1
|
Qu Y, Wang J, Chen Y, Xiao S, He Y, Zhang N, Zheng H, Liu Q, Liu H. Establishment and application of a wild neonatal mouse model infected with an Echovirus 30 isolate. Virol J 2025; 22:69. [PMID: 40075457 PMCID: PMC11899154 DOI: 10.1186/s12985-025-02684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Echovirus 30 (E30) is a significant pathogen associated with various illnesses such as viral meningitis, viral myocarditis. Currently, there are no specific drugs or vaccines targeting this virus. An appropriate animal model is imperative for assessing drug and vaccine efficacy. METHODS This investigation aimed to establish a neonatal mouse model using a clinical isolate E30/A538 and apply it to screen anti-E30 drugs. The study involved evaluating the susceptibility of different mouse strains to the isolate, determining the infectious dose, transmission route, and optimal age of the mice. This model was then used to assess antiviral efficacy. RESULTS Neonatal ICR mice infected intracranially with 5LD50 of E30/A538 at one-day-old displayed clinical symptoms such as tremors, lethargy, limb paralysis, and mortality. Importantly, the E30/A538-infected mice exhibited brain neuron apoptosis and severe myocardial necrolysis, closely resembling human infections. Elevated levels of viral RNA and positive antigen presence were predominantly detected in the brains and hearts of infected mice. Using this model to assess antiviral efficacy, it was demonstrated that interferon-α2a inhibited E30/A538 replication in vivo, mitigated histopathological changes in the brain, spinal cord, and myocardium, and enhanced the survival rate of neonatal mice. CONCLUSIONS In summary, this research established a wild neonatal mouse model of E30/A538 isolate infection that mirrors the characteristics of human infection. The model demonstrated the efficacy of interferon-α2a in combating E30. This model would serve as a foundation for investigating the pathogenesis of E30, as well as for assessing the efficacy of vaccines and other antiviral treatments against E30.
Collapse
Affiliation(s)
- Ying Qu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Jing Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Yongbei Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shengjun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yunyi He
- College of Laboratory Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Ning Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Huanying Zheng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
| | - Qiliang Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China.
- Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous, Nanning, China.
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.
- College of Laboratory Medicine, Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
2
|
Yang K, Dong J, Li J, Zhou R, Jia X, Sun Z, Zhang W, Li Z. The neonatal Fc receptor (FcRn) is required for porcine reproductive and respiratory syndrome virus uncoating. J Virol 2025; 99:e0121824. [PMID: 39651859 PMCID: PMC11784455 DOI: 10.1128/jvi.01218-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/30/2024] [Indexed: 02/01/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause substantial economic losses to the pig industry worldwide. Previous studies from other groups showed that CD163 is required for PRRSV uncoating and genome release. However, CD163 does not interact with nucleocapsid (N) protein. In this study, the neonatal Fc receptor (FcRn) was demonstrated to be irreplaceable for PRRSV infection by knockdown, overexpression, antibodies or IgG blocking, knockout, and replenishment assays. FcRn was further revealed to be involved in PRRSV uncoating for the first time rather than viral attachment and internalization. In detail, FcRn was determined to colocalize with CD163 and PRRSV virions in early endosomes and specially interact with N protein in early endosomes. Taken together, these results provide evidence that FcRn is an essential cellular factor for PRRSV uncoating, which will be a promising target to interfere with the viral infection.IMPORTANCEPRRSV infection results in a severe swine disease affecting pig farming in the world. Although CD163 has been implicated as the uncoating receptor for PRRSV but the uncoating mechanism of PRRSV remains unclear. Here, we identified that FcRn facilitated virion uncoating via interaction with viral N protein in early endosomes. Our work actually expands the knowledge of PRRSV infection and provides an attractive therapeutic target for the prevention and control of PRRS.
Collapse
MESH Headings
- Porcine respiratory and reproductive syndrome virus/physiology
- Animals
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class I/genetics
- Receptors, Fc/metabolism
- Receptors, Fc/genetics
- Swine
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Porcine Reproductive and Respiratory Syndrome/virology
- Porcine Reproductive and Respiratory Syndrome/metabolism
- Virus Uncoating
- Cell Line
- Endosomes/metabolism
- Endosomes/virology
- Nucleocapsid Proteins/metabolism
- Nucleocapsid Proteins/genetics
- Virion/metabolism
Collapse
Affiliation(s)
- Kang Yang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiarui Dong
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jian Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangchao Jia
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhijian Sun
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weida Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Sosnovtseva AO, Le TH, Karpov DS, Vorobyev PO, Gumennaya YD, Alekseeva ON, Chumakov PM, Lipatova AV. Establishment of a Panel of Human Cell Lines to Identify Cellular Receptors Used by Enteroviruses to Infect Cells. Int J Mol Sci 2025; 26:923. [PMID: 39940693 PMCID: PMC11817244 DOI: 10.3390/ijms26030923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Non-pathogenic natural and recombinant strains of human Enteroviruses are the subject of ongoing study with some strains having been approved for use as anticancer agents. The efficacy of oncolytic virotherapy depends upon identifying the receptor utilized by a specific strain for cell entry, and the presence of this receptor on the surface of cancer cells. Accordingly, a rapid and straightforward approach to determining the enteroviral receptors is necessary for developing an effective patient-specific, virus-based cancer therapy. To this end, we created a panel of seven lines with double knockouts on the background of the HEK293T cell line, which lacks the IFNAR1 gene. In these lines, the main viral receptor genes, including PVR, CXADR, CD55, ITGA2, SCARB2, ICAM1, and FCGRT, were knocked out using the CRISPR/Cas9 system. The panel of lines was validated on twelve different Enteroviruses types, providing a basis for studying the molecular mechanisms of enterovirus entry into cells, and for developing new therapeutic strains.
Collapse
Affiliation(s)
- Anastasiia O. Sosnovtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Thi Hoa Le
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Pavel O. Vorobyev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Olga N. Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Anastasia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| |
Collapse
|
4
|
Ishemgulova A, Mukhamedova L, Trebichalská Z, Rájecká V, Payne P, Šmerdová L, Moravcová J, Hrebík D, Buchta D, Škubník K, Füzik T, Vaňáčová Š, Nováček J, Plevka P. Endosome rupture enables enteroviruses from the family Picornaviridae to infect cells. Commun Biol 2024; 7:1465. [PMID: 39511383 PMCID: PMC11543853 DOI: 10.1038/s42003-024-07147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Membrane penetration by non-enveloped viruses is diverse and generally not well understood. Enteroviruses, one of the largest groups of non-enveloped viruses, cause diseases ranging from the common cold to life-threatening encephalitis. Enteroviruses enter cells by receptor-mediated endocytosis. However, how enterovirus particles or RNA genomes cross the endosome membrane into the cytoplasm remains unknown. Here we used cryo-electron tomography of infected cells to show that endosomes containing enteroviruses deform, rupture, and release the virus particles into the cytoplasm. Blocking endosome acidification with bafilomycin A1 reduced the number of particles that released their genomes, but did not prevent them from reaching the cytoplasm. Inhibiting post-endocytic membrane remodeling with wiskostatin promoted abortive enterovirus genome release in endosomes. The rupture of endosomes also occurs in control cells and after the endocytosis of very low-density lipoprotein. In summary, our results show that cellular membrane remodeling disrupts enterovirus-containing endosomes and thus releases the virus particles into the cytoplasm to initiate infection. Since the studied enteroviruses employ different receptors for cell entry but are delivered into the cytoplasm by cell-mediated endosome disruption, it is likely that most if not all enteroviruses, and probably numerous other viruses from the family Picornaviridae, can utilize endosome rupture to infect cells.
Collapse
Affiliation(s)
- Aygul Ishemgulova
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Liya Mukhamedova
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Zuzana Trebichalská
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Veronika Rájecká
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Pavel Payne
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Lenka Šmerdová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jana Moravcová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - David Buchta
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Karel Škubník
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
5
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Le T Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yana D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Denis O Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Kingston NJ, Snowden JS, Grehan K, Hall PK, Hietanen EV, Passchier TC, Polyak SJ, Filman DJ, Hogle JM, Rowlands DJ, Stonehouse NJ. Mechanism of enterovirus VP0 maturation cleavage based on the structure of a stabilised assembly intermediate. PLoS Pathog 2024; 20:e1012511. [PMID: 39298524 PMCID: PMC11444389 DOI: 10.1371/journal.ppat.1012511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/01/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Molecular details of genome packaging are little understood for the majority of viruses. In enteroviruses (EVs), cleavage of the structural protein VP0 into VP4 and VP2 is initiated by the incorporation of RNA into the assembling virion and is essential for infectivity. We have applied a combination of bioinformatic, molecular and structural approaches to generate the first high-resolution structure of an intermediate in the assembly pathway, termed a provirion, which contains RNA and intact VP0. We have demonstrated an essential role of VP0 E096 in VP0 cleavage independent of RNA encapsidation and generated a new model of capsid maturation, supported by bioinformatic analysis. This provides a molecular basis for RNA-dependence, where RNA induces conformational changes required for VP0 maturation, but that RNA packaging itself is not sufficient to induce maturation. These data have implications for understanding production of infectious virions and potential relevance for future vaccine and antiviral drug design.
Collapse
Affiliation(s)
- Natalie J Kingston
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Keith Grehan
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Philippa K Hall
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Eero V Hietanen
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Tim C Passchier
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Stephen J Polyak
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, United States of America
| | - David J Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James M Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Li J, Zong Y, Sun T, Liu Y, Wang R, Zhou J, Sun Q, Zhang Y. Inflammatory damage caused by Echovirus 30 in the suckling mouse brain and HMC3 cells. Virol J 2024; 21:165. [PMID: 39075520 PMCID: PMC11285461 DOI: 10.1186/s12985-024-02437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Echovirus 30 (E30), a member of the species B Enterovirus family, is a primary pathogen responsible for aseptic meningitis and encephalitis. E30 is associated with severe nervous system diseases and is a primary cause of child illness, disability, and even mortality. However, the mechanisms underlying E30-induced brain injury remain poorly understood. In this study, we used a neonatal mouse model of E30 to investigate the possible mechanisms of brain injury. E30 infection triggered the activation of microglia in the mouse brain and efficiently replicated within HMC3 cells. Subsequent transcriptomic analysis revealed inflammatory activation of microglia in response to E30 infection. We also detected a significant upregulation of polo-like kinase 1 (PLK1) and found that its inhibition could limit E30 infection in a sucking mouse model. Collectively, E30 infection led to brain injury in a neonatal mouse model, which may be related to excessive inflammatory responses. Our findings highlight the intricate interplay between E30 infection and neurological damage, providing crucial insights that could guide the development of interventions and strategies to address the severe clinical manifestations associated with this pathogen.
Collapse
Affiliation(s)
- Jichen Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Yanjun Zong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Tiantian Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Ying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Rui Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Jianfang Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qiang Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China.
| | - Yong Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China.
| |
Collapse
|
8
|
Ayyub M, Thomas JG, Hodeify R. An Overview of the Characteristics, Pathogenesis, Epidemiology, and Detection of Human Enterovirus in the Arabian Gulf Region. Viruses 2024; 16:1187. [PMID: 39205162 PMCID: PMC11359295 DOI: 10.3390/v16081187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Enteroviruses are RNA viruses that initiate infections through the gastrointestinal (GI) tract and are associated with enteric illness in individuals of all ages. Most serious infections of enteroviruses are in infants and young children where it is the common cause of aseptic meningitis and other systemic diseases, leading to a high mortality rate. Enteroviruses belong to the small non-enveloped family of the Picornaviridae family. The virus can spread mainly through fecal-oral and respiratory routes. In the Arabian Gulf countries, the incidence of enteroviral infections is only restricted to a few reports, and thus, knowledge of the epidemiology, characteristics, and pathogenesis of the virus in the gulf countries remains scarce. In this minireview, we sought to provide an overview of the characteristics of enterovirus and its pathogenesis, in addition to gathering the reports of enterovirus infection prevalence in Gulf Cooperation Council (GCC) countries. We also present a summary of the common methods used in its detection.
Collapse
Affiliation(s)
| | | | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah 72603, United Arab Emirates; (M.A.); (J.G.T.)
| |
Collapse
|
9
|
Kingston NJ, Snowden JS, Grehan K, Hall PK, Hietanen EV, Passchier TC, Polyak SJ, Filman DJ, Hogle JM, Rowlands DJ, Stonehouse NJ. Mechanism of enterovirus VP0 maturation cleavage based on the structure of a stabilised assembly intermediate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588229. [PMID: 38617325 PMCID: PMC11014595 DOI: 10.1101/2024.04.06.588229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Molecular details of genome packaging are little understood for the majority of viruses. In enteroviruses (EVs), cleavage of the structural protein VP0 into VP4 and VP2 is initiated by the incorporation of RNA into the assembling virion and is essential for infectivity. We have applied a combination of bioinformatic, molecular and structural approaches to generate the first high-resolution structure of an intermediate in the assembly pathway, termed a provirion, which contains RNA and intact VP0. We have demonstrated an essential role of VP0 E096 in VP0 cleavage independent of RNA encapsidation and generated a new model of capsid maturation, supported by bioinformatic analysis. This provides a molecular basis for RNA-dependence, where RNA induces conformational changes required for VP0 maturation, but that RNA packaging itself is not sufficient to induce maturation. These data have implications for understanding production of infectious virions and potential relevance for future vaccine and antiviral drug design.
Collapse
Affiliation(s)
- Natalie J Kingston
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Keith Grehan
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Philippa K Hall
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Eero V Hietanen
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Tim C Passchier
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA, Department of Global Health, University of Washington, Seattle, Washington, USA
| | - David J Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - James M Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
10
|
Wang C, Li J, Liu Y, Sun Q, Liu Z. Pathogenesis of enterovirus infection in central nervous system. BIOSAFETY AND HEALTH 2023; 5:233-239. [PMID: 40078226 PMCID: PMC11894963 DOI: 10.1016/j.bsheal.2023.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 03/14/2025] Open
Abstract
Enteroviruses (EVs) are classified into 15 species according to their sequence diversity. They include four human EV (A, B, C, and D) and three rhinoviruses (A, B, and C), and cause diseases in millions of people worldwide. Generally, individuals with enteroviral infections have mild clinical symptoms, including respiratory illness, vomiting, diarrhea, dizziness, and fever. More importantly, some members of the human EV family are neurotropic pathogens that may cause a wide range of clinical diseases, such as aseptic meningitis and encephalitis. Previously, the EV that caused the most severe neurotropic symptoms was poliovirus (PV), a member of the EV C group. Poliovirus has been eliminated in most countries through a global vaccination campaign. Non-PV EVs infect the central nervous system (CNS) and are the major EVs causing neurological diseases. These human non-PV EVs include EV A (e.g., EV-A71, CVA6, and CVA16), B (e.g., CVA9 and CVB3, CVB5, echovirus 11 [E11], E30, and E7), C (e.g., CVA24), and D (e.g., EV-D68). Here, we review the relationship between EV infection and CNS diseases and advance in the use of cellular receptors and host immune responses during viral infection.
Collapse
Affiliation(s)
- Congcong Wang
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jichen Li
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying Liu
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qiang Sun
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
11
|
Liang Y, Chen J, Wang C, Yu B, Zhang Y, Liu Z. Investigating the mechanism of Echovirus 30 cell invasion. Front Microbiol 2023; 14:1174410. [PMID: 37485505 PMCID: PMC10359910 DOI: 10.3389/fmicb.2023.1174410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Viruses invade susceptible cells through a complex mechanism before injecting their genetic material into them. This causes direct damage to the host cell, as well as resulting in disease in the corresponding system. Echovirus type 30 (E30) is a member of the Enterovirus B group and has recently been reported to cause central nervous system (CNS) disorders, leading to viral encephalitis and viral meningitis in children. In this review, we aim to help in improving the understanding of the mechanisms of CNS diseases caused by E30 for the subsequent development of relevant drugs and vaccines.
Collapse
Affiliation(s)
- Yucai Liang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Congcong Wang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Bowen Yu
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Yong Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| |
Collapse
|
12
|
Meecham A, Cutmore LC, Protopapa P, Rigby LG, Marshall JF. Ligand-bound integrin αvβ6 internalisation and trafficking. Front Cell Dev Biol 2022; 10:920303. [PMID: 36092709 PMCID: PMC9448872 DOI: 10.3389/fcell.2022.920303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The integrin αvβ6 is expressed at low levels in most normal healthy tissue but is very often upregulated in a disease context including cancer and fibrosis. Integrins use endocytosis and trafficking as a means of regulating their surface expression and thus their functions, however little is known of how this process is regulated in the context of αvβ6. As αvβ6 is a major target for the development of therapeutics in cancer and fibrosis, understanding these dynamics is critical in the development of αvβ6-targeted therapies. Following development of a flow cytometry-based assay to measure ligand (A20FMDV2 or LAP)-bound αvβ6 endocytosis, an siRNA screen was performed to identify which genes were responsible for internalising αvβ6. These data identified 15 genes (DNM2, CBLB, DNM3, CBL, EEA1, CLTC, ARFGAP3, CAV1, CYTH2, CAV3, CAV2, IQSEC1, AP2M1, TSG101) which significantly decreased endocytosis, predominantly within dynamin-dependent pathways. Inhibition of these dynamin-dependent pathways significantly reduced αvβ6-dependent migration (αvβ6-specific migration was 547 ± 128 under control conditions, reduced to 225 ± 73 with clathrin inhibition, and 280 ± 51 with caveolin inhibition). Colocalization studies of αvβ6 with endosome markers revealed that up to 6 h post-internalisation of ligand, αvβ6 remains in Rab11-positive endosomes in a perinuclear location, with no evidence of αvβ6 degradation up to 48 h post exposure to A20FMDV2. Additionally, 60% of ligand-bound αvβ6 was recycled back to the surface by 6 h. With studies ongoing using conjugated A20FMDV2 to therapeutically target αvβ6 in cancer and fibrosis, these data have important implications. Binding of A20FMDV2 seemingly removes much of the αvβ6 from the cell membrane, and upon its recycling, a large fraction appears to still be in the ligand-bound state. While these results are observed with A20FMDV2, these data will be of value in the design of αvβ6-specific therapeutics and potentially the types of therapeutic load.
Collapse
Affiliation(s)
- Amelia Meecham
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- University of California, San Diego, San Diego, CA, United States
| | - Lauren C. Cutmore
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Pantelitsa Protopapa
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Lauren G. Rigby
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - John F. Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
13
|
Abstract
Echovirus 30 (E30), a member of species B enterovirus, is associated with outbreaks of aseptic meningitis and has become a global health emergency. However, the pathogenesis of E30 remains poorly understood due to the lack of appropriate animal models. In this study, we established a mouse infection model to explore the pathogenicity of E30. The 2-day-old IFNAR-/- mice infected with E30 strain WZ16 showed lethargy and paralysis, and some died. Obvious pathological changes were observed in the skeletal muscle, brain tissue, and other tissues, with the highest viral load in the skeletal muscles. Transcriptome analysis of brain and skeletal muscle tissues from infected mice showed that significant differentially expressed genes were enriched in complement response and neuropathy-related pathways. Using immunofluorescence assay, we found that the viral double-stranded RNA (dsRNA) was detected in the mouse brain region and could infect human glioma (U251) cells. These results indicated that E30 affects the nervous system, and they provide a theoretical basis for understanding its pathogenesis. IMPORTANCE Echovirus 30 (E30) infection causes a wide spectrum of diseases with mild symptoms, such as hand, foot, and mouth disease (HFMD), acute flaccid paralysis, and aseptic meningitis and other diseases, especially one of the most common pathogens causing aseptic meningitis outbreaks. We established a novel mouse model of E30 infection by inoculating neonatal mice with clinical isolates of E30 and observed the pathological changes induced by E30. Using the E30 infection model, we found complement responses and neuropathy-related genes in the mice tissues at the transcriptome level. Moreover, we found that the viral dsRNA localized in the mouse brain and could replicate in human glioma cell line U251 rather than in the neuroblastoma cell line, SK-N-SH.
Collapse
|