1
|
A Transformation-Defective Polyomavirus Middle T Antigen with a Novel Defect in PI3 Kinase Signaling. J Virol 2017; 91:JVI.01774-16. [PMID: 27852846 DOI: 10.1128/jvi.01774-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/29/2016] [Indexed: 02/06/2023] Open
Abstract
Middle T antigen (MT), the principal oncoprotein of murine polyomavirus, transforms by association with cellular proteins. Protein phosphatase 2A (PP2A), YAP, Src family tyrosine kinases, Shc, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-γ1 (PLCγ1) have all been implicated in MT transformation. Mutant dl1015, with deletion of residues 338 to 347 in the C-terminal region, has been an enigma, because the basis for its transformation defect has not been apparent. This work probes the dl1015 region of MT. Because the region is proline rich, the hypothesis that it targets Src homology domain 3 (SH3) domains was tested, but mutation of the putative SH3 binding motif did not affect transformation. During this work, two point mutants, W348R and E349K, were identified as transformation defective. Extensive analysis of the E349K mutant is described here. Similar to wild-type MT, the E349K mutant associates with PP2A, YAP, tyrosine kinases, Shc, PI3 kinase, and PLCγ1. The E349K mutant was examined to determine the mechanism for its transformation defect. Assays of cell localization and membrane targeting showed no obvious difference in localization. Src association was normal as assayed by in vitro kinase and MT phosphopeptide mapping. Shc activation was confirmed by its tyrosine phosphorylation. Association of type 1 PI3K with MT was demonstrated by coimmunoprecipitation, showing both PI3K subunits and in vitro activity. Nonetheless, expression of the mutants failed to lead to the activation of two known downstream targets of PI3K, Akt and Rac-1. Strikingly, despite normal association of the E349K mutant with PI3K, cells expressing the mutant failed to elevate phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in mutant-expressing cells. These results indicate a novel unsuspected aspect to PI3K control. IMPORTANCE The gene coding for middle T antigen (MT) is the murine polyomavirus oncogene most responsible for tumor formation. Its study has a history of uncovering novel aspects of mammalian cell regulation. The importance of PI3K activity and tyrosine phosphorylation are two examples of insights coming from MT. This study describes new mutants unable to transform like the wild type that point to novel regulation of PI3K signaling. Previous mutants were defective in PI3K because they failed to bind the enzyme and bring the activity to the membrane. These mutants recruit PI3K activity like the wild type, but fail to elevate the cellular level of PIP3, the product used to signal downstream of PI3K. As a result, they fail to activate either Akt or Rac1, explaining the transformation defect.
Collapse
|
2
|
Heiser K, Nicholas C, Garcea RL. Activation of DNA damage repair pathways by murine polyomavirus. Virology 2016; 497:346-356. [PMID: 27529739 DOI: 10.1016/j.virol.2016.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/08/2016] [Accepted: 07/26/2016] [Indexed: 11/27/2022]
Abstract
Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling. ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble.
Collapse
Affiliation(s)
- Katie Heiser
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado at Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Catherine Nicholas
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado at Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Robert L Garcea
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado at Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Avenue, Boulder, CO 80303, USA.
| |
Collapse
|
3
|
Feng H, Kwun HJ, Liu X, Gjoerup O, Stolz DB, Chang Y, Moore PS. Cellular and viral factors regulating Merkel cell polyomavirus replication. PLoS One 2011; 6:e22468. [PMID: 21799863 PMCID: PMC3142164 DOI: 10.1371/journal.pone.0022468] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/22/2011] [Indexed: 12/13/2022] Open
Abstract
Merkel cell polyomavirus (MCV), a previously unrecognized component of the human viral skin flora, was discovered as a mutated and clonally-integrated virus inserted into Merkel cell carcinoma (MCC) genomes. We reconstructed a replicating MCV clone (MCV-HF), and then mutated viral sites required for replication or interaction with cellular proteins to examine replication efficiency and viral gene expression. Three days after MCV-HF transfection into 293 cells, although replication is not robust, encapsidated viral DNA and protein can be readily isolated by density gradient centrifugation and typical ∼40 nm diameter polyomavirus virions are identified by electron microscopy. The virus has an orderly gene expression cascade during replication in which large T (LT) and 57kT proteins are first expressed by day 2, followed by expression of small T (sT) and VP1 proteins. VP1 and sT proteins are not detected, and spliced 57kT is markedly diminished, in the replication-defective virus suggesting that early gene splicing and late gene transcription may be dependent on viral DNA replication. MCV replication and encapsidation is increased by overexpression of MCV sT, consistent with sT being a limiting factor during virus replication. Mutation of the MCV LT vacuolar sorting protein hVam6p (Vps39) binding site also enhances MCV replication while exogenous hVam6p overexpression reduces MCV virion production by >90%. Although MCV-HF generates encapsidated wild-type MCV virions, we did not find conditions for persistent transmission to recipient cell lines suggesting that MCV has a highly restricted tropism. These studies identify and highlight the role of polyomavirus DNA replication in viral gene expression and show that viral sT and cellular hVam6p are important factors regulating MCV replication. MCV-HF is a molecular clone that can be readily manipulated to investigate factors affecting MCV replication.
Collapse
Affiliation(s)
- Huichen Feng
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hyun Jin Kwun
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xi Liu
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ole Gjoerup
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Donna B. Stolz
- Department of Cell Biology and Physiology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yuan Chang
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Patrick S. Moore
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
4
|
Fluck MM, Schaffhausen BS. Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol Mol Biol Rev 2009; 73:542-63, Table of Contents. [PMID: 19721090 PMCID: PMC2738132 DOI: 10.1128/mmbr.00009-09] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The small DNA tumor viruses have provided a very long-lived source of insights into many aspects of the life cycle of eukaryotic cells. In recent years, the emphasis has been on cancer-related signaling. Here we review murine polyomavirus middle T antigen, its mechanisms, and its downstream pathways of transformation. We concentrate on the MMTV-PyMT transgenic mouse, one of the most studied models of breast cancer, which permits the examination of in situ tumor progression from hyperplasia to metastasis.
Collapse
Affiliation(s)
- Michele M Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
5
|
Cheng J, DeCaprio JA, Fluck MM, Schaffhausen BS. Cellular transformation by Simian Virus 40 and Murine Polyoma Virus T antigens. Semin Cancer Biol 2009; 19:218-28. [PMID: 19505649 PMCID: PMC2694755 DOI: 10.1016/j.semcancer.2009.03.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/19/2009] [Accepted: 03/20/2009] [Indexed: 01/09/2023]
Abstract
Simian Virus 40 (SV40) and Mouse Polyoma Virus (PY) are small DNA tumor viruses that have been used extensively to study cellular transformation. The SV40 early region encodes three tumor antigens, large T (LT), small T (ST) and 17KT that contribute to cellular transformation. While PY also encodes LT and ST, the unique middle T (MT) generates most of the transforming activity. SV40 LT mediated transformation requires binding to the tumor suppressor proteins Rb and p53 in the nucleus and ST binding to the protein phosphatase PP2A in the cytoplasm. SV40 LT also binds to several additional cellular proteins including p300, CBP, Cul7, IRS1, Bub1, Nbs1 and Fbxw7 that contribute to viral transformation. PY MT transformation is dependent on binding to PP2A and the Src family protein tyrosine kinases (PTK) and assembly of a signaling complex on cell membranes that leads to transformation in a manner similar to Her2/neu. Phosphorylation of MT tyrosine residues activates key signaling molecules including Shc/Grb2, PI3K and PLCgamma1. The unique contributions of SV40 LT and ST and PY MT to cellular transformation have provided significant insights into our understanding of tumor suppressors, oncogenes and the process of oncogenesis.
Collapse
Affiliation(s)
- Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women’s Hospital; and Harvard Medical School, Boston, MA 02115
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women’s Hospital; and Harvard Medical School, Boston, MA 02115
- Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Michele M. Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | | |
Collapse
|
6
|
Schaffhausen BS, Roberts TM. Lessons from polyoma middle T antigen on signaling and transformation: A DNA tumor virus contribution to the war on cancer. Virology 2008; 384:304-16. [PMID: 19022468 DOI: 10.1016/j.virol.2008.09.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/30/2008] [Indexed: 01/16/2023]
Abstract
Middle T antigen (MT) is the principal oncogene of murine polyomavirus. Its study has led to the discovery of the roles of tyrosine kinase and phosphoinositide 3-kinase (PI3K) signaling in mammalian growth control and transformation. MT is necessary for viral transformation in tissue culture cells and tumorigenesis in animals. When expressed alone as a transgene, MT causes tumors in a wide variety of tissues. It has no known catalytic activity, but rather acts by assembling cellular signal transduction molecules. Protein phosphatase 2A, protein tyrosine kinases of the src family, PI3K, phospholipase Cgamma1 as well as the Shc/Grb2 adaptors are all assembled on MT. Their activation sets off a series of signaling cascades. Analyses of virus mutants as well as transgenic animals have demonstrated that the effects of a given signal depend not only tissue type, but on the genetic background of the host animal. There remain many opportunities as we seek a full molecular understanding of MT and apply some of its lessons to human cancer.
Collapse
Affiliation(s)
- Brian S Schaffhausen
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
7
|
Carroll J, Dey D, Kreisman L, Velupillai P, Dahl J, Telford S, Bronson R, Benjamin T. Receptor-binding and oncogenic properties of polyoma viruses isolated from feral mice. PLoS Pathog 2008; 3:e179. [PMID: 18085820 PMCID: PMC2134959 DOI: 10.1371/journal.ppat.0030179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 10/11/2007] [Indexed: 02/07/2023] Open
Abstract
Laboratory strains of the mouse polyoma virus differ markedly in their abilities to replicate and induce tumors in newborn mice. Major determinants of pathogenicity lie in the sialic binding pocket of the major capsid protein Vp1 and dictate receptor-binding properties of the virus. Substitutions at two sites in Vp1 define three prototype strains, which vary greatly in pathogenicity. These strains replicate in a limited fashion and induce few or no tumors, cause a disseminated infection leading to the development of multiple solid tumors, or replicate and spread acutely causing early death. This investigation was undertaken to determine the Vp1 type(s) of new virus isolates from naturally infected mice. Compared with laboratory strains, truly wild-type viruses are constrained with respect to their selectivity and avidity of binding to cell receptors. Fifteen of 15 new isolates carried the Vp1 type identical to that of highly tumorigenic laboratory strains. Upon injection into newborn laboratory mice, the new isolates induced a broad spectrum of tumors, including ones of epithelial as well as mesenchymal origin. Though invariant in their Vp1 coding sequences, these isolates showed considerable variation in their regulatory sequences. The common Vp1 type has two essential features: 1) failure to recognize “pseudoreceptors” with branched chain sialic acids binding to which would attenuate virus spread, and 2) maintenance of a hydrophobic contact with true receptors bearing a single sialic acid, which retards virus spread and avoids acute and potentially lethal infection of the host. Conservation of these receptor-binding properties under natural selection preserves the oncogenic potential of the virus. These findings emphasize the importance of immune protection of neonates under conditions of natural transmission. Strains of the mouse polyoma virus adapted to growth in cell culture vary greatly in their abilities to cause disease. Pathogenicities of these laboratory strains range from “attenuated” to “highly virulent” when tested in animals. The biological differences are based in large part on variations in the outer capsid protein, which dictate the manner in which the virus recognizes and binds to cell receptors. In contrast, strains of virus newly isolated from wild mice are uniform in their receptor-binding properties. Naturally occurring strains avoid binding to pseudoreceptors, which would severely limit their ability to spread. At the same time, their avidity of binding to true receptors is sufficiently strong to avoid rapid dissociation and potentially lethal spread. They are therefore neither attenuated nor virulent. The new isolates do, however, retain the ability to induce a broad spectrum of tumors in the laboratory. These findings emphasize the importance of neonatal and maternal immune responses in allowing a potentially highly oncogenic virus to disseminate without causing disease.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Animals, Wild
- Binding Sites
- Capsid Proteins/metabolism
- Carcinoma/immunology
- Carcinoma/pathology
- Carcinoma/virology
- Cells, Cultured
- DNA, Viral/analysis
- Mice
- Mice, Inbred C3H
- N-Acetylneuraminic Acid/metabolism
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/virology
- Polyomavirus/genetics
- Polyomavirus/isolation & purification
- Polyomavirus/pathogenicity
- Polyomavirus Infections/immunology
- Polyomavirus Infections/metabolism
- Polyomavirus Infections/virology
- Receptors, Virus/metabolism
- Rodent Diseases/immunology
- Rodent Diseases/metabolism
- Rodent Diseases/virology
- Sarcoma/immunology
- Sarcoma/pathology
- Sarcoma/virology
- Sequence Analysis, DNA
- Tumor Virus Infections/immunology
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/virology
- Virus Replication
Collapse
Affiliation(s)
- John Carroll
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dilip Dey
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lori Kreisman
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Palanivel Velupillai
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jean Dahl
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samuel Telford
- Department of Tropical Public Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Roderick Bronson
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas Benjamin
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Polyomavirus middle T antigen induces the transcription of osteopontin, a gene important for the migration of transformed cells. J Virol 2008; 82:4946-54. [PMID: 18337582 DOI: 10.1128/jvi.02650-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Middle T antigen (MT) is the principal oncoprotein of murine polyomavirus. Experiments on the acute immediate effects of MT expression on cellular RNA levels showed that expression of osteopontin (OPN) was strongly induced by MT expression. Osteopontin is a protein known to be associated with cancer. It has a role in tumor progression and invasion. Protein analysis confirmed that MT induced the secretion of OPN into the extracellular medium. Expression of antisense OPN RNA had no effect on the growth of MT-transformed cells. However, it had a strong effect on the ability of MT transformants to migrate or to fill a wound. Analysis of MT mutants implicated both the SHC and phosphatidylinositol 3-kinase pathways in OPN induction. Reporter assays showed that MT regulated the OPN promoter through two of its PEA3 (polyoma enhancer activator 3) sites. As critical PEA3 sites are also part of the polyomavirus enhancer, the same signaling important for viral replication also contributes to virally induced metastatic potential.
Collapse
|
9
|
Dahl J, Chen HI, George M, Benjamin TL. Polyomavirus small T antigen controls viral chromatin modifications through effects on kinetics of virus growth and cell cycle progression. J Virol 2007; 81:10064-71. [PMID: 17626093 PMCID: PMC2045420 DOI: 10.1128/jvi.00821-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Minichromosomes of wild-type polyomavirus were previously shown to be highly acetylated on histones H3 and H4 compared either to bulk cell chromatin or to viral chromatin of nontransforming hr-t mutants, which are defective in both the small T and middle T antigens. A series of site-directed virus mutants have been used along with antibodies to sites of histone modifications to further investigate the state of viral chromatin and its dependence on the T antigens. Small T but not middle T was important in hyperacetylation at major sites in H3 and H4. Mutants blocked in middle T signaling pathways but encoding normal small T showed a hyperacetylated pattern similar to that of wild-type virus. The hyperacetylation defect of hr-t mutant NG59 was partially complemented by growth of the mutant in cells expressing wild-type small T. In contrast to the hypoacetylated state of NG59, NG59 minichromosomes were hypermethylated at specific lysines in H3 and also showed a higher level of phosphorylation at H3ser10, a modification associated with the late G(2) and M phases of the cell cycle. Comparisons of virus growth kinetics and cell cycle progression in wild-type- and NG59-infected cells showed a correlation between the phase of the cell cycle at which virus assembly occurred and histone modifications in the progeny virus. Replication and assembly of wild-type virus were completed largely during S phase. Growth of NG59 was delayed by about 12 h with assembly occurring predominantly in G(2). These results suggest that small T affects modifications of viral chromatin by altering the temporal coordination of virus growth and the cell cycle.
Collapse
Affiliation(s)
- Jean Dahl
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
10
|
Utermark T, Schaffhausen BS, Roberts TM, Zhao JJ. The p110alpha isoform of phosphatidylinositol 3-kinase is essential for polyomavirus middle T antigen-mediated transformation. J Virol 2007; 81:7069-76. [PMID: 17442716 PMCID: PMC1933267 DOI: 10.1128/jvi.00115-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Middle T antigen (MT) of polyomavirus is known to play an important role in virus-mediated cellular transformation. While MT has been extensively examined in spontaneously immortalized rodent fibroblasts, its interactions with cells of other types and species are less well understood. We have undertaken a cross-species and cross-cell-type comparison of MT-induced transformation in cells with genetically defined backgrounds. We tested the transforming abilities of a panel of MT mutants, Y250F, Y315F, and Y322F, that are selectively mutated in the binding sites for the principal effectors of MT--Src homology 2 domain-containing transforming protein, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-gamma, respectively--in fibroblasts and epithelial cells of murine or human origin. We found that the Y315F mutation disabled the ability of MT to induce transformation in all cell types and species tested. While Y315F also failed to activate the PI3K pathway in these cells, genetic evidence has indicated Y315 may make other contributions to transformation. To confirm the role of PI3K, the PIK3CA gene, encoding p110alpha, the prime effector of PI3K signaling downstream from activated growth factor receptors, was genetically ablated. This abolished the transforming activity of MT, demonstrating the essential role for this PI3K isoform in MT-mediated transformation. The Y250F mutant was able to transform the human, but not the murine, cells that were examined. Interestingly, this mutant fully activates the PI3K pathway in human cells but activated PI3K signaling poorly in the murine cells used in the study. This again points to the importance of PI3K activation for transformation and suggests that the mechanism by which MT activates the PI3K pathway differs in different species.
Collapse
Affiliation(s)
- Tamara Utermark
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
11
|
Du Z, Podsypanina K, Huang S, McGrath A, Toneff MJ, Bogoslovskaia E, Zhang X, Moraes RC, Fluck M, Allred DC, Lewis MT, Varmus HE, Li Y. Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proc Natl Acad Sci U S A 2006; 103:17396-401. [PMID: 17090666 PMCID: PMC1635021 DOI: 10.1073/pnas.0608607103] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have adapted the avian leukosis virus RCAS (replication-competent avian sarcoma-leukosis virus LTR splice acceptor)-mediated somatic gene transfer technique to introduce oncogenes into mammary cells in mice transgenic for the avian subgroup A receptor gene, tva, under control of the mouse mammary tumor virus (MMTV) promoter. Intraductal instillation of an RCAS vector carrying the polyoma middle T antigen (PyMT) gene (RCAS-PyMT) induced multiple, oligoclonal tumors within 3 weeks in infected mammary glands of MMTV-tva transgenic mice. The rapid appearance of these tumors from a relatively small pool of infected cells (estimated to be approximately 2 x 10(3) cells per gland by infection with RCAS carrying a GFP gene; RCAS-GFP) was accompanied by a high fraction of cells positive for Ki67, Cyclin D1, and c-Myc, implying strong proliferation competence. Furthermore, the tumors displayed greater cellular heterogeneity than did tumors arising in MMTV-PyMT mice, suggesting that RCAS-PyMT transforms a relatively immature cell type. Infection of mice transgenic for both MMTV-Wnt-1 and MMTV-tva with RCAS virus carrying an activated Neu oncogene dramatically enhanced tumor formation over what is observed in uninfected bitransgenic animals. We conclude that infection of mammary glands with retrovirus vectors is an efficient means to screen candidate oncogenes for their capacity to initiate or promote mammary carcinogenesis in the mouse.
Collapse
Affiliation(s)
| | - Katrina Podsypanina
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021; and
| | | | | | | | | | | | | | - Michele Fluck
- Department of Microbiology, Michigan State University, East Lansing, MI 48824
| | | | - Michael T. Lewis
- *Breast Center and
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Harold E. Varmus
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021; and
- To whom correspondence may be addressed. E-mail:
or
| | - Yi Li
- *Breast Center and
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|