1
|
Tang L, Li Q, Chen L, Li X, Gu S, He W, Pan Q, Wang L, Sun J, Yi X, Li Y. IL-21 collaborates with anti-TIGIT to restore NK cell function in chronic HBV infection. J Med Virol 2023; 95:e29142. [PMID: 37815034 DOI: 10.1002/jmv.29142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Available therapies for chronic hepatitis B virus (HBV) infection are not satisfying, and interleukin-21 (IL-21) and checkpoint inhibitors are potential therapeutic options. However, the mechanism underlying IL-21 and checkpoint inhibitors in treating chronic HBV infection is unclear. To explore whether IL-21 and checkpoint inhibitors promote HBV clearance by modulating the function of natural killer (NK) cells, we measured the phenotypes and functions of NK cells in chronic HBV-infected patients and healthy controls on mRNA and protein levels. We found that chronic HBV infection disturbed the transcriptome of NK cells, including decreased expression of KLRK1, TIGIT, GZMA, PRF1, and increased expression of CD69. We also observed altered phenotypes and functions of NK cells in chronic HBV-infected patients, characterized by decreased NKG2D expression, increased TIGIT expression and impaired interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α) production. Furthermore, these alterations cannot be restored by telbivudine treatment but can be partially restored by IL-21 and anti-TIGIT stimulation. IL-21 upregulated the expression of activating receptor CD16, CD69, and NKG2D on NK cells, enhanced IFN-γ production, cytolysis, and proliferation of NK cells, while anti-TIGIT promoted IFN-γ production in CD56dim subset exclusively in chronic HBV infected patients. Additionally, IL-21 was indispensable for anti-TIGIT in HBsAg clearance in mice bearing HBV. It enhanced IFN-γ production in splenic NK cells rather than intrahepatic NK cells, indicating a brand-new mechanism of IL-21 in HBV clearance when combined with anti-TIGIT. Overall, our findings contribute to the design of immunotherapy through enhancing the antiviral efficacy of NK cells in chronic HBV infection.
Collapse
Affiliation(s)
- Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Quanrun Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Infectious Diseases Laboratory (Preparatory) of Yunnan Provincial Department of Education, Department of Infectious Diseases, School of Clinical Medicine, The First Affiliated Yunnan Provincial Clinical Medical Center (Branch) for Infectious Diseases, Hospital of Dali University, Dali University, Dali, Yunnan, China
| | - Liang Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Xiaowei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuqin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiying He
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingqing Pan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianru Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Yi
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. Improvement in glucose metabolism in adult male offspring of maternal mice fed diets supplemented with inulin via regulation of the hepatic long noncoding RNA profile. FASEB J 2021; 35:e22003. [PMID: 34706105 DOI: 10.1096/fj.202100355rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 11/11/2022]
Abstract
Maternal overnutrition during pregnancy and lactation is an important risk factor for the later development of metabolic disease, especially diabetes, among mothers and their offspring. As a fructan-type plant polysaccharide, inulin has prebiotic functions and is widely used as a natural antidiabetic supplement. However, to date, the mechanism of maternal inulin treatment in the livers of offspring has not been addressed, especially with respect to long noncoding RNAs (lncRNAs). In this study, female C57BL6/J mice were fed either a high-fat diet (HFD) with or without inulin supplementation or a standard rodent diet (SD) during gestation and lactation. After the offspring were weaned, they were fed a SD for 5 weeks. At 8 weeks of age, the glucose metabolism indexes of the offspring were assessed, and their livers were collected to assay lncRNA and mRNA profiles to investigate the effects of early maternal inulin intervention on offspring. Our results indicate that male offspring from HFD-fed dams displayed glucose intolerance and an insulin resistance phenotype at 8 weeks of age. Early maternal inulin intervention improved glucose metabolism in male offspring of mothers fed a HFD during gestation and lactation. The lncRNA and mRNA profile data revealed that compared with the offspring from HFD dams, offspring from the early inulin intervention dams had 99 differentially expressed hepatic lncRNAs and 529 differentially expressed mRNAs. The differentially expressed lncRNA-mRNA coexpression analysis demonstrated that early maternal inulin intervention may change hepatic lncRNA expression in offspring; there lncRNAs are involved in metabolic pathways and the AMP-activated protein kinase signaling pathway. Importantly, the early maternal inulin intervention alleviated glucose metabolism by inhibiting the lncRNA Serpina4-ps1/let-7b-5p/Ppargc1a as a competing endogenous RNA in male offspring.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Wawina-Bokalanga T, Vanmechelen B, Lhermitte V, Martí-Carreras J, Vergote V, Koundouno FR, Akoi-Boré J, Thom R, Tipton T, Steeds K, Moussa KB, Amento A, Laenen L, Duraffour S, Gabriel M, Ruibal P, Hall Y, Kader-Kondé M, Günther S, Baele G, Muñoz-Fontela C, Van Weyenbergh J, Carroll MW, Maes P. Human Diversity of Killer Cell Immunoglobulin-Like Receptors and Human Leukocyte Antigen Class I Alleles and Ebola Virus Disease Outcomes. Emerg Infect Dis 2021; 27:76-84. [PMID: 33350932 PMCID: PMC7774578 DOI: 10.3201/eid2701.202177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We investigated the genetic profiles of killer cell immunoglobulin-like receptors (KIRs) in Ebola virus–infected patients. We studied the relationship between KIR–human leukocyte antigen (HLA) combinations and the clinical outcomes of patients with Ebola virus disease (EVD). We genotyped KIRs and HLA class I alleles using DNA from uninfected controls, EVD survivors, and persons who died of EVD. The activating 2DS4–003 and inhibitory 2DL5 genes were significantly more common among persons who died of EVD; 2DL2 was more common among survivors. We used logistic regression analysis and Bayesian modeling to identify 2DL2, 2DL5, 2DS4–003, HLA-B-Bw4-Thr, and HLA-B-Bw4-Ile as probably having a significant relationship with disease outcome. Our findings highlight the importance of innate immune response against Ebola virus and show the association between KIRs and the clinical outcome of EVD.
Collapse
|
4
|
Marotel M, Villard M, Drouillard A, Tout I, Besson L, Allatif O, Pujol M, Rocca Y, Ainouze M, Roblot G, Viel S, Gomez M, Loustaud V, Alain S, Durantel D, Walzer T, Hasan U, Marçais A. Peripheral natural killer cells in chronic hepatitis B patients display multiple molecular features of T cell exhaustion. eLife 2021; 10:60095. [PMID: 33507150 PMCID: PMC7870135 DOI: 10.7554/elife.60095] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Antiviral effectors such as natural killer (NK) cells have impaired functions in chronic hepatitis B (CHB) patients. The molecular mechanism responsible for this dysfunction remains poorly characterised. We show that decreased cytokine production capacity of peripheral NK cells from CHB patients was associated with reduced expression of NKp30 and CD16, and defective mTOR pathway activity. Transcriptome analysis of patients NK cells revealed an enrichment for transcripts expressed in exhausted T cells suggesting that NK cell dysfunction and T cell exhaustion employ common mechanisms. In particular, the transcription factor TOX and several of its targets were over-expressed in NK cells of CHB patients. This signature was predicted to be dependent on the calcium-associated transcription factor NFAT. Stimulation of the calcium-dependent pathway recapitulated features of NK cells from CHB patients. Thus, deregulated calcium signalling could be a central event in both T cell exhaustion and NK cell dysfunction occurring during chronic infections.
Collapse
Affiliation(s)
- Marie Marotel
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Marine Villard
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Service d'Immunologie biologique, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Annabelle Drouillard
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Issam Tout
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Laurie Besson
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Service d'Immunologie biologique, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Omran Allatif
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Marine Pujol
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Yamila Rocca
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Michelle Ainouze
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Guillaume Roblot
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Sébastien Viel
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Service d'Immunologie biologique, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Melissa Gomez
- CHU Limoges, Service d'Hépatogastroentérologie, U1248 INSERM, Université Limoges, Limoges, France
| | - Veronique Loustaud
- CHU Limoges, Service d'Hépatogastroentérologie, U1248 INSERM, Université Limoges, Limoges, France
| | - Sophie Alain
- Département de Microbiologie, CHU de Limoges, Faculté de médecine-Université de Limoges, Limoges, France
| | - David Durantel
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM, U1052, CNRS, Université de Lyon, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Uzma Hasan
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
5
|
Judge M, Parker E, Naniche D, Le Souëf P. Gene Expression: the Key to Understanding HIV-1 Infection? Microbiol Mol Biol Rev 2020; 84:e00080-19. [PMID: 32404327 PMCID: PMC7233484 DOI: 10.1128/mmbr.00080-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression profiling of the host response to HIV infection has promised to fill the gaps in our knowledge and provide new insights toward vaccine and cure. However, despite 20 years of research, the biggest questions remained unanswered. A literature review identified 62 studies examining gene expression dysregulation in samples from individuals living with HIV. Changes in gene expression were dependent on cell/tissue type, stage of infection, viremia, and treatment status. Some cell types, notably CD4+ T cells, exhibit upregulation of cell cycle, interferon-related, and apoptosis genes consistent with depletion. Others, including CD8+ T cells and natural killer cells, exhibit perturbed function in the absence of direct infection with HIV. Dysregulation is greatest during acute infection. Differences in study design and data reporting limit comparability of existing research and do not as yet provide a coherent overview of gene expression in HIV. This review outlines the extraordinarily complex host response to HIV and offers recommendations to realize the full potential of HIV host transcriptomics.
Collapse
Affiliation(s)
- Melinda Judge
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Erica Parker
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Denise Naniche
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação de Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Peter Le Souëf
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
6
|
Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martinez-Colon GJ, McKechnie JL, Ivison GT, Ranganath T, Vergara R, Hollis T, Simpson LJ, Grant P, Subramanian A, Rogers AJ, Blish CA. A single-cell atlas of the peripheral immune response to severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32511639 DOI: 10.1101/2020.04.17.20069930] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is an urgent need to better understand the pathophysiology of Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2. Here, we apply single-cell RNA sequencing (scRNA-seq) to peripheral blood mononuclear cells (PBMCs) of 7 patients hospitalized with confirmed COVID-19 and 6 healthy controls. We identify substantial reconfiguration of peripheral immune cell phenotype in COVID-19, including a heterogeneous interferon-stimulated gene (ISG) signature, HLA class II downregulation, and a novel B cell-derived granulocyte population appearing in patients with acute respiratory failure requiring mechanical ventilation. Importantly, peripheral monocytes and lymphocytes do not express substantial amounts of pro-inflammatory cytokines, suggesting that circulating leukocytes do not significantly contribute to the potential COVID-19 cytokine storm. Collectively, we provide the most thorough cell atlas to date of the peripheral immune response to severe COVID-19.
Collapse
|
7
|
Ding J, Ma L, Zhao J, Xie Y, Zhou J, Li X, Cen S. An integrative genomic analysis of transcriptional profiles identifies characteristic genes and patterns in HIV-infected long-term non-progressors and elite controllers. J Transl Med 2019; 17:35. [PMID: 30665429 PMCID: PMC6341564 DOI: 10.1186/s12967-019-1777-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
Background Despite that most HIV-infected individuals experience progressive CD4+ T cell loss and develop AIDS, a minority of HIV-infected individuals remain asymptomatic and maintain high level CD4+ T cell counts several years after seroconversion. Efforts have been made to understand the determinants of the nonprogressive status, exemplified by the clinical course of elite controllers (ECs) who maintain an undetectable viremia and viremic nonprogressors (VNPs) who have a normal CD4+ count in spite of circulating viral load. However, the intrinsic mechanism underlying nonprogression remained elusive. In this study, we performed an integrative analysis of transcriptional profiles to pinpoint the underlying mechanism for a naturally occurring viral control. Methods Three microarray datasets, reporting mRNA expression of the LTNPs or ECs in HIV-infected patients, were retrieved from Gene Expression Ominbus (GEO) or Arrayexpress databases. These datasets, profiled on the same type of microarray chip, were selected and merged by a bioinformatic approach to build a meta-analysis derived transcriptome (MADNT). In addition, we investigated the different transcriptional pathways and potential biomarkers in CD4+ and CD8+ cells in ECs and whole blood in VNPs compared to HIV progressors. The combined transcriptome and each subgroup was subject to gene set enrichment analysis and weighted co-expression network analysis to search potential transcription patterns related to the non-progressive status. Results 30 up-regulated genes and 83 down-regulated genes were identified in lymphocytes from integrative meta-analysis of expression data. The interferon response and innate immune activation was reduced in both CD4+ and CD8+ T cells from ECs. Several characteristic genes including CMPK1, CBX7, EIF3L, EIF4A and ZNF395 were indicated to be highly correlated with viremic control. Besides that, we indicated that the reduction of ribosome components and blockade of translation facilitated AIDS disease progression. Most interestingly, among VNPs who have a relatively high viral load, we detected a two gene-interaction networks which showed a strong correlation to immune control even with a rigorous statistical threshold (p value = 2−e4 and p value = 0.004, respectively) by WGCNA. Conclusions We have identified differentially expressed genes and transcriptional patterns in ECs and VNPs compared to normal chronic HIV-infected individuals. Our study provides new insights into the pathogenesis of HIV and AIDS and clues for the therapeutic strategies for anti-retroviral administration. Electronic supplementary material The online version of this article (10.1186/s12967-019-1777-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|
8
|
Du H, Liu Z, Tan X, Ma Y, Gong Q. Identification of the Genome-wide Expression Patterns of Long Non-coding RNAs and mRNAs in Mice with Streptozotocin-induced Diabetic Neuropathic Pain. Neuroscience 2018; 402:90-103. [PMID: 30599267 DOI: 10.1016/j.neuroscience.2018.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Diabetic neuropathic pain (DNP), an early symptom of diabetic neuropathy, involves complex mechanisms. Long non-coding RNA (lncRNA) dysregulation contributes to the pathogenesis of various human diseases. Here, we investigated the genome-wide expression patterns of lncRNAs and genes in the spinal dorsal horn of mice with streptozotocin-induced DNP. Microarray analysis identified 1481 differentially expressed (DE) lncRNAs and 1096 DE mRNAs in DNP mice. Functional analysis showed that transforming growth factor-beta receptor binding was the most significant molecular function and retrograde endocannabinoid signaling was the most significant pathway of DE mRNAs. Calcium ion transport was the second most significant biological process of DE lncRNAs. Finally, we found 289 neighboring and 57 overlapping lncRNA-mRNA pairs, including ENSMUST00000150952-Mbp and AK081017-Usp15, which may be involved in DNP pathogenesis. Microarray data were validated through quantitative PCR of selected lncRNAs and mRNAs. These results suggest that aberrant expression of lncRNAs may contribute to the pathogenesis of DNP.
Collapse
Affiliation(s)
- Huiying Du
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zihao Liu
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xinran Tan
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yinghong Ma
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Qingjuan Gong
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|