1
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
2
|
Rojas JM, Avia M, Martín V, Sevilla N. Inhibition of the IFN Response by Bluetongue Virus: The Story So Far. Front Microbiol 2021; 12:692069. [PMID: 34168637 PMCID: PMC8217435 DOI: 10.3389/fmicb.2021.692069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Bluetongue virus (BTV) is the prototypical orbivirus that belongs to the Reoviridae family. BTV infection produces a disease in ruminants, particularly in sheep, that results in economic losses through reduced productivity. BTV is transmitted by the bite of Culicoides spp. midges and is nowadays distributed globally throughout subtropical and even temperate regions. As most viruses, BTV is susceptible to the IFN response, the first line of defense employed by the immune system to combat viral infections. In turn, BTV has evolved strategies to counter the IFN response and promote its replication. The present review we will revise the works describing how BTV interferes with the IFN response.
Collapse
Affiliation(s)
- José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Abstract
Immune response is a highly coordinated cascade involving all the subsets of peripheral blood mononuclear cells (PBMCs). In this study, RNA sequencing (RNA-Seq) analysis of PBMC subsets was done to delineate the systems biology behind immune protection of the vaccine in sheep and goats. The PBMC subsets studied were CD4+, CD8+, CD14+, CD21+, and CD335+ cells from day 0 and day 5 of sheep and goats vaccinated with Sungri/96 peste des petits ruminants virus. Assessment of the immune response processes enriched by the differentially expressed genes (DEGs) in all the subsets suggested a strong dysregulation toward the development of early inflammatory microenvironment, which is very much required for differentiation of monocytes to macrophages, and activation as well as the migration of dendritic cells into the draining lymph nodes. The protein-protein interaction networks among the antiviral molecules (IFIT3, ISG15, MX1, MX2, RSAD2, ISG20, IFIT5, and IFIT1) and common DEGs across PBMC subsets in both species identified ISG15 to be a ubiquitous hub that helps in orchestrating antiviral host response against peste des petits ruminants virus (PPRV). IRF7 was found to be the key master regulator activated in most of the subsets in sheep and goats. Most of the pathways were found to be inactivated in B lymphocytes of both the species, indicating that 5 days postvaccination (dpv) is too early a time point for the B lymphocytes to react. The cell-mediated immune response and humoral immune response pathways were found more enriched in goats than in sheep. Although animals from both species survived the challenge, a contrast in pathway activation was observed in CD335+ cells. IMPORTANCE Peste des petits ruminants (PPR) by PPR virus (PPRV) is an World Organisation for Animal Health (OIE)-listed acute, contagious transboundary viral disease of small ruminants. The attenuated Sungri/96 PPRV vaccine used all over India against this PPR provides long-lasting robust innate and adaptive immune response. The early antiviral response was found mediated through type I interferon-independent interferon-stimulated gene (ISG) expression. However, systems biology behind this immune response is unknown. In this study, in vivo transcriptome profiling of PBMC subsets (CD4+, CD8+, CD14+, CD21+, and CD335+) in vaccinated goats and sheep (at 5 days postvaccination) was done to understand this systems biology. Though there are a few differences in the systems biology across cells (specially the NK cells) between sheep and goats, the coordinated response that is inclusive of all the cell subsets was found to be toward the induction of a strong innate immune response, which is needed for an appropriate adaptive immune response.
Collapse
|
4
|
Kundlacz C, Pourcelot M, Fablet A, Amaral Da Silva Moraes R, Léger T, Morlet B, Viarouge C, Sailleau C, Turpaud M, Gorlier A, Breard E, Lecollinet S, van Rijn PA, Zientara S, Vitour D, Caignard G. Novel Function of Bluetongue Virus NS3 Protein in Regulation of the MAPK/ERK Signaling Pathway. J Virol 2019; 93:e00336-19. [PMID: 31167915 PMCID: PMC6675888 DOI: 10.1128/jvi.00336-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
Bluetongue virus (BTV) is an arbovirus transmitted by blood-feeding midges to a wide range of wild and domestic ruminants. In this report, we showed that BTV, through its nonstructural protein NS3 (BTV-NS3), is able to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, as assessed by phosphorylation levels of ERK1/2 and the translation initiation factor eukaryotic translation initiation factor 4E (eIF4E). By combining immunoprecipitation of BTV-NS3 and mass spectrometry analysis from both BTV-infected and NS3-transfected cells, we identified the serine/threonine-protein kinase B-Raf (BRAF), a crucial player in the MAPK/ERK pathway, as a new cellular interactor of BTV-NS3. BRAF silencing led to a significant decrease in the MAPK/ERK activation by BTV, supporting a model wherein BTV-NS3 interacts with BRAF to activate this signaling cascade. This positive regulation acts independently of the role of BTV-NS3 in counteracting the induction of the alpha/beta interferon response. Furthermore, the intrinsic ability of BTV-NS3 to bind BRAF and activate the MAPK/ERK pathway is conserved throughout multiple serotypes/strains but appears to be specific to BTV compared to other members of Orbivirus genus. Inhibition of MAPK/ERK pathway with U0126 reduced viral titers, suggesting that BTV manipulates this pathway for its own replication. Altogether, our data provide molecular mechanisms that unravel a new essential function of NS3 during BTV infection.IMPORTANCE Bluetongue virus (BTV) is responsible of the arthropod-borne disease bluetongue (BT) transmitted to ruminants by blood-feeding midges. In this report, we found that BTV, through its nonstructural protein NS3 (BTV-NS3), interacts with BRAF, a key component of the MAPK/ERK pathway. In response to growth factors, this pathway promotes cell survival and increases protein translation. We showed that BTV-NS3 enhances the MAPK/ERK pathway, and this activation is BRAF dependent. Treatment of MAPK/ERK pathway with the pharmacologic inhibitor U0126 impairs viral replication, suggesting that BTV manipulates this pathway for its own benefit. Our results illustrate, at the molecular level, how a single virulence factor has evolved to target a cellular function to increase its viral replication.
Collapse
Affiliation(s)
- Cindy Kundlacz
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Marie Pourcelot
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Aurore Fablet
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | | | - Thibaut Léger
- Mass Spectrometry and Proteomics Facility, Jacques Monod Institute, UMR 7592, Paris Diderot University, CNRS, Paris Cedex 13, France
| | - Bastien Morlet
- Mass Spectrometry and Proteomics Facility, Jacques Monod Institute, UMR 7592, Paris Diderot University, CNRS, Paris Cedex 13, France
| | - Cyril Viarouge
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Corinne Sailleau
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Mathilde Turpaud
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Axel Gorlier
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Emmanuel Breard
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Sylvie Lecollinet
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Stephan Zientara
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Damien Vitour
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Grégory Caignard
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
5
|
Singh A, Prasad M, Mishra B, Manjunath S, Sahu AR, Bhuvana Priya G, Wani SA, Sahoo AP, Kumar A, Balodi S, Deora A, Saxena S, Gandham RK. Transcriptome analysis reveals common differential and global gene expression profiles in bluetongue virus serotype 16 (BTV-16) infected peripheral blood mononuclear cells (PBMCs) in sheep and goats. GENOMICS DATA 2016; 11:62-72. [PMID: 28003963 PMCID: PMC5157708 DOI: 10.1016/j.gdata.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 11/29/2022]
Abstract
Bluetongue is an economically important infectious, arthropod borne viral disease of domestic and wild ruminants, caused by Bluetongue virus (BTV). Sheep are considered the most susceptible hosts, while cattle, buffalo and goats serve as reservoirs. The viral pathogenesis of BTV resulting in presence or absence of clinical disease among different hosts is not clearly understood. In the present study, transcriptome of sheep and goats peripheral blood mononuclear cells infected with BTV-16 was explored. The differentially expressed genes (DEGs) identified were found to be significantly enriched for immune system processes - NFκB signaling, MAPK signaling, Ras signaling, NOD signaling, RIG signaling, TNF signaling, TLR signaling, JAK-STAT signaling and VEGF signaling pathways. Greater numbers of DEGs were found to be involved in immune system processes in goats than in sheep. Interestingly, the DEHC (differentially expressed highly connected) gene network was found to be dense in goats than in sheep. Majority of the DEHC genes in the network were upregulated in goats but down-regulated in sheep. The network of differentially expressed immune genes with the other genes further confirmed these findings. Interferon stimulated genes - IFIT1 (ISG56), IFIT2 (ISG54) and IFIT3 (ISG60) responsible for antiviral state in the host were found to be upregulated in both the species. STAT2 was the TF commonly identified to co-regulate the DEGs, with its network showing genes that are downregulated in sheep but upregulated in goats. The genes dysregulated and the networks perturbed in the present study indicate host variability with a positive shift in immune response to BTV in goats than in sheep.
Collapse
Affiliation(s)
- Anjali Singh
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122, India; Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, India
| | - Bina Mishra
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122
| | - Siddappa Manjunath
- Oomens Lab, Division of Veterinary Pathobiology, CVHS, OSU, Stillwater, OK, USA
| | - Amit Ranjan Sahu
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122, India
| | - G Bhuvana Priya
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122, India; Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly UP-243122, India
| | - Sajad Ahmad Wani
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122, India
| | - Aditya Prasad Sahoo
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122, India; Molecular Biology Lab, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122, India
| | - Shweta Balodi
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, India
| | - Anupama Deora
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, India
| | - Shikha Saxena
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122, India
| | - Ravi Kumar Gandham
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122, India
| |
Collapse
|
6
|
McVey DS, MacLachlan NJ. Vaccines for Prevention of Bluetongue and Epizootic Hemorrhagic Disease in Livestock: A North American Perspective. Vector Borne Zoonotic Dis 2016; 15:385-96. [PMID: 26086559 DOI: 10.1089/vbz.2014.1698] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bluetongue (BT) and epizootic hemorrhagic disease (EHD) are noncontagious, insect-transmitted diseases of domestic and wild ruminants caused by related but distinct viruses. There are significant gaps in our scientific knowledge and available countermeasures to control an outbreak of orbivirus-induced disease, whether BT or EHD. Both BT virus (BTV) and EHD virus (EHDV) cause hemorrhagic fevers in susceptible ruminants; however, BT is principally a disease of domestic livestock whereas EHD is principally a disease of certain species of wild, non-African ungulates, notably white-tailed deer. The live-attenuated (modified live virus [MLV]) vaccines available in the United States for use in small ruminant livestock do provide good protection against clinical disease following infection with the homologous virus serotype. Although there is increasing justification that the use of MLV vaccines should be avoided if possible, these are the only vaccines currently available in the United States. Specifically, MLVs are used in California to protect sheep against infection with BTV serotypes 10, 11, and 17, and a MLV to BTV serotype 10 is licensed for use in sheep throughout the United States. These MLV vaccines may need to continue to be used in the immediate future for protective immunization of sheep and goats against BT. There are currently no licensed vaccines available for EHD in the United States other than autogenous vaccines. If there is a need to rapidly develop a vaccine to meet an emerging crisis associated with either BTV or EHDV infections, development of an inactivated virus vaccine in a conventional adjuvanted formulation will likely be required. With two doses of vaccine (and in some instances just one dose), inactivated vaccines can provide substantial immunity to the epizootic serotype of either BTV or EHDV. This strategy is similar to that used in the 2006-2008 BTV serotype 8 outbreaks in northern Europe that provided vaccine to the field within 2 years of the initial incursion (by 2008). Further research and development are warranted to provide more efficacious and effective vaccines for control of BTV and EHDV infections.
Collapse
Affiliation(s)
- D Scott McVey
- 1 USDA, ARS , Arthropod-Borne Animal Disease Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas
| | - N James MacLachlan
- 2 Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California , Davis, California
| |
Collapse
|
7
|
Vu Manh TP, Elhmouzi-Younes J, Urien C, Ruscanu S, Jouneau L, Bourge M, Moroldo M, Foucras G, Salmon H, Marty H, Quéré P, Bertho N, Boudinot P, Dalod M, Schwartz-Cornil I. Defining Mononuclear Phagocyte Subset Homology Across Several Distant Warm-Blooded Vertebrates Through Comparative Transcriptomics. Front Immunol 2015; 6:299. [PMID: 26150816 PMCID: PMC4473062 DOI: 10.3389/fimmu.2015.00299] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/25/2015] [Indexed: 12/24/2022] Open
Abstract
Mononuclear phagocytes are organized in a complex system of ontogenetically and functionally distinct subsets, that has been best described in mouse and to some extent in human. Identification of homologous mononuclear phagocyte subsets in other vertebrate species of biomedical, economic, and environmental interest is needed to improve our knowledge in physiologic and physio-pathologic processes, and to design intervention strategies against a variety of diseases, including zoonotic infections. We developed a streamlined approach combining refined cell sorting and integrated comparative transcriptomics analyses which revealed conservation of the mononuclear phagocyte organization across human, mouse, sheep, pigs and, in some respect, chicken. This strategy should help democratizing the use of omics analyses for the identification and study of cell types across tissues and species. Moreover, we identified conserved gene signatures that enable robust identification and universal definition of these cell types. We identified new evolutionarily conserved gene candidates and gene interaction networks for the molecular regulation of the development or functions of these cell types, as well as conserved surface candidates for refined subset phenotyping throughout species. A phylogenetic analysis revealed that orthologous genes of the conserved signatures exist in teleost fishes and apparently not in Lamprey.
Collapse
Affiliation(s)
- Thien-Phong Vu Manh
- UM2, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université , Marseille , France ; U1104, INSERM , Marseille , France ; UMR7280, CNRS , Marseille , France
| | - Jamila Elhmouzi-Younes
- UR892, Virologie et Immunologie Moléculaires, INRA, Domaine de Vilvert , Jouy-en-Josas , France
| | - Céline Urien
- UR892, Virologie et Immunologie Moléculaires, INRA, Domaine de Vilvert , Jouy-en-Josas , France
| | - Suzana Ruscanu
- UR892, Virologie et Immunologie Moléculaires, INRA, Domaine de Vilvert , Jouy-en-Josas , France
| | - Luc Jouneau
- UR892, Virologie et Immunologie Moléculaires, INRA, Domaine de Vilvert , Jouy-en-Josas , France
| | - Mickaël Bourge
- IFR87 La Plante et son Environnement, IMAGIF CNRS , Gif-sur-Yvette , France
| | - Marco Moroldo
- CRB GADIE, Génétique Animale et Biologie Intégrative, INRA, Domaine de Vilvert , Jouy-en-Josas , France
| | - Gilles Foucras
- UMR1225, Université de Toulouse, INPT, ENVT , Toulouse , France ; UMR1225, Interactions Hôtes-Agents Pathogènes, INRA , Toulouse , France
| | - Henri Salmon
- UMR1282, Infectiologie et Santé Publique, INRA , Nouzilly , France ; UMR1282, Université François Rabelais de Tours , Tours , France
| | - Hélène Marty
- UMR1282, Infectiologie et Santé Publique, INRA , Nouzilly , France ; UMR1282, Université François Rabelais de Tours , Tours , France
| | - Pascale Quéré
- UMR1282, Infectiologie et Santé Publique, INRA , Nouzilly , France ; UMR1282, Université François Rabelais de Tours , Tours , France
| | - Nicolas Bertho
- UR892, Virologie et Immunologie Moléculaires, INRA, Domaine de Vilvert , Jouy-en-Josas , France
| | - Pierre Boudinot
- UR892, Virologie et Immunologie Moléculaires, INRA, Domaine de Vilvert , Jouy-en-Josas , France
| | - Marc Dalod
- UM2, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université , Marseille , France ; U1104, INSERM , Marseille , France ; UMR7280, CNRS , Marseille , France
| | | |
Collapse
|
8
|
Vu Manh TP, Bertho N, Hosmalin A, Schwartz-Cornil I, Dalod M. Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions. Front Immunol 2015; 6:260. [PMID: 26082777 PMCID: PMC4451681 DOI: 10.3389/fimmu.2015.00260] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and species.
Collapse
Affiliation(s)
- Thien-Phong Vu Manh
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| | - Nicolas Bertho
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique , Jouy-en-Josas , France
| | - Anne Hosmalin
- INSERM U1016, Institut Cochin , Paris , France ; CNRS UMR8104 , Paris , France ; Université Paris Descartes , Paris , France ; Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin , Paris , France
| | - Isabelle Schwartz-Cornil
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique , Jouy-en-Josas , France
| | - Marc Dalod
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| |
Collapse
|
9
|
Maclachlan NJ, Henderson C, Schwartz-Cornil I, Zientara S. The immune response of ruminant livestock to bluetongue virus: From type I interferon to antibody. Virus Res 2014; 182:71-7. [DOI: 10.1016/j.virusres.2013.09.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/28/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
|
10
|
Vitour D, Doceul V, Ruscanu S, Chauveau E, Schwartz-Cornil I, Zientara S. Induction and control of the type I interferon pathway by Bluetongue virus. Virus Res 2013; 182:59-70. [PMID: 24211608 PMCID: PMC7114367 DOI: 10.1016/j.virusres.2013.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
A general review describing the current knowledge on the type I IFN pathway. Description of several mechanisms evolved by viruses to counteract this antiviral response. An up-to-date review on the interaction of BTV and the type I IFN pathway in vivo and in vitro. Description of the cellular sensors involved in the induction of IFN-α/β synthesis upon BTV infection in haematopoietic and non-haematopoietic cells. Description of the strategies evolved by BTV to counteract this cellular antiviral response.
The innate immune response is the first line of defence against viruses, involving the production of type I IFN (IFN-α/β) and other pro-inflammatory cytokines that control the infection. It also shapes the adaptive immune response generated by both T and B cells. Production of type I IFN occurs both in vivo and in vitro in response to Bluetongue virus (BTV), an arthropod-borne virus. However, the mechanisms responsible for the production of IFN-β in response to BTV remained unknown until recently and are still not completely understood. In this review, we describe the recent advances in the identification of cellular sensors and signalling pathways involved in this process. The RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) were shown to be involved in the expression of IFN-β as well as in the control of BTV infection in non-haematopoietic cells. In contrast, induction of IFN-α/β synthesis in sheep primary plasmacytoid dendritic cells (pDCs) required the MyD88 adaptor independently of the Toll-like receptor 7 (TLR7), as well as the kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK). As type I IFN is essential for the establishment of an antiviral cellular response, most of viruses have elaborated counteracting mechanisms to hinder its action. This review also addresses the ability of BTV to interfere with IFN-β synthesis and the recent findings describing the non-structural viral protein NS3 as a powerful antagonist of the host cellular response.
Collapse
Affiliation(s)
- Damien Vitour
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | - Virginie Doceul
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | - Suzana Ruscanu
- Virologie et Immunologie Moléculaires, UR892 INRA, Jouy-en-Josas, France.
| | - Emilie Chauveau
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | | | - Stéphan Zientara
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| |
Collapse
|