1
|
Rollin J, Bester R, Brostaux Y, Caglayan K, De Jonghe K, Eichmeier A, Foucart Y, Haegeman A, Koloniuk I, Kominek P, Maree H, Onder S, Posada Céspedes S, Roumi V, Šafářová D, Schumpp O, Ulubas Serce C, Sõmera M, Tamisier L, Vainio E, van der Vlugt RAA, Massart S. Detection of single nucleotide polymorphisms in virus genomes assembled from high-throughput sequencing data: large-scale performance testing of sequence analysis strategies. PeerJ 2023; 11:e15816. [PMID: 37601254 PMCID: PMC10439718 DOI: 10.7717/peerj.15816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Recent developments in high-throughput sequencing (HTS) technologies and bioinformatics have drastically changed research in virology, especially for virus discovery. Indeed, proper monitoring of the viral population requires information on the different isolates circulating in the studied area. For this purpose, HTS has greatly facilitated the sequencing of new genomes of detected viruses and their comparison. However, bioinformatics analyses allowing reconstruction of genome sequences and detection of single nucleotide polymorphisms (SNPs) can potentially create bias and has not been widely addressed so far. Therefore, more knowledge is required on the limitations of predicting SNPs based on HTS-generated sequence samples. To address this issue, we compared the ability of 14 plant virology laboratories, each employing a different bioinformatics pipeline, to detect 21 variants of pepino mosaic virus (PepMV) in three samples through large-scale performance testing (PT) using three artificially designed datasets. To evaluate the impact of bioinformatics analyses, they were divided into three key steps: reads pre-processing, virus-isolate identification, and variant calling. Each step was evaluated independently through an original, PT design including discussion and validation between participants at each step. Overall, this work underlines key parameters influencing SNPs detection and proposes recommendations for reliable variant calling for plant viruses. The identification of the closest reference, mapping parameters and manual validation of the detection were recognized as the most impactful analysis steps for the success of the SNPs detections. Strategies to improve the prediction of SNPs are also discussed.
Collapse
Affiliation(s)
- Johan Rollin
- Laboratory of Plant Pathology—TERRA—Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Rachelle Bester
- Citrus Research International, Matieland, South Africa
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| | - Yves Brostaux
- Laboratory of Statistics, Computer Science and Modelling Applied to Bioengineering, TERRA, Gembloux Agro-Bio Tech, Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Kadriye Caglayan
- Plant Protection Department, Agricultural Faculty, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Kris De Jonghe
- Fisheries and Food (ILVO), Plant Sciences Unit, Flanders Research Institute for Agriculture, Merelbeke, Belgium
| | - Ales Eichmeier
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Yoika Foucart
- Fisheries and Food (ILVO), Plant Sciences Unit, Flanders Research Institute for Agriculture, Merelbeke, Belgium
| | - Annelies Haegeman
- Fisheries and Food (ILVO), Plant Sciences Unit, Flanders Research Institute for Agriculture, Merelbeke, Belgium
| | - Igor Koloniuk
- Biology Centre CAS, Ceske Budejovice, Czech Republic
| | | | - Hans Maree
- Citrus Research International, Matieland, South Africa
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| | - Serkan Onder
- Department of Plant Protection, Faculty of Agriculture, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Susana Posada Céspedes
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Vahid Roumi
- Plant Protection Department, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Dana Šafářová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | | | - Cigdem Ulubas Serce
- Plant Production and Technologies Department, Ayhan Şahenk Faculty of Agricultural Science and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Lucie Tamisier
- Pathologie Végétale, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Montfavet, France
- GAFL, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Montfavet, France
| | - Eeva Vainio
- Natural Resources Institute Finland, Helsinki, Finland
| | | | - Sebastien Massart
- Laboratory of Plant Pathology—TERRA—Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
2
|
Dumas M, Borges DF, Priesing S, Tippett E, Ambrosio MMDQ, Luís da Silva W. Gathered from the Vine: A Survey of Seven Grapevine Viruses Within New England Vineyards. PLANT DISEASE 2023; 107:644-650. [PMID: 36018550 DOI: 10.1094/pdis-03-22-0668-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
Vineyards in the Southeastern New England American Viticultural Area were surveyed for the incidence of seven major viruses: grapevine leafroll-associated viruses (GLRaV-1, GLRaV-2, GLRaV-3, and GLRaV-4), grapevine fanleaf virus (GFLV), tomato ringspot virus (ToRSV), and tobacco ringspot virus (TRSV). Viruses were detected by DAS-ELISA and confirmed by RT-PCR and Sanger sequencing. Multiple viruses were present in 19 out of the 25 vineyards surveyed between 2018 and 2020. GLRaV-3 (27.59%) was the most prevalent virus followed by GLRaV-4 (14.90%), GLRaV-1 (13.52%), GLRaV-2 (11.03%), ToRSV (6.34%), GFLV (5.24%), and TRSV (2.62%). Furthermore, phylogenetic analyses of the viral partial genome sequences acquired in this study revealed that the grapevine viruses present in this area are diverse, indicating that they may have been introduced from different sources. Our findings stress the need for improving the sanitary status of planting materials to avoid the introduction and dissemination of viruses to vineyards in this important wine-producing region of New England.
Collapse
Affiliation(s)
- Madeleine Dumas
- The Connecticut Agricultural Experiment Station, Department of Plant Pathology and Ecology, New Haven, CT 06504, U.S.A
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, U.S.A
| | - Darlan Ferreira Borges
- The Connecticut Agricultural Experiment Station, Department of Plant Pathology and Ecology, New Haven, CT 06504, U.S.A
- Universidade Federal Rural do Semi-Árido, Departamento de Ciências Agronômicas e Florestais, Mossoró 59625-900, RN, Brazil
| | - Stephanie Priesing
- The Connecticut Agricultural Experiment Station, Department of Plant Pathology and Ecology, New Haven, CT 06504, U.S.A
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, U.S.A
- Biology Department, Southern Connecticut State University, New Haven, CT 06504, U.S.A
| | - Ethan Tippett
- The Connecticut Agricultural Experiment Station, Department of Plant Pathology and Ecology, New Haven, CT 06504, U.S.A
- College of Art and Sciences, Ferris State University, Big Rapids, MI 49307, U.S.A
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, U.S.A
| | | | - Washington Luís da Silva
- The Connecticut Agricultural Experiment Station, Department of Plant Pathology and Ecology, New Haven, CT 06504, U.S.A
- Universidade Federal Rural do Semi-Árido, Departamento de Ciências Agronômicas e Florestais, Mossoró 59625-900, RN, Brazil
- College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT 06268, U.S.A
| |
Collapse
|
3
|
Plant Virus Adaptation to New Hosts: A Multi-scale Approach. Curr Top Microbiol Immunol 2023; 439:167-196. [PMID: 36592246 DOI: 10.1007/978-3-031-15640-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
Viruses are studied at each level of biological complexity: from within-cells to ecosystems. The same basic evolutionary forces and principles operate at each level: mutation and recombination, selection, genetic drift, migration, and adaptive trade-offs. Great efforts have been put into understanding each level in great detail, hoping to predict the dynamics of viral population, prevent virus emergence, and manage their spread and virulence. Unfortunately, we are still far from this. To achieve these ambitious goals, we advocate for an integrative perspective of virus evolution. Focusing in plant viruses, we illustrate the pervasiveness of the above-mentioned principles. Beginning at the within-cell level, we describe replication modes, infection bottlenecks, and cellular contagion rates. Next, we move up to the colonization of distal tissues, discussing the fundamental role of random events. Then, we jump beyond the individual host and discuss the link between transmission mode and virulence. Finally, at the community level, we discuss properties of virus-plant infection networks. To close this review we propose the multilayer network theory, in which elements at different layers are connected and submit to their own dynamics that feed across layers, resulting in new emerging properties, as a way to integrate information from the different levels.
Collapse
|
4
|
Analysis of the Contribution of Intrinsic Disorder in Shaping Potyvirus Genetic Diversity. Viruses 2022; 14:v14091959. [PMID: 36146764 PMCID: PMC9504506 DOI: 10.3390/v14091959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/30/2022] Open
Abstract
Intrinsically disordered regions (IDRs) are abundant in the proteome of RNA viruses. The multifunctional properties of these regions are widely documented and their structural flexibility is associated with the low constraint in their amino acid positions. Therefore, from an evolutionary stand point, these regions could have a greater propensity to accumulate non-synonymous mutations (NS) than highly structured regions (ORs, or 'ordered regions'). To address this hypothesis, we compared the distribution of non-synonymous mutations (NS), which we relate here to mutational robustness, in IDRs and ORs in the genome of potyviruses, a major genus of plant viruses. For this purpose, a simulation model was built and used to distinguish a possible selection phenomenon in the biological datasets from randomly generated mutations. We analyzed several short-term experimental evolution datasets. An analysis was also performed on the natural diversity of three different species of potyviruses reflecting their long-term evolution. We observed that the mutational robustness of IDRs is significantly higher than that of ORs. Moreover, the substitutions in the ORs are very constrained by the conservation of the physico-chemical properties of the amino acids. This feature is not found in the IDRs where the substitutions tend to be more random. This reflects the weak structural constraints in these regions, wherein an amino acid polymorphism is naturally conserved. In the course of evolution, potyvirus IDRs and ORs follow different evolutive paths with respect to their mutational robustness. These results have forced the authors to consider the hypothesis that IDRs and their associated amino acid polymorphism could constitute a potential adaptive reservoir.
Collapse
|
5
|
Alcaide C, Aranda MA. Determinants of Persistent Patterns of Pepino Mosaic Virus Mixed Infections. Front Microbiol 2021; 12:694492. [PMID: 34295323 PMCID: PMC8290496 DOI: 10.3389/fmicb.2021.694492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022] Open
Abstract
Pepino mosaic virus (PepMV) has become a pandemic virus in tomato crops, causing important economic losses worldwide. In Spain, isolates of the EU and CH2 strains co-circulate, with PepMV-EU predominantly found in mixed infections. Simultaneous in planta mixed infections result in an asymmetric antagonism against PepMV-CH2, but the outcome of over-infections has never been tested. PepMV-EU and PepMV-CH2 time-lagged inoculations were performed, and viral accumulation was measured 10 days after challenge inoculation. PepMV-EU had a protective effect over PepMV-CH2; in contrast, the accumulation of PepMV-EU increased in plants pre-inoculated with PepMV-CH2 as compared to single infections. We also studied the effect of the type of infection on viral transmission. Independently of the nature of the infection (single or mixed), we observed a strong positive correlation between virus accumulation in the source plant and transmission, excluding mixed infection effects different than modulating viral accumulation. Finally, in order to determine the genetic variability of PepMV strains in single and mixed infections, a 430 nucleotide region was RT-PCR amplified from samples from a serial passages experiment and deep-sequenced. No significant differences were found in the number of nucleotide substitutions between single and mixed infections for PepMV-EU; in contrast, significant differences were found for PepMV-CH2, which was more variable in single than in mixed infections. Comparing PepMV-EU with PepMV-CH2, a higher nucleotide diversity was found for PepMV-CH2. Collectively, our data strongly suggest that PepMV mixed infections can impact the virus epidemiology by modulating in planta virus strain accumulation and diversification.
Collapse
Affiliation(s)
- Cristina Alcaide
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Murcia, Spain
| | - Miguel A Aranda
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Murcia, Spain
| |
Collapse
|
6
|
Intra-Population Competition during Adaptation to Increased Temperature in an RNA Bacteriophage. Int J Mol Sci 2021; 22:ijms22136815. [PMID: 34202838 PMCID: PMC8268601 DOI: 10.3390/ijms22136815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/21/2023] Open
Abstract
Evolution of RNA bacteriophages of the family Leviviridae is governed by the high error rates of their RNA-dependent RNA polymerases. This fact, together with their large population sizes, leads to the generation of highly heterogeneous populations that adapt rapidly to most changes in the environment. Throughout adaptation, the different mutants that make up a viral population compete with each other in a non-trivial process in which their selective values change over time due to the generation of new mutations. In this work we have characterised the intra-population dynamics of a well-studied levivirus, Qβ, when it is propagated at a higher-than-optimal temperature. Our results show that adapting populations experienced rapid changes that involved the ascent of particular genotypes and the loss of some beneficial mutations of early generation. Artificially reconstructed populations, containing a fraction of the diversity present in actual populations, fixed mutations more rapidly, illustrating how population bottlenecks may guide the adaptive pathways. The conclusion is that, when the availability of beneficial mutations under a particular selective condition is elevated, the final outcome of adaptation depends more on the occasional occurrence of population bottlenecks and how mutations combine in genomes than on the selective value of particular mutations.
Collapse
|
7
|
Alcaide C, Sardanyés J, Elena SF, Gómez P. Increasing temperature alters the within-host competition of viral strains and influences virus genetic variability. Virus Evol 2021; 7:veab017. [PMID: 33815829 PMCID: PMC8007957 DOI: 10.1093/ve/veab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
Environmental conditions can affect viral accumulation, virulence and adaptation, which have implications in the disease outcomes and efficiency of control measures. Concurrently, mixed viral infections are relevant in plants, being their epidemiology shaped by within-host virus–virus interactions. However, the extent in which the combined effect of variations in abiotic components of the plant ecological niche and the prevalence of mixed infections affect the evolutionary dynamics of viral populations is not well understood. Here, we explore the interplay between ecological and evolutionary factors during viral infections and show that isolates of two strains of Pepino mosaic potexvirus coexisted in tomato plants in a temperature-dependent continuum between neutral and antagonistic interactions. After a long-term infection, the mutational analysis of the evolved viral genomes revealed strain-specific single-nucleotide polymorphisms that were modulated by the interaction between the type of infection and temperature. These results suggest that the temperature is an ecological driver of virus-virus interactions, with an effect on the genetic diversity of individual viruses that are co-infecting an individual host. This research provides insights into the effect that changes in host growth temperatures might have on the evolutionary dynamics of viral populations in mixed infections.
Collapse
Affiliation(s)
- Cristina Alcaide
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
- Dynamical Systems and Computational Virology Associated Unit Instituto de Biología Integrativa de Sistemas (I2SysBio) - CRM, Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Santiago F Elena
- I2SysBio, CSIC-Universitat de València, Paterna, 46980 València, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
- Corresponding author: E-mail:
| |
Collapse
|
8
|
Shahid MS, Sattar MN, Iqbal Z, Raza A, Al-Sadi AM. Next-Generation Sequencing and the CRISPR-Cas Nexus: A Molecular Plant Virology Perspective. Front Microbiol 2021; 11:609376. [PMID: 33584572 PMCID: PMC7874184 DOI: 10.3389/fmicb.2020.609376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, next-generation sequencing (NGS) and contemporary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) technologies have revolutionized the life sciences and the field of plant virology. Both these technologies offer an unparalleled platform for sequencing and deciphering viral metagenomes promptly. Over the past two decades, NGS technologies have improved enormously and have impacted plant virology. NGS has enabled the detection of plant viruses that were previously undetectable by conventional approaches, such as quarantine and archeological plant samples, and has helped to track the evolutionary footprints of viral pathogens. The CRISPR-Cas-based genome editing (GE) and detection techniques have enabled the development of effective approaches to virus resistance. Different versions of CRISPR-Cas have been employed to successfully confer resistance against diverse plant viruses by directly targeting the virus genome or indirectly editing certain host susceptibility factors. Applications of CRISPR-Cas systems include targeted insertion and/or deletion, site-directed mutagenesis, induction/expression/repression of the gene(s), epigenome re-modeling, and SNPs detection. The CRISPR-Cas toolbox has been equipped with precision GE tools to engineer the target genome with and without double-stranded (ds) breaks or donor templates. This technique has also enabled the generation of transgene-free genetically engineered plants, DNA repair, base substitution, prime editing, detection of small molecules, and biosensing in plant virology. This review discusses the utilities, advantages, applications, bottlenecks of NGS, and CRISPR-Cas in plant virology.
Collapse
Affiliation(s)
- Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Zafar Iqbal
- Central Laboratories, King Faisal University, Hofuf, Saudi Arabia
| | - Amir Raza
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Abdullah M. Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
9
|
McLeish MJ, Fraile A, García-Arenal F. Population Genomics of Plant Viruses: The Ecology and Evolution of Virus Emergence. PHYTOPATHOLOGY 2021; 111:32-39. [PMID: 33210987 DOI: 10.1094/phyto-08-20-0355-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/26/2023]
Abstract
The genomics era has revolutionized studies of adaptive evolution by monitoring large numbers of loci throughout the genomes of many individuals. Ideally, the investigation of emergence in plant viruses requires examining the population dynamics of both virus and host, their interactions with each other, with other organisms and the abiotic environment. Genetic mechanisms that affect demographic processes are now being studied with high-throughput technologies, traditional genetics methods, and new computational tools for big-data. In this review, we discuss the utility of these approaches to monitor and detect changes in virus populations within cells and individuals, and over wider areas across species and communities of ecosystems. The advent of genomics in virology has fostered a multidisciplinary approach to tackling disease risk. The ability to make sense of the information now generated in this integrated setting is by far the most substantial obstacle to the ultimate goal of plant virology to minimize the threats to food security posed by disease. To achieve this goal, it is imperative to understand and forecast how populations respond to future changes in complex natural systems.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
10
|
Ou Z, Ouzounis C, Wang D, Sun W, Li J, Chen W, Marlière P, Danchin A. A Path toward SARS-CoV-2 Attenuation: Metabolic Pressure on CTP Synthesis Rules the Virus Evolution. Genome Biol Evol 2020; 12:2467-2485. [PMID: 33125064 PMCID: PMC7665462 DOI: 10.1093/gbe/evaa229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
In the context of the COVID-19 pandemic, we describe here the singular metabolic background that constrains enveloped RNA viruses to evolve toward likely attenuation in the long term, possibly after a step of increased pathogenicity. Cytidine triphosphate (CTP) is at the crossroad of the processes allowing SARS-CoV-2 to multiply, because CTP is in demand for four essential metabolic steps. It is a building block of the virus genome, it is required for synthesis of the cytosine-based liponucleotide precursors of the viral envelope, it is a critical building block of the host transfer RNAs synthesis and it is required for synthesis of dolichol-phosphate, a precursor of viral protein glycosylation. The CCA 3'-end of all the transfer RNAs required to translate the RNA genome and further transcripts into the proteins used to build active virus copies is not coded in the human genome. It must be synthesized de novo from CTP and ATP. Furthermore, intermediary metabolism is built on compulsory steps of synthesis and salvage of cytosine-based metabolites via uridine triphosphate that keep limiting CTP availability. As a consequence, accidental replication errors tend to replace cytosine by uracil in the genome, unless recombination events allow the sequence to return to its ancestral sequences. We document some of the consequences of this situation in the function of viral proteins. This unique metabolic setup allowed us to highlight and provide a raison d'être to viperin, an enzyme of innate antiviral immunity, which synthesizes 3'-deoxy-3',4'-didehydro-CTP as an extremely efficient antiviral nucleotide.
Collapse
Affiliation(s)
- Zhihua Ou
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Christos Ouzounis
- Biological Computation and Process Laboratory, Centre for Research and Technology Hellas, Chemical Process and Energy Resources Institute, Thessalonica, Greece
| | - Daxi Wang
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Wanying Sun
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Weijun Chen
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China.,BGI PathoGenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen, China
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, Paris, France
| | - Antoine Danchin
- Kodikos Labs, Institut Cochin, Paris, France.,School of Biomedical Sciences, Li KaShing Faculty of Medicine, Hong Kong University, Pokfulam, Hong Kong
| |
Collapse
|
11
|
da Silva W, Kutnjak D, Xu Y, Xu Y, Giovannoni J, Elena SF, Gray S. Transmission modes affect the population structure of potato virus Y in potato. PLoS Pathog 2020; 16:e1008608. [PMID: 32574227 PMCID: PMC7347233 DOI: 10.1371/journal.ppat.1008608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2020] [Revised: 07/09/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023] Open
Abstract
Transmission is a crucial part of a viral life cycle and transmission mode can have an important impact on virus biology. It was demonstrated that transmission mode can influence the virulence and evolution of a virus; however, few empirical data are available to describe the direct underlying changes in virus population structure dynamics within the host. Potato virus Y (PVY) is an RNA virus and one of the most damaging pathogens of potato. It comprises several genetically variable strains that are transmitted between plants via different transmission modes. To investigate how transmission modes affect the within-plant viral population structure, we have used a deep sequencing approach to examine the changes in the genetic structure of populations (in leaves and tubers) of three PVY strains after successive passages by horizontal (aphid and mechanical) and vertical (via tubers) transmission modes. Nucleotide diversities of viral populations were significantly influenced by transmission modes; lineages transmitted by aphids were the least diverse, whereas lineages transmitted by tubers were the most diverse. Differences in nucleotide diversities of viral populations between leaves and tubers were transmission mode-dependent, with higher diversities in tubers than in leaves for aphid and mechanically transmitted lineages. Furthermore, aphid and tuber transmissions were shown to impose stronger genetic bottlenecks than mechanical transmission. To better understand the structure of virus populations within the host, transmission mode, movement of the virus within the host, and the number of replication cycles after transmission event need to be considered. Collectively, our results suggest a significant impact of virus transmission modes on the within-plant diversity of virus populations and provide quantitative fundamental data for understanding how transmission can shape virus diversity in the natural ecosystems, where different transmission modes are expected to affect virus population structure and consequently its evolution.
Collapse
Affiliation(s)
- Washington da Silva
- Department of Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, New York, United States of America
- * E-mail: (WdS); (DK)
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Paterna, València, Spain
- * E-mail: (WdS); (DK)
| | - Yi Xu
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, New York, United States of America
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yimin Xu
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
- Emerging Pests & Pathogens Research Unit, USDA, ARS, Ithaca, New York, United States of America
| | - James Giovannoni
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
- Emerging Pests & Pathogens Research Unit, USDA, ARS, Ithaca, New York, United States of America
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Paterna, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Stewart Gray
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, New York, United States of America
- Emerging Pests & Pathogens Research Unit, USDA, ARS, Ithaca, New York, United States of America
| |
Collapse
|
12
|
Danchin A, Marlière P. Cytosine drives evolution of SARS-CoV-2. Environ Microbiol 2020; 22:1977-1985. [PMID: 32291894 PMCID: PMC7262064 DOI: 10.1111/1462-2920.15025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Antoine Danchin
- Kodikos Labs, 24 rue Jean Baldassini, 69007 Lyon/Institut Cochin, 75013 Paris, France
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 81 rue Réaumur, 75002, Paris, France
| |
Collapse
|
13
|
Pham JY, Ogbunugafor CB, Nguyen Ba AN, Hartl DL. Experimental evolution for niche breadth in bacteriophage T4 highlights the importance of structural genes. Microbiologyopen 2020; 9:e968. [PMID: 31778298 PMCID: PMC7002106 DOI: 10.1002/mbo3.968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Ecologists have long studied the evolution of niche breadth, including how variability in environments can drive the evolution of specialism and generalism. This concept is of particular interest in viruses, where niche breadth evolution may explain viral disease emergence, or underlie the potential for therapeutic measures like phage therapy. Despite the significance and potential applications of virus-host interactions, the genetic determinants of niche breadth evolution remain underexplored in many bacteriophages. In this study, we present the results of an evolution experiment with a model bacteriophage system, Escherichia virus T4, in several host environments: exposure to Escherichia coli C, exposure to E. coli K-12, and exposure to both E. coli C and E. coli K-12. This experimental framework allowed us to investigate the phenotypic and molecular manifestations of niche breadth evolution. First, we show that selection on different hosts led to measurable changes in phage productivity in all experimental populations. Second, whole-genome sequencing of experimental populations revealed signatures of selection. Finally, clear and consistent patterns emerged across the host environments, especially the presence of new mutations in phage structural genes-genes encoding proteins that provide morphological and biophysical integrity to a virus. A comparison of mutations found across functional gene categories revealed that structural genes acquired significantly more mutations than other categories. Our findings suggest that structural genes are central determinants in bacteriophage niche breadth.
Collapse
Affiliation(s)
- Jenny Y. Pham
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | | | - Alex N. Nguyen Ba
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| |
Collapse
|
14
|
Nurtay A, Hennessy MG, Sardanyés J, Alsedà L, Elena SF. Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits: a bifurcation analysis. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181179. [PMID: 30800366 PMCID: PMC6366233 DOI: 10.1098/rsos.181179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/23/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
We investigate the dynamics of a wild-type viral strain which generates mutant strains differing in phenotypic properties for infectivity, virulence and mutation rates. We study, by means of a mathematical model and bifurcation analysis, conditions under which the wild-type and mutant viruses, which compete for the same host cells, can coexist. The coexistence conditions are formulated in terms of the basic reproductive numbers of the strains, a maximum value of the mutation rate and the virulence of the pathogens. The analysis reveals that parameter space can be divided into five regions, each with distinct dynamics, that are organized around degenerate Bogdanov-Takens and zero-Hopf bifurcations, the latter of which gives rise to a curve of transcritical bifurcations of periodic orbits. These results provide new insights into the conditions by which viral populations may contain multiple coexisting strains in a stable manner.
Collapse
Affiliation(s)
- Anel Nurtay
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Parc Científic UV, Paterna, València 46980, Spain
| | - Matthew G. Hennessy
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
| | - Lluís Alsedà
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Parc Científic UV, Paterna, València 46980, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
15
|
Chikh-Ali M, Rodriguez-Rodriguez M, Green KJ, Kim DJ, Chung SM, Kuhl JC, Karasev AV. Identification and Molecular Characterization of Recombinant Potato Virus Y (PVY) in Potato from South Korea, PVY NTN Strain. PLANT DISEASE 2019; 103:137-142. [PMID: 30412456 DOI: 10.1094/pdis-05-18-0715-re] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/08/2023]
Abstract
Potato is an important source of food in South Korea, and viruses represent a significant threat to sustainable and profitable potato production. However, information about viruses affecting the potato crop in South Korea is limited. In 2017, potato plants of five cultivars exhibiting foliar mosaic, crinkling, and mottle were collected in two seed potato production areas, in Gangwon-do and Jeollabuk-do Provinces, and subjected to virus testing and characterization. Potato virus Y (PVY) was found associated with mosaic symptoms, and samples were characterized using reverse transcription polymerase chain reaction (RT-PCR) and whole genome sequencing. All analyzed PVY-positive samples were found to represent the same recombinant PVY strain: PVYNTN. Three PVY isolates were subjected to whole genome sequencing using overlapping RT-PCR fragments and Sanger methodology, and all three were confirmed to represent strain PVYNTNa after a recombination analysis of the complete genomes. In phylogenetic analysis, the three South Korean isolates were placed most closely to several PVYNTNa isolates reported from Japan and Vietnam, suggesting a common source of infection. This is the first report and complete molecular characterization of a PVYNTN strain present in the country, and because this strain induces tuber necrotic ringspot disease in susceptible cultivars of potato, appropriate management tools need to be implemented to mitigate potential tuber quality losses.
Collapse
Affiliation(s)
- Mohamad Chikh-Ali
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, 83844-2329
| | | | - Kelsie J Green
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, 83844-2329
| | - Dong-Jun Kim
- Inno Seed Co., Dong-myeon Chuncheon-si Gangwon-do, 24210, South Korea
| | - Sang-Min Chung
- Life Science Department, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Joseph C Kuhl
- Department of Plant Science, University of Idaho, Moscow, 83844-2333
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, 83844-2329, and Bioinformatics and Computational Biology Program, University of Idaho, Moscow, 83844-3050
| |
Collapse
|
16
|
Pecman A, Kutnjak D, Mehle N, Žnidarič MT, Gutiérrez-Aguirre I, Pirnat P, Adams I, Boonham N, Ravnikar M. High-Throughput Sequencing Facilitates Characterization of a "Forgotten" Plant Virus: The Case of a Henbane Mosaic Virus Infecting Tomato. Front Microbiol 2018; 9:2739. [PMID: 30510545 PMCID: PMC6254090 DOI: 10.3389/fmicb.2018.02739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2018] [Accepted: 10/26/2018] [Indexed: 01/17/2023] Open
Abstract
High-throughput sequencing has dramatically broadened the possibilities for plant virus research and diagnostics, enabling discovery of new or obscure viruses, and virus strains and rapid sequencing of their genomes. In this research, we employed high-throughput sequencing to discover a new virus infecting tomato, Henbane mosaic virus (Potyvirus, Potyviridae), which was first discovered at the beginning of 20th century in the United Kingdom in cultivated henbane. A field tomato plant with severe necrotic symptoms of unknown etiology was sampled in Slovenia and high-throughput sequencing analysis using small RNA and ribosomal RNA depleted total RNA approaches revealed a mixed infection with Potato virus M (Carlavirus, Betaflexiviridae), Southern tomato virus (Amalgavirus, Amalgamaviridae) and henbane mosaic virus in the sample. The complete genomic sequence of henbane mosaic virus was assembled from the sequencing reads. By re-inoculation of the infected material on selected test plants, henbane mosaic virus was isolated and a host range analysis was performed, demonstrating the virus was pathogenic on several plant species. Due to limited metadata in public repositories, the taxonomic identification of the virus isolate was initially putative. Thus, in the next step, we used small RNA sequencing to determine genomic sequences of four historic isolates of the virus, obtained from different virus collections. Phylogenetic analyses performed using this new sequence information enabled us to taxonomically position Henbane mosaic virus as a member of the Potyvirus genus within the chili veinal mottle virus phylogenetic cluster and define the relationship of the new tomato isolate with the historic ones, indicating the existence of at least four putative strains of the virus. The first detection of henbane mosaic virus in tomato and demonstration of its pathogenicity on this host is important for plant protection and commercial tomato production. Since the virus was initially present in a mixed infection, and its whole genome was not sequenced, it has probably been overlooked in routine diagnostics. This study confirms the applicability of a combination of high-throughput sequencing and classic plant virus characterization methods for identification and phylogenetic classification of obscure viruses and historical viral isolates, for which no or limited genome sequence data is available.
Collapse
Affiliation(s)
- Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Ian Adams
- Fera Science Ltd., York, United Kingdom
| | - Neil Boonham
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Wine Research Centre, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
17
|
Pecman A, Kutnjak D, Gutiérrez-Aguirre I, Adams I, Fox A, Boonham N, Ravnikar M. Next Generation Sequencing for Detection and Discovery of Plant Viruses and Viroids: Comparison of Two Approaches. Front Microbiol 2017; 8:1998. [PMID: 29081770 PMCID: PMC5645528 DOI: 10.3389/fmicb.2017.01998] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2017] [Accepted: 09/28/2017] [Indexed: 01/19/2023] Open
Abstract
Next generation sequencing (NGS) technologies are becoming routinely employed in different fields of virus research. Different sequencing platforms and sample preparation approaches, in the laboratories worldwide, contributed to a revolution in detection and discovery of plant viruses and viroids. In this work, we are presenting the comparison of two RNA sequence inputs (small RNAs vs. ribosomal RNA depleted total RNA) for the detection of plant viruses by Illumina sequencing. This comparison includes several viruses, which differ in genome organization and viroids from both known families. The results demonstrate the ability for detection and identification of a wide array of known plant viruses/viroids in the tested samples by both approaches. In general, yield of viral sequences was dependent on viral genome organization and the amount of viral reads in the data. A putative novel Cytorhabdovirus, discovered in this study, was only detected by analysing the data generated from ribosomal RNA depleted total RNA and not from the small RNA dataset, due to the low number of short reads in the latter. On the other hand, for the viruses/viroids under study, the results showed higher yields of viral sequences in small RNA pool for viroids and viruses with no RNA replicative intermediates (single stranded DNA viruses).
Collapse
Affiliation(s)
- Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ian Adams
- Fera Science Ltd., York, United Kingdom
| | | | - Neil Boonham
- Fera Science Ltd., York, United Kingdom
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|