1
|
Ehl S, Thimme R. Immune‐mediated pathology as a consequence of impaired immune reactions: the IMPATH paradox. Eur J Immunol 2022; 52:1386-1389. [DOI: 10.1002/eji.202250069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine Medical Center ‐ University of Freiburg Freiburg Germany
| | - Robert Thimme
- Dept. of Medicine II, Medical Center ‐ University of Freiburg and Faculty of Medicine Medical Center ‐ University of Freiburg Freiburg Germany
| |
Collapse
|
2
|
Cao D, Ge JY, Wang Y, Oda T, Zheng YW. Hepatitis B virus infection modeling using multi-cellular organoids derived from human induced pluripotent stem cells. World J Gastroenterol 2021; 27:4784-4801. [PMID: 34447226 PMCID: PMC8371505 DOI: 10.3748/wjg.v27.i29.4784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) remains a global health concern despite the availability of vaccines. To date, the development of effective treatments has been severely hampered by the lack of reliable, reproducible, and scalable in vitro modeling systems that precisely recapitulate the virus life cycle and represent virus-host interactions. With the progressive understanding of liver organogenesis mechanisms, the development of human induced pluripotent stem cell (iPSC)-derived hepatic sources and stromal cellular compositions provides novel strategies for personalized modeling and treatment of liver disease. Further, advancements in three-dimensional culture of self-organized liver-like organoids considerably promote in vitro modeling of intact human liver tissue, in terms of both hepatic function and other physiological characteristics. Combined with our experiences in the investigation of HBV infections using liver organoids, we have summarized the advances in modeling reported thus far and discussed the limitations and ongoing challenges in the application of liver organoids, particularly those with multi-cellular components derived from human iPSCs. This review provides general guidelines for establishing clinical-grade iPSC-derived multi-cellular organoids in modeling personalized hepatitis virus infection and other liver diseases, as well as drug testing and transplantation therapy.
Collapse
Affiliation(s)
- Di Cao
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and School of Biotechnology and Heath Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Yun Wang
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and School of Biotechnology and Heath Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
- School of Medicine, Yokohama City University, Yokohama 234-0006, Kanagawa, Japan
| |
Collapse
|
3
|
Abstract
Abstract
Purpose of Review
Chronic Hepatitis B Virus (HBV) Infection is a major global health burden. Currently, a curative therapy does not exist; thus, there is an urgent need for new therapeutical options. Viral elimination in the natural course of infection results from a robust and multispecific T and B cell response that, however, is dysfunctional in chronically infected patients. Therefore, immunomodulatory therapies that strengthen the immune responses are an obvious approach trying to control HBV infection. In this review, we summarize the rationale and current options of immunological cure of chronic HBV infection.
Recent Findings
Recently, among others, drugs that stimulate the innate immune system or overcome CD8+ T cell exhaustion by checkpoint blockade, and transfer of HBV-specific engineered CD8+ T cells emerged as promising approaches.
Summary
HBV-specific immunity is responsible for viral control, but also for immunopathogenesis. Thus, the development of immunomodulatory therapies is a difficult process on a thin line between viral control and excessive immunopathology. Some promising agents are under investigation. Nevertheless, further research is indispensable in order to optimally orchestrate immunostimulation.
Collapse
|
4
|
Tham CYL, Kah J, Tan AT, Volz T, Chia A, Giersch K, Ladiges Y, Loglio A, Borghi M, Sureau C, Lampertico P, Lütgehetmann M, Dandri M, Bertoletti A. Hepatitis Delta Virus Acts as an Immunogenic Adjuvant in Hepatitis B Virus-Infected Hepatocytes. CELL REPORTS MEDICINE 2020; 1:100060. [PMID: 33205065 PMCID: PMC7659593 DOI: 10.1016/j.xcrm.2020.100060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/30/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Hepatitis delta virus (HDV) requires hepatitis B virus (HBV) to complete its infection cycle and causes severe hepatitis, with limited therapeutic options. To determine the prospect of T cell therapy in HBV/HDV co-infection, we study the impact of HDV on viral antigen processing and presentation. Using in vitro models of HBV/HDV co-infection, we demonstrate that HDV boosts HBV epitope presentation, both in HBV/HDV co-infected and neighboring mono-HBV-infected cells through the upregulation of the antigen processing pathway mediated by IFN-β/λ. Liver biopsies of HBV/HDV patients confirm this upregulation. We then validate in vitro and in a HBV/HDV preclinical mouse model that HDV infection increases the anti-HBV efficacy of T cells with engineered T cell receptors. Thus, by unveiling the effect of HDV on HBV antigen presentation, we provide a framework to better understand HBV/HDV immune pathology, and advocate the utilization of engineered HBV-specific T cells as a potential treatment for HBV/HDV co-infection. HDV infection affects viral antigen processing and presentation HDV boosts HBV epitope presentation on HBV/HDV and mono-HBV-infected hepatocytes Anti-HBV efficacy of T cells engineered with T cell receptors is enhanced by HDV
Collapse
Affiliation(s)
- Christine Y L Tham
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore.,Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Janine Kah
- Medical Department, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anthony T Tan
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - Tassilo Volz
- Medical Department, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adeline Chia
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - Katja Giersch
- Medical Department, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yvonne Ladiges
- Medical Department, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Loglio
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico - Division of Gastroenterology and Hepatology - CRC "A.M. and A. Migliavacca" Center for Liver Disease, Milan, Italy
| | - Marta Borghi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico - Division of Gastroenterology and Hepatology - CRC "A.M. and A. Migliavacca" Center for Liver Disease, Milan, Italy
| | - Camille Sureau
- Institut National de la Transfusion Sanguine, INSERM U1134, CNRS, Paris
| | - Pietro Lampertico
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico - Division of Gastroenterology and Hepatology - CRC "A.M. and A. Migliavacca" Center for Liver Disease, Milan, Italy.,University of Milan, Milan, Italy
| | - Marc Lütgehetmann
- Institute of Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems Partner Site, Hamburg, Germany
| | - Maura Dandri
- Medical Department, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems Partner Site, Hamburg, Germany
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore.,Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
5
|
Kok F, Rosenblatt M, Teusel M, Nizharadze T, Gonçalves Magalhães V, Dächert C, Maiwald T, Vlasov A, Wäsch M, Tyufekchieva S, Hoffmann K, Damm G, Seehofer D, Boettler T, Binder M, Timmer J, Schilling M, Klingmüller U. Disentangling molecular mechanisms regulating sensitization of interferon alpha signal transduction. Mol Syst Biol 2020; 16:e8955. [PMID: 32696599 PMCID: PMC7373899 DOI: 10.15252/msb.20198955] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
Tightly interlinked feedback regulators control the dynamics of intracellular responses elicited by the activation of signal transduction pathways. Interferon alpha (IFNα) orchestrates antiviral responses in hepatocytes, yet mechanisms that define pathway sensitization in response to prestimulation with different IFNα doses remained unresolved. We establish, based on quantitative measurements obtained for the hepatoma cell line Huh7.5, an ordinary differential equation model for IFNα signal transduction that comprises the feedback regulators STAT1, STAT2, IRF9, USP18, SOCS1, SOCS3, and IRF2. The model-based analysis shows that, mediated by the signaling proteins STAT2 and IRF9, prestimulation with a low IFNα dose hypersensitizes the pathway. In contrast, prestimulation with a high dose of IFNα leads to a dose-dependent desensitization, mediated by the negative regulators USP18 and SOCS1 that act at the receptor. The analysis of basal protein abundance in primary human hepatocytes reveals high heterogeneity in patient-specific amounts of STAT1, STAT2, IRF9, and USP18. The mathematical modeling approach shows that the basal amount of USP18 determines patient-specific pathway desensitization, while the abundance of STAT2 predicts the patient-specific IFNα signal response.
Collapse
Affiliation(s)
- Frédérique Kok
- Division Systems Biology of Signal TransductionGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Marcus Rosenblatt
- Institute of PhysicsUniversity of FreiburgFreiburgGermany
- FDM ‐ Freiburg Center for Data Analysis and ModelingUniversity of FreiburgFreiburgGermany
| | - Melissa Teusel
- Division Systems Biology of Signal TransductionGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Tamar Nizharadze
- Division Systems Biology of Signal TransductionGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Vladimir Gonçalves Magalhães
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”Division Virus‐Associated CarcinogenesisGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Christopher Dächert
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”Division Virus‐Associated CarcinogenesisGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Tim Maiwald
- Institute of PhysicsUniversity of FreiburgFreiburgGermany
| | - Artyom Vlasov
- Division Systems Biology of Signal TransductionGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Marvin Wäsch
- Division Systems Biology of Signal TransductionGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Silvana Tyufekchieva
- Department of General, Visceral and Transplantation SurgeryRuprecht Karls University HeidelbergHeidelbergGermany
| | - Katrin Hoffmann
- Department of General, Visceral and Transplantation SurgeryRuprecht Karls University HeidelbergHeidelbergGermany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral TransplantationUniversity of LeipzigLeipzigGermany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral TransplantationUniversity of LeipzigLeipzigGermany
| | - Tobias Boettler
- Department of Medicine IIUniversity Hospital Freiburg—Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”Division Virus‐Associated CarcinogenesisGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jens Timmer
- Institute of PhysicsUniversity of FreiburgFreiburgGermany
- FDM ‐ Freiburg Center for Data Analysis and ModelingUniversity of FreiburgFreiburgGermany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
- Center for Biological Systems Analysis (ZBSA)University of FreiburgFreiburgGermany
| | - Marcel Schilling
- Division Systems Biology of Signal TransductionGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Ursula Klingmüller
- Division Systems Biology of Signal TransductionGerman Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
6
|
In Vitro Systems for Studying Different Genotypes/Sub-Genotypes of Hepatitis B Virus: Strengths and Limitations. Viruses 2020; 12:v12030353. [PMID: 32210021 PMCID: PMC7150782 DOI: 10.3390/v12030353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infects the liver resulting in end stage liver disease, cirrhosis, and hepatocellular carcinoma. Despite an effective vaccine, HBV poses a serious health problem globally, accounting for 257 million chronic carriers. Unique features of HBV, including its narrow virus-host range and its hepatocyte tropism, have led to major challenges in the development of suitable in vivo and in vitro model systems to recapitulate the HBV replication cycle and to test various antiviral strategies. Moreover, HBV is classified into at least nine genotypes and 35 sub-genotypes with distinct geographical distributions and prevalence, which have different natural histories of infection, clinical manifestation, and response to current antiviral agents. Here, we review various in vitro systems used to study the molecular biology of the different (sub)genotypes of HBV and their response to antiviral agents, and we discuss their strengths and limitations. Despite the advances made, no system is ideal for pan-genotypic HBV research or drug development and therefore further improvement is required. It is necessary to establish a centralized repository of HBV-related generated materials, which are readily accessible to HBV researchers, with international collaboration toward advancement and development of in vitro model systems for testing new HBV antivirals to ensure their pan-genotypic and/or customized activity.
Collapse
|
7
|
Maini MK, Burton AR. Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nat Rev Gastroenterol Hepatol 2019; 16:662-675. [PMID: 31548710 DOI: 10.1038/s41575-019-0196-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
Abstract
Multiple new therapeutic approaches are currently being developed to achieve sustained, off-treatment suppression of HBV, a persistent hepatotropic infection that kills ~2,000 people a day. A fundamental therapeutic goal is the restoration of robust HBV-specific adaptive immune responses that are able to maintain prolonged immunosurveillance of residual infection. Here, we provide insight into key components of successful T cell and B cell responses to HBV, discussing the importance of different specificities and effector functions, local intrahepatic immunity and pathogenic potential. We focus on the parallels and interactions between T cell and B cell responses, highlighting emerging areas for future investigation. We review the potential for different immunotherapies in development to restore or release endogenous adaptive immunity by direct or indirect approaches, including limitations and risks. Finally, we consider an alternative HBV treatment strategy of replacing failed endogenous immunity with infusions of highly targeted T cells or antibodies.
Collapse
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK.
| | - Alice R Burton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
8
|
Zhu W, Liu H, Zhang X. Toward Curative Immunomodulation Strategies for Chronic Hepatitis B Virus Infection. ACS Infect Dis 2019; 5:703-712. [PMID: 30907080 DOI: 10.1021/acsinfecdis.8b00297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic hepatitis B virus (HBV) infection remains a major cause of morbidity and mortality worldwide. HBV surface antigen loss is considered a functional cure and is an ideal goal for antiviral therapy. However, current treatment regimens, including nucleos(t)ide analogues or interferons monotherapy and combination therapy, rarely achieve this goal in chronic hepatitis B patients. Nucleos(t)ide analogues (NAs), as well as many direct antiviral drugs in ongoing development, are able to inhibit HBV replication and gene expression, but it is hard to achieve immune control and prevent recurrence after therapy cessation. Host immunity, especially HBV-specific T cell response, is proven to play a critical role in control or clearance of HBV infection. Considering HBV chronically infected patients display varying degrees of dysfunction regarding their immune system, novel approaches to enhancing antiviral immune responses are necessary in order to combine with current antiviral agents. In this Review, we focus on the role of innate and adaptive immune responses in HBV immunopathogenesis and discuss attractive strategies or drugs that aim to activate or rebuild antiviral immunity to achieve the goal of an HBV functional cure.
Collapse
Affiliation(s)
- Wei Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Hongyan Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| |
Collapse
|
9
|
Schuch A, Salimi Alizei E, Heim K, Wieland D, Kiraithe MM, Kemming J, Llewellyn-Lacey S, Sogukpinar Ö, Ni Y, Urban S, Zimmermann P, Nassal M, Emmerich F, Price DA, Bengsch B, Luxenburger H, Neumann-Haefelin C, Hofmann M, Thimme R. Phenotypic and functional differences of HBV core-specific versus HBV polymerase-specific CD8+ T cells in chronically HBV-infected patients with low viral load. Gut 2019; 68:905-915. [PMID: 30622109 DOI: 10.1136/gutjnl-2018-316641] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE A hallmark of chronic HBV (cHBV) infection is the presence of impaired HBV-specific CD8+ T cell responses. Functional T cell exhaustion induced by persistent antigen stimulation is considered a major mechanism underlying this impairment. However, due to their low frequencies in chronic infection, it is currently unknown whether HBV-specific CD8+ T cells targeting different epitopes are similarly impaired and share molecular profiles indicative of T cell exhaustion. DESIGN By applying peptide-loaded MHC I tetramer-based enrichment, we could detect HBV-specific CD8+ T cells targeting epitopes in the HBV core and the polymerase proteins in the majority of 85 tested cHBV patients with low viral loads. Lower detection rates were obtained for envelope-specific CD8+ T cells. Subsequently, we performed phenotypic and functional in-depth analyses. RESULTS HBV-specific CD8+ T cells are not terminally exhausted but rather exhibit a memory-like phenotype in patients with low viral load possibly reflecting weak ongoing cognate antigen recognition. Moreover, HBV-specific CD8+ T cells targeting core versus polymerase epitopes significantly differed in frequency, phenotype and function. In particular, in comparison with core-specific CD8+ T cells, a higher frequency of polymerase-specific CD8+ T cells expressed CD38, KLRG1 and Eomes accompanied by low T-bet expression and downregulated CD127 indicative of a more severe T cell exhaustion. In addition, polymerase-specific CD8+ T cells exhibited a reduced expansion capacity that was linked to a dysbalanced TCF1/BCL2 expression. CONCLUSIONS Overall, the molecular mechanisms underlying impaired T cell responses differ with respect to the targeted HBV antigens. These results have potential implications for immunotherapeutic approaches in HBV cure.
Collapse
Affiliation(s)
- Anita Schuch
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Elahe Salimi Alizei
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Kathrin Heim
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Dominik Wieland
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Muthamia Kiraithe
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Janine Kemming
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sian Llewellyn-Lacey
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Özlem Sogukpinar
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Peter Zimmermann
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michael Nassal
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Emmerich
- Institute for Cell and Gene Therapy, University Hospital Freiburg, Freiburg, Germany
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Bertram Bengsch
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hendrik Luxenburger
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Wisskirchen K, Kah J, Malo A, Asen T, Volz T, Allweiss L, Wettengel JM, Lütgehetmann M, Urban S, Bauer T, Dandri M, Protzer U. T cell receptor grafting allows virological control of Hepatitis B virus infection. J Clin Invest 2019; 129:2932-2945. [PMID: 31039136 DOI: 10.1172/jci120228] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T cell therapy is a promising means to treat chronic HBV infection and HBV-associated hepatocellular carcinoma. T cells engineered to express an HBV-specific T cell receptor (TCR) may achieve cure of HBV infection upon adoptive transfer. We investigated the therapeutic potential and safety of T cells stably expressing high affinity HBV envelope- or core-specific TCRs recognizing European and Asian HLA-A2 subtypes. Both CD8+ and CD4+ T cells from healthy donors and from chronic hepatitis B patients became polyfunctional effector cells when grafted with HBV-specific TCRs and eliminated HBV from infected HepG2-NTCP cell cultures. A single transfer of TCR-grafted T cells into HBV-infected, humanized mice controlled HBV infection and virological markers declined 4-5 log or below detection limit. When - as in a typical clinical setting - only a minority of hepatocytes were infected, engineered T cells specifically cleared infected hepatocytes without damaging non-infected cells. Cell death was compensated by hepatocyte proliferation and alanine amino transferase levels peaking at day 5 to 7 normalized again thereafter. Co-treatment with the entry inhibitor Myrcludex B ensured long-term control of HBV infection. Thus, T cells stably transduced with highly functional TCRs have the potential to mediate clearance of HBV-infected cells causing limited liver injury.
Collapse
Affiliation(s)
- Karin Wisskirchen
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany.,Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany
| | - Janine Kah
- German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antje Malo
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Theresa Asen
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Tassilo Volz
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen M Wettengel
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marc Lütgehetmann
- German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany.,Institute of Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Urban
- German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Tanja Bauer
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany.,Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany
| | - Maura Dandri
- German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Protzer
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany.,Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Munich, Hamburg, and Heidelberg partner sites, Germany
| |
Collapse
|
11
|
Spatiotemporal Differences in Presentation of CD8 T Cell Epitopes during Hepatitis B Virus Infection. J Virol 2019; 93:JVI.01457-18. [PMID: 30518652 PMCID: PMC6364024 DOI: 10.1128/jvi.01457-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
The inability of patients with chronic HBV infection to clear HBV is associated with defective HBV-specific CD8+ T cells. Hence, the majority of immunotherapy developments focus on HBV-specific T cell function restoration. However, knowledge of whether distinct HBV-specific T cells can equally target all the HBV-infected hepatocytes of a chronically infected liver is lacking. In this work, analysis of CHB patient liver parenchyma and in vitro HBV infection models shows a nonuniform distribution of HBV CD8+ T cell epitopes that is influenced by the presence of IFN-γ and availability of newly translated viral antigens. These results suggest that CD8+ T cells recognizing different HBV epitopes can be necessary for efficient immune therapeutic control of chronic HBV infection. Distinct populations of hepatocytes infected with hepatitis B virus (HBV) or only harboring HBV DNA integrations coexist within an HBV chronically infected liver. These hepatocytes express HBV antigens at different levels and with different intracellular localizations, but it is not known whether this heterogeneity of viral antigen expression could result in an uneven hepatic presentation of distinct HBV epitopes/HLA class I complexes triggering different levels of activation of HBV-specific CD8+ T cells. Using antibodies specific to two distinct HLA-A*02:01/HBV epitope complexes of HBV nucleocapsid and envelope proteins, we mapped their topological distributions in liver biopsy specimens of two anti-hepatitis B e antigen-positive (HBe+) chronic HBV (CHB) patients. We demonstrated that the core and envelope CD8+ T cell epitopes were not uniformly distributed in the liver parenchyma but preferentially located in distinct and sometimes mutually exclusive hepatic zones. The efficiency of HBV epitope presentation was then tested in vitro utilizing HLA-A*02:01/HBV epitope-specific antibodies and the corresponding CD8+ T cells in primary human hepatocyte and hepatoma cell lines either infected with HBV or harboring HBV DNA integration. We confirmed the existence of a marked variability in the efficiency of HLA class I/HBV epitope presentation among the different targets that was influenced by the presence of gamma interferon (IFN-γ) and availability of newly translated viral antigens. In conclusion, HBV antigen presentation can be heterogeneous within an HBV-infected liver. As a consequence, CD8+ T cells of different HBV specificities might have different antiviral efficacies. IMPORTANCE The inability of patients with chronic HBV infection to clear HBV is associated with defective HBV-specific CD8+ T cells. Hence, the majority of immunotherapy developments focus on HBV-specific T cell function restoration. However, knowledge of whether distinct HBV-specific T cells can equally target all the HBV-infected hepatocytes of a chronically infected liver is lacking. In this work, analysis of CHB patient liver parenchyma and in vitro HBV infection models shows a nonuniform distribution of HBV CD8+ T cell epitopes that is influenced by the presence of IFN-γ and availability of newly translated viral antigens. These results suggest that CD8+ T cells recognizing different HBV epitopes can be necessary for efficient immune therapeutic control of chronic HBV infection.
Collapse
|
12
|
|
13
|
Lumley SF, McNaughton AL, Klenerman P, Lythgoe KA, Matthews PC. Hepatitis B Virus Adaptation to the CD8+ T Cell Response: Consequences for Host and Pathogen. Front Immunol 2018; 9:1561. [PMID: 30061882 PMCID: PMC6054973 DOI: 10.3389/fimmu.2018.01561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic viral hepatitis infections are a major public health concern, with an estimated 290 million individuals infected with hepatitis B virus (HBV) globally. This virus has been a passenger in human populations for >30,000 years, and remains highly prevalent in some settings. In order for this endemic pathogen to persist, viral adaptation to host immune responses is pre-requisite. Here, we focus on the interplay between HBV infection and the CD8+ T cell response. We present the evidence that CD8+ T cells play an important role in control of chronic HBV infection and that the selective pressure imposed on HBV through evasion of these immune responses can potentially influence viral diversity, chronicity, and the outcome of infection, and highlight where there are gaps in current knowledge. Understanding the nature and mechanisms of HBV evolution and persistence could shed light on differential disease outcomes, including cirrhosis and hepatocellular carcinoma, and help reach the goal of global HBV elimination by guiding the design of new strategies, including vaccines and therapeutics.
Collapse
Affiliation(s)
- Sheila F. Lumley
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Anna L. McNaughton
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford BRC, John Radcliffe Hospital, Oxford, United Kingdom
| | - Katrina A. Lythgoe
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Philippa C. Matthews
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford BRC, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
14
|
Kruse RL, Shum T, Tashiro H, Barzi M, Yi Z, Whitten-Bauer C, Legras X, Bissig-Choisat B, Garaigorta U, Gottschalk S, Bissig KD. HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice. Cytotherapy 2018; 20:697-705. [PMID: 29631939 DOI: 10.1016/j.jcyt.2018.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection remains incurable. Although HBsAg-specific chimeric antigen receptor (HBsAg-CAR) T cells have been generated, they have not been tested in animal models with authentic HBV infection. METHODS We generated a novel CAR targeting HBsAg and evaluated its ability to recognize HBV+ cell lines and HBsAg particles in vitro. In vivo, we tested whether human HBsAg-CAR T cells would have efficacy against HBV-infected hepatocytes in human liver chimeric mice. RESULTS HBsAg-CAR T cells recognized HBV-positive cell lines and HBsAg particles in vitro as judged by cytokine production. However, HBsAg-CAR T cells did not kill HBV-positive cell lines in cytotoxicity assays. Adoptive transfer of HBsAg-CAR T cells into HBV-infected humanized mice resulted in accumulation within the liver and a significant decrease in plasma HBsAg and HBV-DNA levels compared with control mice. Notably, the fraction of HBV core-positive hepatocytes among total human hepatocytes was greatly reduced after HBsAg-CAR T cell treatment, pointing to noncytopathic viral clearance. In agreement, changes in surrogate human plasma albumin levels were not significantly different between treatment and control groups. CONCLUSIONS HBsAg-CAR T cells have anti-HBV activity in an authentic preclinical HBV infection model. Our results warrant further preclinical exploration of HBsAg-CAR T cells as immunotherapy for HBV.
Collapse
Affiliation(s)
- Robert L Kruse
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA; Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, Texas, USA; Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas Shum
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA; Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Haruko Tashiro
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Mercedes Barzi
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA; Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Zhongzhen Yi
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
| | | | - Xavier Legras
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA; Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Beatrice Bissig-Choisat
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA; Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA; Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA; Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, Texas, USA; Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
15
|
Ringelhan M, McKeating JA, Protzer U. Viral hepatitis and liver cancer. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0274. [PMID: 28893941 PMCID: PMC5597741 DOI: 10.1098/rstb.2016.0274] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B and C viruses are a global health problem causing acute and chronic infections that can lead to liver cirrhosis and hepatocellular carcinoma (HCC). These infections are the leading cause for HCC worldwide and are associated with significant mortality, accounting for more than 1.3 million deaths per year. Owing to its high incidence and resistance to treatment, liver cancer is the second leading cause of cancer-related death worldwide, with HCC representing approximately 90% of all primary liver cancer cases. The majority of viral-associated HCC cases develop in subjects with liver cirrhosis; however, hepatitis B virus infection can promote HCC development without prior end-stage liver disease. Thus, understanding the role of hepatitis B and C viral infections in HCC development is essential for the future design of treatments and therapies for this cancer. In this review, we summarize the current knowledge on hepatitis B and C virus hepatocarcinogenesis and highlight direct and indirect risk factors. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- Marc Ringelhan
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Muenchen, Germany.,Department of Internal Medicine II, University Hopsital rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Muenchen, Germany.,German Center for Infection Research (DZIF), partner site Munich
| | - Jane A McKeating
- Institute for Advanced Science, Technical University of Munich, Muenchen, Germany .,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Muenchen, Germany .,German Center for Infection Research (DZIF), partner site Munich.,Institute for Advanced Science, Technical University of Munich, Muenchen, Germany
| |
Collapse
|
16
|
Chen S, Yu X, Guo D. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy. Viruses 2018; 10:E40. [PMID: 29337866 PMCID: PMC5795453 DOI: 10.3390/v10010040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022] Open
Abstract
Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.
Collapse
Affiliation(s)
- Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xiao Yu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China.
| | - Deyin Guo
- School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
17
|
Durantel D, Kusters I, Louis J, Manel N, Ottenhoff THM, Picot V, Saaadatian-Elahi M. Mechanisms behind TB, HBV, and HIV chronic infections. INFECTION GENETICS AND EVOLUTION 2017; 55:142-150. [PMID: 28919545 DOI: 10.1016/j.meegid.2017.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022]
Abstract
Immune evasion is critical for pathogens to maintain their presence within hosts, giving rise to chronic infections. Here, we examine the immune evasion strategies employed by three pathogens with high medical burden, namely, tuberculosis, HIV and HBV. Establishment of chronic infection by these pathogens is a multi-step process that involves an interplay between restriction factor, innate immunity and adaptive immunity. Engagement of these host defences is intimately linked with specific steps within the pathogen replication cycles. Critical host factors are increasingly recognized to regulate immune evasion and susceptibility to disease. Fuelled by innovative technology development, the understanding of these mechanisms provides critical knowledge for rational design of vaccines and therapeutic immune strategies.
Collapse
Affiliation(s)
- David Durantel
- Cancer Research Center of Lyon (CRCL), INSERM, U1052, CNRS, University of Lyon, UMR_5286, LabEx DEVweCAN, Lyon, France
| | - Inca Kusters
- Sanofi Pasteur, 2 Avenue du Pont Pasteur, 69367 Lyon Cedex 07, France
| | - Jacques Louis
- Fondation Mérieux, 17 rue Bourgelat, 69002 Lyon, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institute Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Tom H M Ottenhoff
- Group Immunology and Immunogenetics of Bacterial Infectious Diseases, Dept. of Infectious Diseases, Leiden University Medical Center, Bldg. 1, Rm # C-05-43 Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | - Mitra Saaadatian-Elahi
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, 5 Place d'Arsonval, 69437 Lyon Cedex 03, France.
| |
Collapse
|
18
|
Wisskirchen K, Metzger K, Schreiber S, Asen T, Weigand L, Dargel C, Witter K, Kieback E, Sprinzl MF, Uckert W, Schiemann M, Busch DH, Krackhardt AM, Protzer U. Isolation and functional characterization of hepatitis B virus-specific T-cell receptors as new tools for experimental and clinical use. PLoS One 2017; 12:e0182936. [PMID: 28792537 PMCID: PMC5549754 DOI: 10.1371/journal.pone.0182936] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
T-cell therapy of chronic hepatitis B is a novel approach to restore antiviral T-cell immunity and cure the infection. We aimed at identifying T-cell receptors (TCR) with high functional avidity that have the potential to be used for adoptive T-cell therapy. To this end, we cloned HLA-A*02-restricted, hepatitis B virus (HBV)-specific T cells from patients with acute or resolved HBV infection. We isolated 11 envelope- or core-specific TCRs and evaluated them in comprehensive functional analyses. T cells were genetically modified by retroviral transduction to express HBV-specific TCRs. CD8+ as well as CD4+ T cells became effector T cells recognizing even picomolar concentrations of cognate peptide. TCR-transduced T cells were polyfunctional, secreting the cytokines interferon gamma, tumor necrosis factor alpha and interleukin-2, and effectively killed hepatoma cells replicating HBV. Notably, our collection of HBV-specific TCRs recognized peptides derived from HBV genotypes A, B, C and D presented on different HLA-A*02 subtypes common in areas with high HBV prevalence. When co-cultured with HBV-infected cells, TCR-transduced T cells rapidly reduced viral markers within two days. Our unique set of HBV-specific TCRs with different affinities represents an interesting tool for elucidating mechanisms of TCR-MHC interaction and dissecting specific anti-HBV mechanisms exerted by T cells. TCRs with high functional avidity might be suited to redirect T cells for adoptive T-cell therapy of chronic hepatitis B and HBV-induced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Karin Wisskirchen
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
- German Centre for Infection Research (DZIF), Munich partner site, Munich, Germany
- * E-mail: (UP); (KW)
| | - Kai Metzger
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
| | - Sophia Schreiber
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
| | - Theresa Asen
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
| | - Luise Weigand
- III. Medical Department, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christina Dargel
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
| | - Klaus Witter
- Laboratory for Immunogenetics and Molecular Diagnostics, Klinikum der Universität München, Munich, Germany
| | - Elisa Kieback
- Institute of Biology, Humboldt-University Berlin, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Berlin Institute of Health, Berlin, Germany
| | - Martin F. Sprinzl
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
| | - Wolfgang Uckert
- Institute of Biology, Humboldt-University Berlin, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Berlin Institute of Health, Berlin, Germany
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Dirk H. Busch
- German Centre for Infection Research (DZIF), Munich partner site, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Focus Groups “Viral Hepatitis” and “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Angela M. Krackhardt
- III. Medical Department, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
- German Centre for Infection Research (DZIF), Munich partner site, Munich, Germany
- Focus Groups “Viral Hepatitis” and “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
- * E-mail: (UP); (KW)
| |
Collapse
|
19
|
Golsaz-Shirazi F, Shokri F. Hepatitis B immunopathogenesis and immunotherapy. Immunotherapy 2016; 8:461-77. [PMID: 26973127 DOI: 10.2217/imt.16.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Worldwide there are over 248 million chronic carriers of HBV of whom about a third eventually develop severe HBV-related complications. Due to the major limitations of current therapeutic approaches, the development of more effective strategies to improve therapeutic outcomes in chronic hepatitis B (CHB) patients seems crucial. Immune activation plays a critical role in spontaneous viral control; therefore, new modalities based on stimulation of the innate and adaptive immune responses could result in the resolution of infection and are promising approaches. Here, we summarize the HBV immunopathogenesis, and discuss the encouraging results obtained from the promising immune-based innovations, such as therapeutic vaccination, cytokine therapy, cell-based therapies and blocking inhibitory receptors, as current and future immunotherapeutic interventions.
Collapse
Affiliation(s)
- Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
20
|
Hofmann M, Thimme R. Kill, control, or escape: Immune responses in viral hepatitis. Clin Liver Dis (Hoboken) 2016; 8:79-82. [PMID: 31041069 PMCID: PMC6490199 DOI: 10.1002/cld.576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 02/04/2023] Open
Affiliation(s)
- Maike Hofmann
- Department of Internal Medicine II, Clinic for Internal Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious diseases)University Hospital FreiburgFreiburgGermany
| | - Robert Thimme
- Department of Internal Medicine II, Clinic for Internal Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious diseases)University Hospital FreiburgFreiburgGermany
| |
Collapse
|
21
|
Li B, Sun S, Li M, Cheng X, Li H, Kang F, Kang J, Dörnbrack K, Nassal M, Sun D. Suppression of hepatitis B virus antigen production and replication by wild-type HBV dependently replicating HBV shRNA vectors in vitro and in vivo. Antiviral Res 2016; 134:117-129. [PMID: 27591142 DOI: 10.1016/j.antiviral.2016.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/07/2016] [Accepted: 08/07/2016] [Indexed: 02/08/2023]
Abstract
Chronic infection with hepatitis B virus (HBV), a small DNA virus that replicates by reverse transcription of a pregenomic (pg) RNA precursor, greatly increases the risk for terminal liver disease. RNA interference (RNAi) based therapy approaches have shown potential to overcome the limited efficacy of current treatments. However, synthetic siRNAs as well as small hairpin (sh) RNAs expressed from non-integrating vectors require repeated applications; integrating vectors suffer from safety concerns. We pursue a new concept by which HBV itself is engineered into a conditionally replicating, wild-type HBV dependent anti-HBV shRNA vector. Beyond sharing HBV's hepatocyte tropism, such a vector would be self-renewing, but only as long as wild-type HBV is present. Here, we realized several important aspects of this concept. We identified two distinct regions in the 3.2 kb HBV genome which tolerate replacement by shRNA expression cassettes without compromising reverse transcription when complemented in vitro by HBV helper constructs or by wild-type HBV; a representative HBV shRNA vector was infectious in cell culture. The vector-encoded shRNAs were active, including on HBV as target. A dual anti-HBV shRNA vector delivered into HBV transgenic mice, which are not susceptible to HBV infection, by a chimeric adenovirus-HBV shuttle reduced serum hepatitis B surface antigen (HBsAg) up to ∼4-fold, and virus particles up to ∼20-fold. Importantly, a fraction of the circulating particles contained vector-derived DNA, indicating successful complementation in vivo. These data encourage further investigations to prove antiviral efficacy and the predicted self-limiting vector spread in a small animal HBV infection model.
Collapse
Affiliation(s)
- Baosheng Li
- Chinese PLA Medical School, Chinese PLA General Hospital, 100853, Beijing, PR China; The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Shuo Sun
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China; Troop 66220 of PLA, Xingtai, Hebei Province, 054000, PR China
| | - Minran Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China; The Fourth Department of the Fifth Hospital, Shijiazhuang City, 050017, PR China
| | - Xin Cheng
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Haijun Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Fubiao Kang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Jiwen Kang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Katharina Dörnbrack
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106, Freiburg, Germany
| | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106, Freiburg, Germany.
| | - Dianxing Sun
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China.
| |
Collapse
|
22
|
Bertoletti A, Ferrari C. Adaptive immunity in HBV infection. J Hepatol 2016; 64:S71-S83. [PMID: 27084039 DOI: 10.1016/j.jhep.2016.01.026] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/12/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
During hepatitis B virus (HBV) infection, the presence of HBV-specific antibody producing B cells and functional HBV-specific T cells (with helper or cytotoxic effects) ultimately determines HBV infection outcome. In this review, in addition to summarizing the present state of knowledge of HBV-adaptive immunity, we will highlight controversies and uncertainties concerning the HBV-specific B and T lymphocyte response, and propose future directions for research aimed at the generation of more efficient immunotherapeutic strategies.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Emerging Infectious Diseases (EID) Program, Duke-NUS Medical School, Singapore; Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, Agency of Science Technology and Research (A*STAR), Singapore.
| | - Carlo Ferrari
- Divisione Malattie Infettive, Ospdale Maggiore Parma, Parma, Italy
| |
Collapse
|
23
|
Witt-Kehati D, Bitton Alaluf M, Shlomai A. Advances and Challenges in Studying Hepatitis B Virus In Vitro. Viruses 2016; 8:v8010021. [PMID: 26784218 PMCID: PMC4728581 DOI: 10.3390/v8010021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/30/2015] [Accepted: 01/06/2016] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) is a small DNA virus that infects the liver. Current anti-HBV drugs efficiently suppress viral replication but do not eradicate the virus due to the persistence of its episomal DNA. Efforts to develop reliable in vitro systems to model HBV infection, an imperative tool for studying HBV biology and its interactions with the host, have been hampered by major limitations at the level of the virus, the host and infection readouts. This review summarizes major milestones in the development of in vitro systems to study HBV. Recent advances in our understanding of HBV biology, such as the discovery of the bile-acid pump sodium-taurocholate cotransporting polypeptide (NTCP) as a receptor for HBV, enabled the establishment of NTCP expressing hepatoma cell lines permissive for HBV infection. Furthermore, advanced tissue engineering techniques facilitate now the establishment of HBV infection systems based on primary human hepatocytes that maintain their phenotype and permissiveness for infection over time. The ability to differentiate inducible pluripotent stem cells into hepatocyte-like cells opens the door for studying HBV in a more isogenic background, as well. Thus, the recent advances in in vitro models for HBV infection holds promise for a better understanding of virus-host interactions and for future development of more definitive anti-viral drugs.
Collapse
Affiliation(s)
- Dvora Witt-Kehati
- The Liver Institute, Rabin Medical Center Beilinson Hospital, Petah-Tikva, Israel.
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Maya Bitton Alaluf
- Department of Medicine D, Rabin Medical Center Beilinson Hospital, Petah-Tikva, Israel.
| | - Amir Shlomai
- The Liver Institute, Rabin Medical Center Beilinson Hospital, Petah-Tikva, Israel.
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
- Department of Medicine D, Rabin Medical Center Beilinson Hospital, Petah-Tikva, Israel.
| |
Collapse
|
24
|
Abstract
Hepatitis B virus (HBV) infection affects 240 million people worldwide. A liver-specific bile acid transporter named the sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for HBV and its satellite, the hepatitis D virus (HDV). NTCP likely acts as a major determinant for the liver tropism and species specificity of HBV and HDV at the entry level. NTCP-mediated HBV entry interferes with bile acid transport in cell cultures and has been linked with alterations in bile acid and cholesterol metabolism in vivo. The human liver carcinoma cell line HepG2, complemented with NTCP, now provides a valuable platform for studying the basic biology of the viruses and developing treatments for HBV infection. This review summarizes critical findings regarding NTCP's role as a viral receptor for HBV and HDV and discusses important questions that remain unanswered.
Collapse
Affiliation(s)
- Wenhui Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China;
| |
Collapse
|
25
|
CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci Rep 2015; 5:13734. [PMID: 26334116 PMCID: PMC4558539 DOI: 10.1038/srep13734] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
Current antiviral therapies cannot cure hepatitis B virus (HBV) infection; successful HBV eradication would require inactivation of the viral genome, which primarily persists in host cells as episomal covalently closed circular DNA (cccDNA) and, to a lesser extent, as chromosomally integrated sequences. However, novel designer enzymes, such as the CRISPR/Cas9 RNA-guided nuclease system, provide technologies for developing advanced therapy strategies that could directly attack the HBV genome. For therapeutic application in humans, such designer nucleases should recognize various HBV genotypes and cause minimal off-target effects. Here, we identified cross-genotype conserved HBV sequences in the S and X region of the HBV genome that were targeted for specific and effective cleavage by a Cas9 nickase. This approach disrupted not only episomal cccDNA and chromosomally integrated HBV target sites in reporter cell lines, but also HBV replication in chronically and de novo infected hepatoma cell lines. Our data demonstrate the feasibility of using the CRISPR/Cas9 nickase system for novel therapy strategies aiming to cure HBV infection.
Collapse
|