experimental challenge studies were tested for RSV-specific antibodies. African green monkeys had the highest overall antibody levels of the old-world monkeys evaluated and they gave birth to offspring with anti-RSV titers that were proportional to their mother. These higher overall antibody levels are associated with greater durability found in their offspring. Immunization of RSV seropositive AGMs during late pregnancy boosts RSV titers, which consequentially results in significantly higher titers in the vaccinated new-borns compared to the new-borns of unvaccinated mothers. These findings, accomplished in small treatment group sizes, demonstrate a model that provides an efficient, resource sparing and translatable preclinical in vivo system for evaluating vaccine candidates for maternal immunization.
Collapse
Affiliation(s)
- Michael P. Citron
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
- Correspondence:
| | - Jessica McAnulty
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| | - Cheryl Callahan
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| | - Walter Knapp
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Jane Fontenot
- The New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA;
| | - Pablo Morales
- The Mannheimer Foundation, Homestead, FL 33034, USA;
| | - Jessica A. Flynn
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| | - Cameron M. Douglas
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| | - Amy S. Espeseth
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| |
Collapse
|
5
|
Liu F, Wang Q, Shan H. Rescue of dual reporter-tagged parainfluenza virus 5 as tool for rapid screening of antivirals in vitro. Vet Microbiol 2021; 259:109154. [PMID: 34237497 DOI: 10.1016/j.vetmic.2021.109154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/13/2021] [Indexed: 11/16/2022]
Abstract
Parainfluenza virus 5 (PIV5) belongs to the genus Orthorubulavirus in the family Paramyxoviridae. PIV5 can infect a range of mammals, but induce mild or even unobservable clinical signs in some animals, except kennel cough in dogs. It is also able to infect a variety of cell lines, but causes minimal or even invisible cytopathic effects on many cells. Sometimes, owing to neither observable cytopathic effects in vitro nor typical clinical signs in vivo, the PIV5 is not easily usable for screening antiviral drugs. To solve this issue, we used reverse genetics to recover a dual reporter-tagged recombinant PIV5 that could simultaneously express enhanced green fluorescence protein (eGFP) and NanoLuc® luciferase (NLuc) in virus-infected cells. Both reporters were genetically stable during twenty serial passages of virus in MDBK cells. The eGFP allowed us to observe virus-infected MDBK cells in real time, and moreover the NLuc made it possible to quantify the degree of viral replication for determining antiviral activity of a given drug. Subsequently, the recombinant PIV5 was used for antiviral assays on five common drugs, i.e., ribavirin, apigenin, 1-adamantylamine hydrochloride, moroxydine hydrochloride and tea polyphenol. The results showed that only the ribavirin had an anti-PIV5 effect in MDBK cells. This study proposed a novel method for rapid screening (or prescreening) of anti-PIV5 drugs.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Xiao P, Dienger-Stambaugh K, Chen X, Wei H, Phan S, Beavis AC, Singh K, Adhikary NRD, Tiwari P, Villinger F, He B, Spearman P. Parainfluenza Virus 5 Priming Followed by SIV/HIV Virus-Like-Particle Boosting Induces Potent and Durable Immune Responses in Nonhuman Primates. Front Immunol 2021; 12:623996. [PMID: 33717130 PMCID: PMC7946978 DOI: 10.3389/fimmu.2021.623996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/13/2021] [Indexed: 11/26/2022] Open
Abstract
The search for a preventive vaccine against HIV infection remains an ongoing challenge, indicating the need for novel approaches. Parainfluenza virus 5 (PIV5) is a paramyxovirus replicating in the upper airways that is not associated with any animal or human pathology. In animal models, PIV5-vectored vaccines have shown protection against influenza, RSV, and other human pathogens. Here, we generated PIV5 vaccines expressing HIV envelope (Env) and SIV Gag and administered them intranasally to macaques, followed by boosting with virus-like particles (VLPs) containing trimeric HIV Env. Moreover, we compared the immune responses generated by PIV5-SHIV prime/VLPs boost regimen in naïve vs a control group in which pre-existing immunity to the PIV5 vector was established. We demonstrate for the first time that intranasal administration of PIV5-based HIV vaccines is safe, well-tolerated and immunogenic, and that boosting with adjuvanted trimeric Env VLPs enhances humoral and cellular immune responses. The PIV5 prime/VLPs boost regimen induced robust and durable systemic and mucosal Env-specific antibody titers with functional activities including ADCC and neutralization. This regimen also induced highly polyfunctional antigen-specific T cell responses. Importantly, we show that diminished responses due to PIV5 pre-existing immunity can be overcome in part with VLP protein boosts. Overall, these results establish that PIV5-based HIV vaccine candidates are promising and warrant further investigation including moving on to primate challenge studies.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Cattle
- Cell Line
- Gene Products, gag/administration & dosage
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- HIV-1/genetics
- HIV-1/immunology
- Host-Pathogen Interactions
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Mucosal
- Immunogenicity, Vaccine
- Macaca mulatta
- Male
- Nasal Mucosa/immunology
- Nasal Mucosa/virology
- Parainfluenza Virus 5/genetics
- Parainfluenza Virus 5/immunology
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Virion/genetics
- Virion/immunology
- env Gene Products, Human Immunodeficiency Virus/administration & dosage
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Krista Dienger-Stambaugh
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, United States
| | - Xuemin Chen
- Division of Infectious Diseases, Emory University, Atlanta, GA, United States
| | - Huiling Wei
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Shannon Phan
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Ashley C. Beavis
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Karnail Singh
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, United States
| | - Nihar R. Deb Adhikary
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Pooja Tiwari
- Wallace H Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Biao He
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Paul Spearman
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
7
|
Single-Dose, Intranasal Immunization with Recombinant Parainfluenza Virus 5 Expressing Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Spike Protein Protects Mice from Fatal MERS-CoV Infection. mBio 2020; 11:mBio.00554-20. [PMID: 32265331 PMCID: PMC7157776 DOI: 10.1128/mbio.00554-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) can cause severe and fatal acute respiratory disease in humans and remains endemic in the Middle East since first being identified in 2012. There are currently no approved vaccines or therapies available for MERS-CoV. In this study, we evaluated parainfluenza virus 5 (PIV5)-based vaccine expressing the MERS-CoV envelope spike protein (PIV5/MERS-S) in a human DPP4 knockin C57BL/6 congenic mouse model (hDPP4 KI). Following a single-dose intranasal immunization, PIV5-MERS-S induced neutralizing antibody and robust T cell responses in hDPP4 KI mice. A single intranasal administration of 104 PFU PIV5-MERS-S provided complete protection against a lethal challenge with mouse-adapted MERS-CoV (MERSMA6.1.2) and improved virus clearance in the lung. In comparison, single-dose intramuscular immunization with 106 PFU UV-inactivated MERSMA6.1.2 mixed with Imject alum provided protection to only 25% of immunized mice. Intriguingly, an influx of eosinophils was observed only in the lungs of mice immunized with inactivated MERS-CoV, suggestive of a hypersensitivity-type response. Overall, our study indicated that PIV5-MERS-S is a promising effective vaccine candidate against MERS-CoV infection.IMPORTANCE MERS-CoV causes lethal infection in humans, and there is no vaccine. Our work demonstrates that PIV5 is a promising vector for developing a MERS vaccine. Furthermore, success of PIV5-based MERS vaccine can be employed to develop a vaccine for emerging CoVs such as SARS-CoV-2, which causes COVID-19.
Collapse
|
8
|
Yu Q, Li Y, Dimitrov K, Afonso CL, Spatz S, Zsak L. Genetic stability of a Newcastle disease virus vectored infectious laryngotracheitis virus vaccine after serial passages in chicken embryos. Vaccine 2019; 38:925-932. [PMID: 31703935 DOI: 10.1016/j.vaccine.2019.10.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022]
Abstract
Previously, we have demonstrated that the recombinant Newcastle disease virus (NDV) expressing the infectious laryngotracheitis virus (ILTV) glycoprotein D (gD) conferred protection against both virulent NDV and ILTV challenges in chickens. In this study, we evaluated the genetic stability of the recombinant vaccine after eight serial passages in embryonated chicken eggs (ECE). The vaccine master seed virus at the original egg-passage level 3 (EP3) was diluted and passaged in three separate repetitions (A, B and C) in ECE eight times (EP4 to EP11). RT-PCR analysis of the vaccine seed and egg-passaged virus stocks showed that there was no detectable insertion/deletion in the ILTV gD insert region. Next-generation sequencing analysis of the EP3 and EP11 virus stocks confirmed their genome integrity and revealed a total of thirteen single-nucleotide polymorphisms (SNPs). However, none of these SNPs were located in the ILTV gD insert or any of the known critical biological determinant positions. Virological and immunofluorescent assays provided additional evidence that the EP11 virus stocks retained their growth kinetics, low pathogenicity, and robust level of gD expression comparable to that of the vaccine master seed virus. This indicated that the SNPs were non-detrimental sporadic mutations. These results demonstrated that the insertion of ILTV gD gene into the NDV LaSota backbone did not significantly affect the genetic stability of the recombinant virus and that the rLS/ILTV-gD virus is a safe and genetically stable vaccine candidate after at least eight serial passages in ECE.
Collapse
Affiliation(s)
- Qingzhong Yu
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - Yufeng Li
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Kiril Dimitrov
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Claudio L Afonso
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Stephen Spatz
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Laszlo Zsak
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
9
|
Atherton LJ, Jorquera PA, Bakre AA, Tripp RA. Determining Immune and miRNA Biomarkers Related to Respiratory Syncytial Virus (RSV) Vaccine Types. Front Immunol 2019; 10:2323. [PMID: 31649663 PMCID: PMC6794384 DOI: 10.3389/fimmu.2019.02323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) causes serious respiratory tract illness and substantial morbidity and some mortality in populations at the extremes of age, i.e., infants, young children, and the elderly. To date, RSV vaccine development has been unsuccessful, a feature linked to the lack of biomarkers available to assess the safety and efficacy of RSV vaccine candidates. We examined microRNAs (miR) as potential biomarkers for different types of RSV vaccine candidates. In this study, mice were vaccinated with a live attenuated RSV candidate that lacks the small hydrophobic (SH) and attachment (G) proteins (CP52), an RSV G protein microparticle (GA2-MP) vaccine, a formalin-inactivated RSV (FI-RSV) vaccine or were mock-treated. Several immunological endpoints and miR expression profiles were determined in mouse serum and bronchoalveolar lavage (BAL) following vaccine priming, boost, and RSV challenge. We identified miRs that were linked with immunological parameters of disease and protection. We show that miRs are potential biomarkers providing valuable insights for vaccine development.
Collapse
Affiliation(s)
- Lydia J Atherton
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Patricia A Jorquera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Abhijeet A Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Chen Z. Parainfluenza virus 5-vectored vaccines against human and animal infectious diseases. Rev Med Virol 2018; 28. [PMID: 29316047 PMCID: PMC7169218 DOI: 10.1002/rmv.1965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022]
Abstract
Parainfluenza virus 5 (PIV5), known as canine parainfluenza virus in the veterinary field, is a negative‐sense, nonsegmented, single‐stranded RNA virus belonging to the Paramyxoviridae family. Parainfluenza virus 5 is an excellent viral vector and has been used as a live vaccine for kennel cough for many years in dogs without any safety concern. It can grow to high titers in many cell types, and its genome is stable even in the presence of foreign gene insertions. So far, PIV5 has been used to develop vaccines against influenza virus, respiratory syncytial virus, rabies virus, and Mycobacterium tuberculosis, demonstrating its ability to elicit robust and protective immune responses in preclinical animal models. Parainfluenza virus 5–based vaccines can be administered intranasally, intramuscularly, or orally. Interestingly, prior exposure of PIV5 does not prevent a PIV5‐vectored vaccine from generating robust immunity, indicating that the vector can be used more than once. Here, these encouraging results are reviewed together along with discussion of the desirable advantages of the PIV5 vaccine vector to aid future vaccine design and to accelerate progression of PIV5‐based vaccines into clinical trials.
Collapse
Affiliation(s)
- Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, JS, China
| |
Collapse
|
11
|
Clark CM, Guerrero-Plata A. Respiratory Syncytial Virus Vaccine Approaches: a Current Overview. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017; 4:202-207. [PMID: 30009126 PMCID: PMC6040676 DOI: 10.1007/s40588-017-0074-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW Respiratory syncytial virus (RSV) is a global human pathogen responsible for lower respiratory tract infections (LRTI). While RSV infection is innocuous in healthy adults, it is the leading cause of infant hospitalization for respiratory tract infection. Nearly everyone shows evidence of an RSV infection by the age of 3. However, there is still not a vaccine commercially available. This review will provide an update on the clinical and preclinical vaccine studies and different approaches to prevent RSV infection. RECENT FINDINGS Novel vaccine approaches that induce protection against RSV without enhancement of respiratory tract disease. SUMMARY Recent technological approaches have led to generation of different strategies to prevent RSV infection, including live attenuated, chimeric, and subunit vaccines, virus-like particles, and nanoparticles. These vaccine approaches represent promising candidates towards an efficient RSV vaccine that effectively protects infants, children, and adults.
Collapse
Affiliation(s)
- Carolyn M Clark
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Center for Experimental Infectious Disease Research, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
12
|
Phan SI, Zengel JR, Wei H, Li Z, Wang D, He B. Parainfluenza Virus 5 Expressing Wild-Type or Prefusion Respiratory Syncytial Virus (RSV) Fusion Protein Protects Mice and Cotton Rats from RSV Challenge. J Virol 2017; 91:e00560-17. [PMID: 28747496 PMCID: PMC5599740 DOI: 10.1128/jvi.00560-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/13/2017] [Indexed: 12/30/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of pediatric bronchiolitis and hospitalizations. RSV can also cause severe complications in elderly and immunocompromised individuals. There is no licensed vaccine. We previously generated a parainfluenza virus 5 (PIV5)-vectored vaccine candidate expressing the RSV fusion protein (F) that was immunogenic and protective in mice. In this work, our goal was to improve the original vaccine candidate by modifying the PIV5 vector or by modifying the RSV F antigen. We previously demonstrated that insertion of a foreign gene at the PIV5 small hydrophobic (SH)-hemagglutinin-neuraminidase (HN) junction or deletion of PIV5 SH increased vaccine efficacy. Additionally, other groups have demonstrated that antibodies against the prefusion conformation of RSV F have more potent neutralizing activity than antibodies against the postfusion conformation. Therefore, to improve on our previously developed vaccine candidate, we inserted RSV F at the PIV5 SH-HN gene junction or used RSV F to replace PIV5 SH. We also engineered PIV5 to express a prefusion-stabilized F mutant. The candidates were tested in BALB/c mice via the intranasal route and induced both humoral and cell-mediated immunity. They also protected against RSV infection in the mouse lung. When they were administered intranasally or subcutaneously in cotton rats, the candidates were highly immunogenic and reduced RSV loads in both the upper and lower respiratory tracts. PIV5-RSV F was equally protective when administered intranasally or subcutaneously. In all cases, the prefusion F mutant did not induce higher neutralizing antibody titers than wild-type F. These results show that antibodies against both pre- and postfusion F are important for neutralizing RSV and should be considered when designing a vectored RSV vaccine. The findings also that indicate PIV5-RSV F may be administered subcutaneously, which is the preferred route for vaccinating infants, who may develop nasal congestion as a result of intranasal vaccination.IMPORTANCE Despite decades of research, human respiratory syncytial virus (RSV) is still a major health concern for which there is no vaccine. A parainfluenza virus 5-vectored vaccine expressing the native RSV fusion protein (F) has previously been shown to confer robust immunity against RSV infection in mice, cotton rats, and nonhuman primates. To improve our previous vaccine candidate, we developed four new candidates that incorporate modifications to the PIV5 backbone, replace native RSV F with a prefusion-stabilized RSV F mutant, or combine both RSV F and PIV5 backbone modifications. In this work, we characterized the new vaccine candidates and tested their efficacies in both murine and cotton rat models of RSV infection. Most importantly, we found that PIV5-based RSV vaccine candidates were efficacious in preventing lower respiratory tract infection as well as in reducing the nasal viral load when administered via the subcutaneous route.
Collapse
Affiliation(s)
- Shannon I Phan
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - James R Zengel
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Huiling Wei
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Zhuo Li
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Dai Wang
- Department of Infectious Diseases and Vaccines, Merck Research Laboratories, West Point, Pennsylvania, USA, and Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|