1
|
Guerrero JF, Lesko SL, Evans EL, Sherer NM. Studying Retroviral Life Cycles Using Visible Viruses and Live Cell Imaging. Annu Rev Virol 2024; 11:125-146. [PMID: 38876144 DOI: 10.1146/annurev-virology-100422-012608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Viruses exploit key host cell factors to accomplish each individual stage of the viral replication cycle. To understand viral pathogenesis and speed the development of new antiviral strategies, high-resolution visualization of virus-host interactions is needed to define where and when these events occur within cells. Here, we review state-of-the-art live cell imaging techniques for tracking individual stages of viral life cycles, focusing predominantly on retroviruses and especially human immunodeficiency virus type 1, which is most extensively studied. We describe how visible viruses can be engineered for live cell imaging and how nonmodified viruses can, in some instances, be tracked and studied indirectly using cell biosensor systems. We summarize the ways in which live cell imaging has been used to dissect the retroviral life cycle. Finally, we discuss select challenges for the future including the need for better labeling strategies, increased resolution, and multivariate systems that will allow for the study of full viral replication cycles.
Collapse
Affiliation(s)
- Jorge F Guerrero
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Sydney L Lesko
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Edward L Evans
- Current affiliation: Department of Biomedical Engineering and Center for Quantitative Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
2
|
Bruce JW, Park E, Magnano C, Horswill M, Richards A, Potts G, Hebert A, Islam N, Coon JJ, Gitter A, Sherer N, Ahlquist P. HIV-1 virological synapse formation enhances infection spread by dysregulating Aurora Kinase B. PLoS Pathog 2023; 19:e1011492. [PMID: 37459363 PMCID: PMC10374047 DOI: 10.1371/journal.ppat.1011492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/27/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
HIV-1 spreads efficiently through direct cell-to-cell transmission at virological synapses (VSs) formed by interactions between HIV-1 envelope proteins (Env) on the surface of infected cells and CD4 receptors on uninfected target cells. Env-CD4 interactions bring the infected and uninfected cellular membranes into close proximity and induce transport of viral and cellular factors to the VS for efficient virion assembly and HIV-1 transmission. Using novel, cell-specific stable isotope labeling and quantitative mass spectrometric proteomics, we identified extensive changes in the levels and phosphorylation states of proteins in HIV-1 infected producer cells upon mixing with CD4+ target cells under conditions inducing VS formation. These coculture-induced alterations involved multiple cellular pathways including transcription, TCR signaling and, unexpectedly, cell cycle regulation, and were dominated by Env-dependent responses. We confirmed the proteomic results using inhibitors targeting regulatory kinases and phosphatases in selected pathways identified by our proteomic analysis. Strikingly, inhibiting the key mitotic regulator Aurora kinase B (AURKB) in HIV-1 infected cells significantly increased HIV activity in cell-to-cell fusion and transmission but had little effect on cell-free infection. Consistent with this, we found that AURKB regulates the fusogenic activity of HIV-1 Env. In the Jurkat T cell line and primary T cells, HIV-1 Env:CD4 interaction also dramatically induced cell cycle-independent AURKB relocalization to the centromere, and this signaling required the long (150 aa) cytoplasmic C-terminal domain (CTD) of Env. These results imply that cytoplasmic/plasma membrane AURKB restricts HIV-1 envelope fusion, and that this restriction is overcome by Env CTD-induced AURKB relocalization. Taken together, our data reveal a new signaling pathway regulating HIV-1 cell-to-cell transmission and potential new avenues for therapeutic intervention through targeting the Env CTD and AURKB activity.
Collapse
Affiliation(s)
- James W. Bruce
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Eunju Park
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Chris Magnano
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mark Horswill
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alicia Richards
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Gregory Potts
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alexander Hebert
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Nafisah Islam
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Anthony Gitter
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Nathan Sherer
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Paul Ahlquist
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Fernandez-de Céspedes MV, Hoffman HK, Carter H, Simons LM, Naing L, Ablan SD, Scheiblin DA, Hultquist JF, van Engelenburg SB, Freed EO. Rab11-FIP1C Is Dispensable for HIV-1 Replication in Primary CD4 + T Cells, but Its Role Is Cell Type Dependent in Immortalized Human T-Cell Lines. J Virol 2022; 96:e0087622. [PMID: 36354340 PMCID: PMC9749476 DOI: 10.1128/jvi.00876-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/11/2022] [Indexed: 11/12/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) contains a long cytoplasmic tail harboring highly conserved motifs that direct Env trafficking and incorporation into virions and promote efficient virus spread. The cellular trafficking factor Rab11a family interacting protein 1C (FIP1C) has been implicated in the directed trafficking of Env to sites of viral assembly. In this study, we confirm that small interfering RNA (siRNA)-mediated depletion of FIP1C in HeLa cells modestly reduces Env incorporation into virions. To determine whether FIP1C is required for Env incorporation and HIV-1 replication in physiologically relevant cells, CRISPR-Cas9 technology was used to knock out the expression of this protein in several human T-cell lines-Jurkat E6.1, SupT1, and H9-and in primary human CD4+ T cells. FIP1C knockout caused modest reductions in Env incorporation in SupT1 cells but did not inhibit virus replication in SupT1 or Jurkat E6.1 T cells. In H9 cells, FIP1C knockout caused a cell density-dependent defect in virus replication. In primary CD4+ T cells, FIP1C knockout had no effect on HIV-1 replication. Furthermore, human T-cell leukemia virus type 1 (HTLV-1)-transformed cell lines that are permissive for HIV-1 replication do not express FIP1C. Mutation of an aromatic motif in the Env cytoplasmic tail (Y795W) implicated in FIP1C-mediated Env incorporation impaired virus replication independently of FIP1C expression in SupT1, Jurkat E6.1, H9, and primary T cells. Together, these results indicate that while FIP1C may contribute to HIV-1 Env incorporation in some contexts, additional and potentially redundant host factors are likely required for Env incorporation and virus dissemination in T cells. IMPORTANCE The incorporation of the HIV-1 envelope (Env) glycoproteins, gp120 and gp41, into virus particles is critical for virus infectivity. gp41 contains a long cytoplasmic tail that has been proposed to interact with host cell factors, including the trafficking factor Rab11a family interacting protein 1C (FIP1C). To investigate the role of FIP1C in relevant cell types-human T-cell lines and primary CD4+ T cells-we used CRISPR-Cas9 to knock out FIP1C expression and examined the effect on HIV-1 Env incorporation and virus replication. We observed that in two of the T-cell lines examined (Jurkat E6.1 and SupT1) and in primary CD4+ T cells, FIP1C knockout did not disrupt HIV-1 replication, whereas FIP1C knockout reduced Env expression and delayed replication in H9 cells. The results indicate that while FIP1C may contribute to Env incorporation in some cell lines, it is not an essential factor for efficient HIV-1 replication in primary CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Hannah Carter
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lwar Naing
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Sherimay D. Ablan
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - David A. Scheiblin
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
4
|
Chiu YF, Huang YW, Chen CY, Chen YC, Gong YN, Kuo RL, Huang CG, Shih SR. Visualizing Influenza A Virus vRNA Replication. Front Microbiol 2022; 13:812711. [PMID: 35733972 PMCID: PMC9207383 DOI: 10.3389/fmicb.2022.812711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) has caused recurrent epidemics and severe pandemics. In this study, we adapted an MS2-MCP live-cell imaging system to visualize IAV replication. A reporter plasmid, pHH-PB2-vMSL, was constructed by replacing a part of the PB2-coding sequence in pHH-PB2 with a sequence encoding 24 copies of a stem-loop structure from bacteriophage MS2 (MSL). Binding of MS2 coat protein (MCP) fused to green fluorescent protein (GFP) to MSL enabled the detection of vRNA as fluorescent punctate signals in live-cell imaging. The introduction of pHH-PB2-vMSL into A549 cells transduced to express an MCP-GFP fusion protein lacking the nuclear localization signal (MCP-GFPdN), subsequently allowed tracking of the distribution and replication of PB2-vMSL vRNA after IAV PR8 infection. Spatial and temporal measurements revealed exponential increases in vRNA punctate signal intensity, which was only observed after membrane blebbing in apoptotic cells. Similar signal intensity increases in apoptotic cells were also observed after MDCK cells, transduced to express MCP-GFPdN, were infected with IAV carrying PB2-vMSL vRNA. Notably, PB2-vMSL vRNA replication was observed to occur only in apoptotic cells, at a consistent time after apoptosis initiation. There was a lack of observable PB2-vMSL vRNA replication in non-apoptotic cells, and vRNA replication was suppressed in the presence of apoptosis inhibitors. These findings point to an important role for apoptosis in IAV vRNA replication. The utility of the MS2-imaging system for visualizing time-sensitive processes such as viral replication in live host cells is also demonstrated in this study.
Collapse
Affiliation(s)
- Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Wen Huang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chia Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Evans EL, Pocock GM, Einsdorf G, Behrens RT, Dobson ETA, Wiedenmann M, Birkhold C, Ahlquist P, Eliceiri KW, Sherer NM. HIV RGB: Automated Single-Cell Analysis of HIV-1 Rev-Dependent RNA Nuclear Export and Translation Using Image Processing in KNIME. Viruses 2022; 14:903. [PMID: 35632645 PMCID: PMC9145009 DOI: 10.3390/v14050903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Single-cell imaging has emerged as a powerful means to study viral replication dynamics and identify sites of virus−host interactions. Multivariate aspects of viral replication cycles yield challenges inherent to handling large, complex imaging datasets. Herein, we describe the design and implementation of an automated, imaging-based strategy, “Human Immunodeficiency Virus Red-Green-Blue” (HIV RGB), for deriving comprehensive single-cell measurements of HIV-1 unspliced (US) RNA nuclear export, translation, and bulk changes to viral RNA and protein (HIV-1 Rev and Gag) subcellular distribution over time. Differentially tagged fluorescent viral RNA and protein species are recorded using multicolor long-term (>24 h) time-lapse video microscopy, followed by image processing using a new open-source computational imaging workflow dubbed “Nuclear Ring Segmentation Analysis and Tracking” (NR-SAT) based on ImageJ plugins that have been integrated into the Konstanz Information Miner (KNIME) analytics platform. We describe a typical HIV RGB experimental setup, detail the image acquisition and NR-SAT workflow accompanied by a step-by-step tutorial, and demonstrate a use case wherein we test the effects of perturbing subcellular localization of the Rev protein, which is essential for viral US RNA nuclear export, on the kinetics of HIV-1 late-stage gene regulation. Collectively, HIV RGB represents a powerful platform for single-cell studies of HIV-1 post-transcriptional RNA regulation. Moreover, we discuss how similar NR-SAT-based design principles and open-source tools might be readily adapted to study a broad range of dynamic viral or cellular processes.
Collapse
Affiliation(s)
- Edward L. Evans
- McArdle Laboratory for Cancer Research (Department of Oncology), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA; (E.L.E.III); (G.M.P.); (R.T.B.)
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (G.E.); (E.T.A.D.); (M.W.)
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Ginger M. Pocock
- McArdle Laboratory for Cancer Research (Department of Oncology), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA; (E.L.E.III); (G.M.P.); (R.T.B.)
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (G.E.); (E.T.A.D.); (M.W.)
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Gabriel Einsdorf
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (G.E.); (E.T.A.D.); (M.W.)
- KNIME GmbH, 78467 Konstanz, Germany;
| | - Ryan T. Behrens
- McArdle Laboratory for Cancer Research (Department of Oncology), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA; (E.L.E.III); (G.M.P.); (R.T.B.)
| | - Ellen T. A. Dobson
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (G.E.); (E.T.A.D.); (M.W.)
| | - Marcel Wiedenmann
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (G.E.); (E.T.A.D.); (M.W.)
- KNIME GmbH, 78467 Konstanz, Germany;
| | | | - Paul Ahlquist
- McArdle Laboratory for Cancer Research (Department of Oncology), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA; (E.L.E.III); (G.M.P.); (R.T.B.)
- Morgridge Institute for Research, Madison, WI 53715, USA
- John and Jeanne Rowe Center for Research in Virology, Madison, WI 53715, USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (G.E.); (E.T.A.D.); (M.W.)
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research (Department of Oncology), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA; (E.L.E.III); (G.M.P.); (R.T.B.)
| |
Collapse
|
6
|
Balinda SN, Kapaata A, Xu R, Salazar MG, Mezzell AT, Qin Q, Herard K, Dilernia D, Kamali A, Ruzagira E, Kibengo FM, Song H, Ochsenbauer C, Salazar-Gonzalez JF, Gilmour J, Hunter E, Yue L, Kaleebu P. Characterization of Near Full-Length Transmitted/Founder HIV-1 Subtype D and A/D Recombinant Genomes in a Heterosexual Ugandan Population (2006–2011). Viruses 2022; 14:v14020334. [PMID: 35215928 PMCID: PMC8874453 DOI: 10.3390/v14020334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 12/04/2022] Open
Abstract
Detailed characterization of transmitted HIV-1 variants in Uganda is fundamentally important to inform vaccine design, yet studies on the transmitted full-length strains of subtype D viruses are limited. Here, we amplified single genomes and characterized viruses, some of which were previously classified as subtype D by sub-genomic pol sequencing that were transmitted in Uganda between December 2006 to June 2011. Analysis of 5′ and 3′ half genome sequences showed 73% (19/26) of infections involved single virus transmissions, whereas 27% (7/26) of infections involved multiple variant transmissions based on predictions of a model of random virus evolution. Subtype analysis of inferred transmitted/founder viruses showed a high transmission rate of inter-subtype recombinants (69%, 20/29) involving mainly A1/D, while pure subtype D variants accounted for one-third of infections (31%, 9/29). Recombination patterns included a predominance of subtype D in the gag/pol region and a highly recombinogenic envelope gene. The signal peptide-C1 region and gp41 transmembrane domain (Tat2/Rev2 flanking region) were hotspots for A1/D recombination events. Analysis of a panel of 14 transmitted/founder molecular clones showed no difference in replication capacity between subtype D viruses (n = 3) and inter-subtype mosaic recombinants (n = 11). However, individuals infected with high replication capacity viruses had a faster CD4 T cell loss. The high transmission rate of unique inter-subtype recombinants is striking and emphasizes the extraordinary challenge for vaccine design and, in particular, for the highly variable and recombinogenic envelope gene, which is targeted by rational designs aimed to elicit broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Sheila N. Balinda
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
- Correspondence: ; Tel.: +25-675-466-0098
| | - Anne Kapaata
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Rui Xu
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Maria G. Salazar
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Allison T. Mezzell
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 3230, Eden Ave, Cincinnati, OH 45267, USA;
| | - Qianhong Qin
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Kimberly Herard
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Dario Dilernia
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Anatoli Kamali
- International AIDS Vaccine Initiative (IAVI), Nairobi 00202, Kenya;
| | - Eugene Ruzagira
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Freddie M. Kibengo
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Heeyah Song
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Jesus F. Salazar-Gonzalez
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Jill Gilmour
- International AIDS Vaccine Initiative (IAVI), Imperial College London, London SW10 9NH, UK;
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30329, USA
| | - Ling Yue
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Pontiano Kaleebu
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| |
Collapse
|
7
|
Marty N, Saeng-Aroon S, Heger E, Thielen A, Obermeier M, Pfeifer N, Kaiser R, Klimkait T. Adapting the geno2pheno[coreceptor] tool to HIV-1 subtype CRF01_AE by phenotypic validation using clinical isolates from South-East Asia. J Clin Virol 2021; 136:104755. [PMID: 33639408 DOI: 10.1016/j.jcv.2021.104755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Geno2pheno[coreceptor] is a widely used tool for the prediction of coreceptor usage (viral tropism) of HIV-1 samples. For HIV-1 CRF01_AE, a significant overcalling of X4-tropism is observed when using the standard settings of Geno2pheno[coreceptor]. The aim of this study was to provide the experimental backing for adaptations to the geno2pheno[coreceptor] algorithm in order to improve coreceptor usage predictions of clinical HIV-1 CRF01_AE isolates STUDY DESIGN: V3-sequences of 20 clinical HIV-1 subtype CRF01_AE samples were sequenced and analyzed by geno2pheno[coreceptor]. In parallel, coreceptor usage was determined for these samples by replicative phenotyping in human cells in the presence of specific X4- or R5-inhibitors. RESULTS The sole introduction of the CRF01_AE V3 region into a full-length otherwise subtype B provirus failed to produce replication-competent viral progeny. A successive genome-replacement strategy revealed that also CRF01_AE derived gag and pol sequences are necessary to generate HIV genomes with sufficient replication competence. Subsequent phenotypic analysis confirmed overcalling of X4-tropism for CRF01_AE viruses using the current version and the standard cut-off at 10% false positive rate (FPR) of geno2pheno[coreceptor]. Lowering the FPR cut-off to 2.5% reduced the X4-overcalling in our sample collection, while still allowing a safe administration of Maraviroc (MCV). CONCLUSION This study demonstrates the successful adjustment of geno2pheno[coreceptor] rules for subtype CRF01_AE. It also supports the unique strength of combining complementing methods, namely phenotyping and genotyping, for validating new bioinformatics tools prior to application in diagnostics.
Collapse
Affiliation(s)
- Nina Marty
- Molecular Virology, Department Biomedicine-Petersplatz, University of Basel, Petersplatz 10, 4055 Basel, Switzerland.
| | - Siriphan Saeng-Aroon
- Hazardous Pathogen Laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Eva Heger
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | | | - Nico Pfeifer
- Max Planck Institute for Informatics, Saarland Informatics Campus E1 4, Saarbruecken, Germany
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Klimkait
- Molecular Virology, Department Biomedicine-Petersplatz, University of Basel, Petersplatz 10, 4055 Basel, Switzerland
| |
Collapse
|
8
|
Elucidating the Basis for Permissivity of the MT-4 T-Cell Line to Replication of an HIV-1 Mutant Lacking the gp41 Cytoplasmic Tail. J Virol 2020; 94:JVI.01334-20. [PMID: 32938764 DOI: 10.1128/jvi.01334-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
HIV-1 encodes an envelope glycoprotein (Env) that contains a long cytoplasmic tail (CT) harboring trafficking motifs implicated in Env incorporation into virus particles and viral transmission. In most physiologically relevant cell types, the gp41 CT is required for HIV-1 replication, but in the MT-4 T-cell line the gp41 CT is not required for a spreading infection. To help elucidate the role of the gp41 CT in HIV-1 transmission, in this study, we investigated the viral and cellular factors that contribute to the permissivity of MT-4 cells to gp41 CT truncation. We found that the kinetics of HIV-1 production and virus release are faster in MT-4 than in the other T-cell lines tested, but MT-4 cells express equivalent amounts of HIV-1 proteins on a per-cell basis relative to cells not permissive to CT truncation. MT-4 cells express higher levels of plasma-membrane-associated Env than nonpermissive cells, and Env internalization from the plasma membrane is less efficient than that from another T-cell line, SupT1. Paradoxically, despite the high levels of Env on the surface of MT-4 cells, 2-fold less Env is incorporated into virus particles produced from MT-4 than SupT1 cells. Contact-dependent transmission between cocultured 293T and MT-4 cells is higher than in cocultures of 293T with most other T-cell lines tested, indicating that MT-4 cells are highly susceptible to cell-to-cell infection. These data help to clarify the long-standing question of how MT-4 cells overcome the requirement for the HIV-1 gp41 CT and support a role for gp41 CT-dependent trafficking in Env incorporation and cell-to-cell transmission in physiologically relevant cell lines.IMPORTANCE The HIV-1 Env cytoplasmic tail (CT) is required for efficient Env incorporation into nascent particles and viral transmission in primary CD4+ T cells. The MT-4 T-cell line has been reported to support multiple rounds of infection of HIV-1 encoding a gp41 CT truncation. Uncovering the underlying mechanism of MT-4 T-cell line permissivity to gp41 CT truncation would provide key insights into the role of the gp41 CT in HIV-1 transmission. This study reveals that multiple factors contribute to the unique ability of a gp41 CT truncation mutant to spread in cultures of MT-4 cells. The lack of a requirement for the gp41 CT in MT-4 cells is associated with the combined effects of rapid HIV-1 protein production, high levels of cell-surface Env expression, and increased susceptibility to cell-to-cell transmission compared to nonpermissive cells.
Collapse
|
9
|
Céspedes PF, Beckers D, Dustin ML, Sezgin E. Model membrane systems to reconstitute immune cell signaling. FEBS J 2020; 288:1070-1090. [DOI: 10.1111/febs.15488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Pablo F. Céspedes
- Kennedy Institute of Rheumatology Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences University of Oxford UK
| | - Daniel Beckers
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular Medicine University of Oxford UK
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences University of Oxford UK
| | - Erdinc Sezgin
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular Medicine University of Oxford UK
- Science for Life Laboratory Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| |
Collapse
|
10
|
Abstract
Dendritic cell (DC) lectins mediate the recognition, uptake, and processing of antigens, but they can also be coopted by pathogens for infection. These distinct activities depend upon the routing of antigens within the cell. Antigens directed to endosomal compartments are degraded, and the peptides are presented on major histocompatibility complex class II molecules, thereby promoting immunity. Alternatively, HIV-1 can avoid degradation, as virus engagement with C-type lectin receptors (CLRs), such as DC-SIGN (DC-specific ICAM-3-grabbing nonintegrin) results in trafficking to surface-accessible invaginated pockets. This process appears to enable infection of T cells in trans We sought to explore whether antigen fate upon CLR-mediated internalization was affected by antigen physical properties. To this end, we employed the ring-opening metathesis polymerization to generate glycopolymers that each display multiple copies of mannoside ligand for DC-SIGN, yet differ in length and size. The rate and extent of glycopolymer internalization depended upon polymer structure-longer polymers were internalized more rapidly and more efficiently than were shorter polymers. The trafficking, however, did not differ, and both short and longer polymers colocalized with transferrin-labeled early endosomes. To explore how DC-SIGN directs larger particles, such as pathogens, we induced aggregation of the polymers to access particulate antigens. Strikingly, these particulate antigens were diverted to the invaginated pockets that harbor HIV-1. Thus, antigen structure has a dramatic effect on DC-SIGN-mediated uptake and trafficking. These findings have consequences for the design of synthetic vaccines. Additionally, the results suggest strategies for targeting DC reservoirs that harbor viral pathogens.
Collapse
|
11
|
Nakamura H, Shimizu T, Takatani A, Suematsu T, Nakamura T, Kawakami A. Initial human T-cell leukemia virus type 1 infection of the salivary gland epithelial cells requires a biofilm-like structure. Virus Res 2019; 269:197643. [PMID: 31233774 DOI: 10.1016/j.virusres.2019.197643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 11/26/2022]
Abstract
The initial phase of the human T cell leukemia virus-1 (HTLV-1) infection of salivary gland epithelial cells (SGECs) was examined. SGECs of patients with Sjögren's syndrome (SS) and non-SS subjects were co-cultured with the HTLV-1-infected cell line HCT-5 or MOLT-4, then immunofluorescence (IF), scanning and transmission electron microscopy (SEM/TEM) were employed. The extracellular matrix and linker proteins galectin-3, agrin, and tetherin were expressed on the surfaces of both HCT-5 and MOLT-4 cells. HTLV-1 Gag-positive spots were observed on adjacent SGECs after 1 h of co-culture with HCT-5. Both in subjects with and those without SS, agrin and tetherin were co-expressed with HTLV-1 Gag on SGECs after co-culture with HCT-5, although no polarization of HTLV-1 Gag and relevant molecules was observed. SEM showed HTLV-1 virions that were found on HCT-5 were observed in the interfaces between HCT-5 cells and SGECs. TEM imaging showed that HTLV-1 virions were transmitted to SGECs at the interface with thin film-like structure, while HTLV-1 virions were released from the surface of HCT-5 cells. No endogenous retroviruses were observed. These results showed that the initial phase of HTLV-1 infection toward SGECs of SS was mediated not by viral synapses, but by biofilm-like components.
Collapse
Affiliation(s)
- Hideki Nakamura
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ayuko Takatani
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Suematsu
- Division of Electron Microscopy, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsufumi Nakamura
- Department of Human Community, Faculty of Social Welfare, Nagasaki International University, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
12
|
Fernandez MV, Freed EO. Meeting Review: 2018 International Workshop on Structure and Function of the Lentiviral gp41 Cytoplasmic Tail. Viruses 2018; 10:E613. [PMID: 30405009 PMCID: PMC6266243 DOI: 10.3390/v10110613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 01/09/2023] Open
Abstract
Recent developments in defining the role of the lentiviral envelope glycoprotein (Env) cytoplasmic tail (CT) in Env trafficking and incorporation into virus particles have advanced our understanding of viral replication and transmission. To stimulate additional progress in this field, the two-day International Workshop on Structure and Function of the Lentiviral gp41 Cytoplasmic Tail, co-organized by Eric Freed and James Hoxie, was held at the National Cancer Institute in Frederick, MD (26⁻27 April 2018). The meeting served to bring together experts focused on the role of gp41 in HIV replication and to discuss the emerging mechanisms of CT-dependent trafficking, Env conformation and structure, host protein interaction, incorporation, and viral transmission. The conference was organized around the following three main hot topics in gp41 research: the role of host factors in CT-dependent Env incorporation, Env structure, and CT-mediated trafficking and transmission. This review highlights important topics and the advances in gp41 research that were discussed during the conference.
Collapse
Affiliation(s)
- Melissa V Fernandez
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Eric O Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
13
|
Narasimhulu VGS, Bellamy-McIntyre AK, Laumaea AE, Lay CS, Harrison DN, King HAD, Drummer HE, Poumbourios P. Distinct functions for the membrane-proximal ectodomain region (MPER) of HIV-1 gp41 in cell-free and cell-cell viral transmission and cell-cell fusion. J Biol Chem 2018; 293:6099-6120. [PMID: 29496992 DOI: 10.1074/jbc.ra117.000537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/21/2018] [Indexed: 11/06/2022] Open
Abstract
HIV-1 is spread by cell-free virions and by cell-cell viral transfer. We asked whether the structure and function of a broad neutralizing antibody (bNAb) epitope, the membrane-proximal ectodomain region (MPER) of the viral gp41 transmembrane glycoprotein, differ in cell-free and cell-cell-transmitted viruses and whether this difference could be related to Ab neutralization sensitivity. Whereas cell-free viruses bearing W666A and I675A substitutions in the MPER lacked infectivity, cell-associated mutant viruses were able to initiate robust spreading infection. Infectivity was restored to cell-free viruses by additional substitutions in the cytoplasmic tail (CT) of gp41 known to disrupt interactions with the viral matrix protein. We observed contrasting effects on cell-free virus infectivity when W666A was introduced to two transmitted/founder isolates, but both mutants could still mediate cell-cell spread. Domain swapping indicated that the disparate W666A phenotypes of the cell-free transmitted/founder viruses are controlled by sequences in variable regions 1, 2, and 4 of gp120. The sequential passaging of an MPER mutant (W672A) in peripheral blood mononuclear cells enabled selection of viral revertants with loss-of-glycan suppressor mutations in variable region 1, suggesting a functional interaction between variable region 1 and the MPER. An MPER-directed bNAb neutralized cell-free virus but not cell-cell viral spread. Our results suggest that the MPER of cell-cell-transmitted virions has a malleable structure that tolerates mutagenic disruption but is not accessible to bNAbs. In cell-free virions, interactions mediated by the CT impose an alternative MPER structure that is less tolerant of mutagenic alteration and is efficiently targeted by bNAbs.
Collapse
Affiliation(s)
- Vani G S Narasimhulu
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and
| | - Anna K Bellamy-McIntyre
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Departments of Microbiology and
| | - Annamarie E Laumaea
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and
| | - Chan-Sien Lay
- Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - David N Harrison
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004
| | - Hannah A D King
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and
| | - Heidi E Drummer
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and.,the Departments of Microbiology and
| | - Pantelis Poumbourios
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004, .,the Departments of Microbiology and.,Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Grosche L, Kummer M, Steinkasserer A. What Goes Around, Comes Around - HSV-1 Replication in Monocyte-Derived Dendritic Cells. Front Microbiol 2017; 8:2149. [PMID: 29163433 PMCID: PMC5674004 DOI: 10.3389/fmicb.2017.02149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023] Open
Abstract
HSV-1 is a very successful human pathogen, known for its high sero-prevalence and the ability to infect a wide range of different cell types, including dendritic cells (DCs). As very potent antigen-presenting cells DCs play an important role in the induction of antiviral immune responses and therefore represent a strategic target for viral-mediated immune escape mechanisms. It is known that HSV-1 completes its gene expression profile in immature as well as in mature DCs, while lytic infection is only found in immature DCs (iDCs). Notably, HSV-1 infected mature DCs (mDCs) fail to release infectious progeny virions into the supernatant. Apart from HSV-1 dissemination via extracellular routes cell-to-cell spread counteracts a yet unknown mechanism by which the virus is trapped in mDCs and not released into the supernatant. The dissemination in a cell-cell contact-dependent manner enables HSV-1 to infect bystander cells without the exposure toward the extracellular environment. This supports the virus to successfully infect the host and establish latency. In this review the mechanism of HSV-1 replication in iDCs and mDCs and its immunological as well as virological implications, will be discussed.
Collapse
Affiliation(s)
- Linda Grosche
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
15
|
Dirk BS, Van Nynatten LR, Dikeakos JD. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques. Viruses 2016; 8:v8100288. [PMID: 27775563 PMCID: PMC5086620 DOI: 10.3390/v8100288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 12/19/2022] Open
Abstract
Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1) is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED) and photoactivation and localization microscopy (PALM) have been instrumental in studying viral assembly and release through both cell-cell transmission and cell-free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle.
Collapse
Affiliation(s)
- Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Logan R Van Nynatten
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|