1
|
Pekarek MJ, Weaver EA. Influenza B Virus Vaccine Innovation through Computational Design. Pathogens 2024; 13:755. [PMID: 39338946 PMCID: PMC11434669 DOI: 10.3390/pathogens13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
As respiratory pathogens, influenza B viruses (IBVs) cause a significant socioeconomic burden each year. Vaccine and antiviral development for influenza viruses has historically viewed IBVs as a secondary concern to influenza A viruses (IAVs) due to their lack of animal reservoirs compared to IAVs. However, prior to the global spread of SARS-CoV-2, the seasonal epidemics caused by IBVs were becoming less predictable and inducing more severe disease, especially in high-risk populations. Globally, researchers have begun to recognize the need for improved prevention strategies for IBVs as a primary concern. This review discusses what is known about IBV evolutionary patterns and the effect of the spread of SARS-CoV-2 on these patterns. We also analyze recent advancements in the development of novel vaccines tested against IBVs, highlighting the promise of computational vaccine design strategies when used to target both IBVs and IAVs and explain why these novel strategies can be employed to improve the effectiveness of IBV vaccines.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
2
|
Chimeric Virus-like Particles Co-Displaying Hemagglutinin Stem and the C-Terminal Fragment of DnaK Confer Heterologous Influenza Protection in Mice. Viruses 2022; 14:v14102109. [PMID: 36298664 PMCID: PMC9610613 DOI: 10.3390/v14102109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza virus hemagglutinin (HA) stem is currently regarded as an extremely promising immunogen for designing universal influenza vaccines. The appropriate antigen-presenting vaccine vector would be conducive to increasing the immunogenicity of the HA stem antigen. In this study, we generated chimeric virus-like particles (cVLPs) co-displaying the truncated C-terminal of DnaK from Escherichia coli and H1 stem or full-length H1 antigen using the baculovirus expression system. Transmission electronic micrography revealed the expression and presentation of H1 stem antigens on the surface of VLPs. Vaccinations of mice with the H1 stem cVLPs induced H1-specific immune responses and provided heterologous immune protection in vivo, which was more effective than vaccinations with VLPs displaying H1 stem alone in protecting mice against weight loss as well as increasing survival rates after lethal influenza viral challenge. The results indicate that the incorporation of the truncated C-terminal of DnaK as an adjuvant protein into the cVLPs significantly enhances the H1-specific immunity and immune protection. We have explicitly identified the VLP platform as an effective way of expressing HA stem antigen and revealed that chimeric VLP is an vaccine vector for developing HA stem-based universal influenza vaccines.
Collapse
|
3
|
Application of a ddRT-PCR to quantify seasonal influenza virus for viral isolation. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Aberrant Cellular Glycosylation May Increase the Ability of Influenza Viruses to Escape Host Immune Responses through Modification of the Viral Glycome. mBio 2022; 13:e0298321. [PMID: 35285699 PMCID: PMC9040841 DOI: 10.1128/mbio.02983-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Individuals with metabolic dysregulation of cellular glycosylation often experience severe influenza disease, with a poor immune response to the virus and low vaccine efficacy. Here, we investigate the consequences of aberrant cellular glycosylation for the glycome and the biology of influenza virus. We transiently induced aberrant N-linked glycosylation in cultured cells with an oligosaccharyltransferase inhibitor, NGI-1. Cells treated with NGI-1 produced morphologically unaltered viable influenza virus with sequence-neutral glycosylation changes (primarily reduced site occupancy) in the hemagglutinin and neuraminidase proteins. Hemagglutinin with reduced glycan occupancy required a higher concentration of surfactant protein D (an important innate immunity respiratory tract collectin) for inhibition compared to that with normal glycan occupancy. Immunization of mice with NGI-1-treated virus significantly reduced antihemagglutinin and antineuraminidase titers of total serum antibody and reduced hemagglutinin protective antibody responses. Our data suggest that aberrant cellular glycosylation may increase the risk of severe influenza as a result of the increased ability of glycome-modified influenza viruses to evade the immune response.
Collapse
|
5
|
Liu Y, Strohmeier S, González-Domínguez I, Tan J, Simon V, Krammer F, García-Sastre A, Palese P, Sun W. Mosaic Hemagglutinin-Based Whole Inactivated Virus Vaccines Induce Broad Protection Against Influenza B Virus Challenge in Mice. Front Immunol 2021; 12:746447. [PMID: 34603333 PMCID: PMC8481571 DOI: 10.3389/fimmu.2021.746447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023] Open
Abstract
Influenza viruses undergo antigenic changes in the immuno-dominant hemagglutinin (HA) head domain, necessitating annual re-formulation of and re-vaccination with seasonal influenza virus vaccines for continuing protection. We previously synthesized mosaic HA (mHA) proteins of influenza B viruses which redirect the immune response towards the immuno-subdominant conserved epitopes of the HA via sequential immunization. As ~90% of current influenza virus vaccines are manufactured using the inactivated virus platform, we generated and sequentially vaccinated mice with inactivated influenza B viruses displaying either the homologous (same B HA backbones) or the heterologous (different B HA backbones) mosaic HAs. Both approaches induced long-lasting and cross-protective antibody responses showing strong antibody-dependent cellular cytotoxicity (ADCC) activity. We believe the B virus mHA vaccine candidates represent a major step towards a universal influenza B virus vaccine.
Collapse
Affiliation(s)
- Yonghong Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Irene González-Domínguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jessica Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Characterization of Novel Cross-Reactive Influenza B Virus Hemagglutinin Head Specific Antibodies That Lack Hemagglutination Inhibition Activity. J Virol 2020; 94:JVI.01185-20. [PMID: 32907980 DOI: 10.1128/jvi.01185-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Humoral immune responses to influenza virus vaccines in elderly individuals are poorly adapted toward new antigenically drifted influenza virus strains. Instead, older individuals respond in an original antigenic sin fashion and produce much more cross-reactive but less potent antibodies. Here, we investigated four influenza B virus hemagglutinin (HA) head specific, hemagglutination inhibition-inactive monoclonal antibodies (MAbs) from elderly individuals. We found that they were broadly reactive within the B/Victoria/2/1987-like lineage, and two were highly cross-reactive with B/Yamagata/16/1988-like lineage viruses. The MAbs were found to be neutralizing, to utilize Fc effector functions, and to be protective against lethal viral challenge in a mouse model. In order to identify residues on the influenza B virus hemagglutinin interacting with the MAbs, we generated escape mutant viruses. Interestingly, escape from these MAbs led to numerous HA mutations within the head domain, including in the defined antigenic sites. We observed that each individual escape mutant virus was able to avoid neutralization by its respective MAb along with other MAbs in the panel, although in many cases binding activity was maintained. Point mutant viruses indicated that K90 is critical for the neutralization of two MAbs, while escape from the other two MAbs required a combination of mutations in the hemagglutinin. Three of four escape mutant viruses had increased lethality in the DBA2/J mouse model. Our work indicates that these cross-reactive antibodies have the potential to cause antigenic drift in the viral population by driving mutations that increase virus fitness. However, binding activity and cross-neutralization were maintained by a majority of antibodies in the panel, suggesting that this drift may not lead to escape from antibody-mediated protection.IMPORTANCE Understanding the immune response that older individuals mount to influenza virus vaccination and infection is critical in order to design better vaccines for this age group. Here, we show that older individuals make broadly neutralizing antibodies that have no hemagglutination-inhibiting activity and are less potent than strain-specific antibodies. These antibodies could drive viral escape from neutralization but did not result in escape from binding. Given their different mechanisms of action, they might retain protective activity even against escape variants.
Collapse
|
7
|
Ikegame S, Beaty SM, Stevens C, Won T, Park A, Sachs D, Hong P, Lee B, Thibault PA. Genome-wide transposon mutagenesis of paramyxoviruses reveals constraints on genomic plasticity. PLoS Pathog 2020; 16:e1008877. [PMID: 33035269 PMCID: PMC7577504 DOI: 10.1371/journal.ppat.1008877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/21/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The antigenic and genomic stability of paramyxoviruses remains a mystery. Here, we evaluate the genetic plasticity of Sendai virus (SeV) and mumps virus (MuV), sialic acid-using paramyxoviruses that infect mammals from two Paramyxoviridae subfamilies (Orthoparamyxovirinae and Rubulavirinae). We performed saturating whole-genome transposon insertional mutagenesis, and identified important commonalities: disordered regions in the N and P genes near the 3' genomic end were more tolerant to insertional disruptions; but the envelope glycoproteins were not, highlighting structural constraints that contribute to the restricted antigenic drift in paramyxoviruses. Nonetheless, when we applied our strategy to a fusion-defective Newcastle disease virus (Avulavirinae subfamily), we could select for F-revertants and other insertants in the 5' end of the genome. Our genome-wide interrogation of representative paramyxovirus genomes from all three Paramyxoviridae subfamilies provides a family-wide context in which to explore specific variations within and among paramyxovirus genera and species. RNA viruses are known for their genetic variability. They often exhibit significant genetic diversity even within members of a given viral species. Paramyxoviruses are notable exceptions. They show relatively little genomic or antigenic change over time. This is exemplified by mumps and measles viruses, where vaccine strains have not been changed in 40 years and still remain effective. Here, we sought to understand the determinants of this relative stability by probing three different paramyxoviruses: Sendai, mumps, and Newcastle disease viruses. We used a mutagenesis strategy to create 15-nucleotide insertions that were randomly distributed across the entire genome. The insertions were designed to identify regions of the viral genome that can or cannot tolerate. After rescuing each of these libraries, we passaged each virus in cell culture twice, and deep sequenced viral RNA from each step to monitor the enrichment or depletion of insertions throughout the genome. In this way, we found that paramyxoviruses displayed an increased tolerance for insertions in proteins with disordered regions, and in the un-translated regions of highly expressed genes. Importantly, we also determined that paramyxoviral structural proteins, which are the most antigenic proteins, do not tolerate insertions, which provides an explanation for why paramyxoviruses are antigenically stable in the face of adaptive immune pressure. Thus, we here provide evidence that constraints on paramyxoviral protein functions contribute to the viruses’ genetic stability.
Collapse
Affiliation(s)
- Satoshi Ikegame
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Shannon M. Beaty
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Christian Stevens
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Taylor Won
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Arnold Park
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - David Sachs
- Department of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Patrick Hong
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Benhur Lee
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail: (BL); (PAT)
| | - Patricia A. Thibault
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail: (BL); (PAT)
| |
Collapse
|
8
|
Zheng A, Sun W, Xiong X, Freyn AW, Peukes J, Strohmeier S, Nachbagauer R, Briggs JAG, Krammer F, Palese P. Enhancing Neuraminidase Immunogenicity of Influenza A Viruses by Rewiring RNA Packaging Signals. J Virol 2020; 94:e00742-20. [PMID: 32493826 PMCID: PMC7394900 DOI: 10.1128/jvi.00742-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/01/2020] [Indexed: 01/17/2023] Open
Abstract
Humoral immune protection against influenza virus infection is mediated largely by antibodies against hemagglutinin (HA) and neuraminidase (NA), the two major glycoproteins on the virus surface. While influenza virus vaccination efforts have focused mainly on HA, NA-based immunity has been shown to reduce disease severity and provide heterologous protection. Current seasonal vaccines do not elicit strong anti-NA responses-in part due to the immunodominance of the HA protein. Here, we demonstrate that by swapping the 5' and 3' terminal packaging signals of the HA and NA genomic segments, which contain the RNA promoters, we are able to rescue influenza viruses that express more NA and less HA. Vaccination with formalin-inactivated "rewired" viruses significantly enhances the anti-NA antibody response compared to vaccination with unmodified viruses. Passive transfer of sera from mice immunized with rewired virus vaccines shows better protection against influenza virus challenge. Our results provide evidence that the immunodominance of HA stems in part from its abundance on the viral surface, and that rewiring viral packaging signals-thereby increasing the NA content on viral particles-is a viable strategy for improving the immunogenicity of NA in an influenza virus vaccine.IMPORTANCE Influenza virus infections are a major source of morbidity and mortality worldwide. Increasing evidence highlights neuraminidase as a potential vaccination target. This report demonstrates the efficacy of rewiring influenza virus packaging signals for creating vaccines with more neuraminidase content which provide better neuraminidase (NA)-based protection.
Collapse
Affiliation(s)
- Allen Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xiaoli Xiong
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Alec W Freyn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julia Peukes
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John A G Briggs
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Freyn AW, Ramos da Silva J, Rosado VC, Bliss CM, Pine M, Mui BL, Tam YK, Madden TD, de Souza Ferreira LC, Weissman D, Krammer F, Coughlan L, Palese P, Pardi N, Nachbagauer R. A Multi-Targeting, Nucleoside-Modified mRNA Influenza Virus Vaccine Provides Broad Protection in Mice. Mol Ther 2020; 28:1569-1584. [PMID: 32359470 PMCID: PMC7335735 DOI: 10.1016/j.ymthe.2020.04.018] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
Influenza viruses are respiratory pathogens of public health concern worldwide with up to 650,000 deaths occurring each year. Seasonal influenza virus vaccines are employed to prevent disease, but with limited effectiveness. Development of a universal influenza virus vaccine with the potential to elicit long-lasting, broadly cross-reactive immune responses is necessary for reducing influenza virus prevalence. In this study, we have utilized lipid nanoparticle-encapsulated, nucleoside-modified mRNA vaccines to intradermally deliver a combination of conserved influenza virus antigens (hemagglutinin stalk, neuraminidase, matrix-2 ion channel, and nucleoprotein) and induce strong immune responses with substantial breadth and potency in a murine model. The immunity conferred by nucleoside-modified mRNA-lipid nanoparticle vaccines provided protection from challenge with pandemic H1N1 virus at 500 times the median lethal dose after administration of a single immunization, and the combination vaccine protected from morbidity at a dose of 50 ng per antigen. The broad protective potential of a single dose of combination vaccine was confirmed by challenge with a panel of group 1 influenza A viruses. These findings support the advancement of nucleoside-modified mRNA-lipid nanoparticle vaccines expressing multiple conserved antigens as universal influenza virus vaccine candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/metabolism
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Disease Models, Animal
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/chemistry
- Influenza Vaccines/immunology
- Injections, Intradermal
- Liposomes
- Mice
- NIH 3T3 Cells
- Nanoparticles
- Neuraminidase/chemistry
- Neuraminidase/genetics
- Nucleocapsid Proteins/chemistry
- Nucleocapsid Proteins/genetics
- Nucleosides/chemistry
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- mRNA Vaccines
Collapse
Affiliation(s)
- Alec W Freyn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jamile Ramos da Silva
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Victoria C Rosado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carly M Bliss
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Pine
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | | | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
10
|
Choi A, Bouzya B, Cortés Franco KD, Stadlbauer D, Rajabhathor A, Rouxel RN, Mainil R, Van der Wielen M, Palese P, García-Sastre A, Innis BL, Krammer F, Schotsaert M, Mallett CP, Nachbagauer R. Chimeric Hemagglutinin-Based Influenza Virus Vaccines Induce Protective Stalk-Specific Humoral Immunity and Cellular Responses in Mice. Immunohorizons 2020; 3:133-148. [PMID: 31032479 DOI: 10.4049/immunohorizons.1900022] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The high variation of the influenza virus hemagglutinin (HA), particularly of its immunodominant head epitopes, makes it necessary to reformulate seasonal influenza virus vaccines every year. Novel influenza virus vaccines that redirect the immune response toward conserved epitopes of the HA stalk domain should afford broad and durable protection. Sequential immunization with chimeric HAs (cHAs) that express the same conserved HA stalk and distinct exotic HA heads has been shown to elicit high levels of broadly cross-reactive Abs. In the current mouse immunization studies, we tested this strategy using inactivated split virion cHA influenza virus vaccines (IIV) without adjuvant or adjuvanted with AS01 or AS03 to measure the impact of adjuvant on the Ab response. The vaccines elicited high levels of cross-reactive Abs that showed activity in an Ab-dependent, cell-mediated cytotoxicity reporter assay and were protective in a mouse viral challenge model after serum transfer. In addition, T cell responses to adjuvanted IIV were compared with responses to a cHA-expressing live attenuated influenza virus vaccine (LAIV). A strong but transient induction of Ag-specific T cells was observed in the spleens of mice vaccinated with LAIV. Interestingly, IIV also induced T cells, which were successfully recalled upon viral challenge. Groups that received AS01-adjuvanted IIV or LAIV 4 wk before the challenge showed the lowest level of viral replication (i.e., the highest level of protection). These studies provide evidence that broadly cross-reactive Abs elicited by cHA vaccination demonstrate Fc-mediated activity. In addition, cHA vaccination induced Ag-specific cellular responses that can contribute to protection upon infection.
Collapse
Affiliation(s)
- Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Arvind Rajabhathor
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | | | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | | | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| |
Collapse
|
11
|
Sun W, Zheng A, Miller R, Krammer F, Palese P. An Inactivated Influenza Virus Vaccine Approach to Targeting the Conserved Hemagglutinin Stalk and M2e Domains. Vaccines (Basel) 2019; 7:vaccines7030117. [PMID: 31540436 PMCID: PMC6789539 DOI: 10.3390/vaccines7030117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Universal influenza virus vaccine candidates that focus on the conserved hemagglutinin (HA) stalk domain and the extracellular domain of the matrix protein 2 (M2e) have been developed to increase the breadth of protection against multiple strains. In this study, we report a novel inactivated influenza virus vaccine approach that combines these two strategies. We inserted a human consensus M2e epitope into the immunodominant antigenic site (Ca2 site) of three different chimeric HAs (cHAs). Sequential immunization with inactivated viruses containing these modified cHAs substantially enhanced M2e antibody responses while simultaneously boosting stalk antibody responses. The combination of additional M2e antibodies with HA stalk antibodies resulted in superior antibody-mediated protection in mice against challenge viruses expressing homologous or heterosubtypic hemagglutinin and neuraminidase compared to vaccination strategies that targeted the HA stalk or M2e epitopes in isolation.
Collapse
Affiliation(s)
- Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Allen Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Robert Miller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
12
|
Extending the Stalk Enhances Immunogenicity of the Influenza Virus Neuraminidase. J Virol 2019; 93:JVI.00840-19. [PMID: 31375573 DOI: 10.1128/jvi.00840-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
Influenza viruses express two surface glycoproteins, the hemagglutinin (HA) and the neuraminidase (NA). Anti-NA antibodies protect from lethal influenza virus challenge in the mouse model and correlate inversely with virus shedding and symptoms in humans. Consequently, the NA is a promising target for influenza virus vaccine design. Current seasonal vaccines, however, poorly induce anti-NA antibodies, partly because of the immunodominance of the HA over the NA when the two glycoproteins are closely associated. To address this issue, here we investigated whether extending the stalk domain of the NA could render it more immunogenic on virus particles. Two recombinant influenza viruses based on the H1N1 strain A/Puerto Rico/8/1934 (PR8) were rescued with NA stalk domains extended by 15 or 30 amino acids. Formalin-inactivated viruses expressing wild-type NA or the stalk-extended NA variants were used to vaccinate mice. The virus with the 30-amino-acid stalk extension induced significantly higher anti-NA IgG responses (characterized by increased in vitro antibody-dependent cellular cytotoxicity [ADCC] activity) than the wild-type PR8 virus, while anti-HA IgG levels were unaffected. Similarly, extending the stalk domain of the NA of a recent H3N2 virus enhanced the induction of anti-NA IgGs in mice. On the basis of these results, we hypothesize that the subdominance of the NA can be modulated if the protein is modified such that its height surpasses that of the HA on the viral membrane. Extending the stalk domain of NA may help to enhance its immunogenicity in influenza virus vaccines without compromising antibody responses to HA.IMPORTANCE The efficacy of influenza virus vaccines could be improved by enhancing the immunogenicity of the NA protein. One of the reasons for its poor immunogenicity is the immunodominance of the HA over the NA in many seasonal influenza virus vaccines. Here we demonstrate that, in the mouse model, extending the stalk domain of the NA protein can enhance its immunogenicity on virus particles and overcome the immunodominance of the HA without affecting antibody responses to the HA. The antibody repertoire is broadened by the extended NA and includes additional ADCC-active antibodies. Our findings may assist in the efforts toward more effective influenza virus vaccines.
Collapse
|
13
|
Broecker F, Liu STH, Suntronwong N, Sun W, Bailey MJ, Nachbagauer R, Krammer F, Palese P. A mosaic hemagglutinin-based influenza virus vaccine candidate protects mice from challenge with divergent H3N2 strains. NPJ Vaccines 2019; 4:31. [PMID: 31341648 PMCID: PMC6642189 DOI: 10.1038/s41541-019-0126-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/27/2019] [Indexed: 01/27/2023] Open
Abstract
Current seasonal influenza virus vaccines only provide limited, short-lived protection, and antigenic drift in the hemagglutinin surface glycoprotein necessitates their annual re-formulation and re-administration. To overcome these limitations, universal vaccine strategies that aim at eliciting broadly protective antibodies to conserved epitopes of the hemagglutinin show promise for protecting against diverse and drifted influenza viruses. Here a vaccination strategy that focuses antibody responses to conserved epitopes of the H3 hemagglutinin is described. The approach is based on antigenic silencing of the immunodominant major antigenic sites of an H3 protein from 2014 by replacing them with corresponding sequences of exotic avian hemagglutinins, yielding "mosaic" hemagglutinins. In mice, vaccination with inactivated viruses expressing mosaic hemagglutinins induced highly cross-reactive antibodies against the H3 stalk domain that elicited Fc-mediated effector functions in vitro. In addition, the mosaic viruses elicited head-specific antibodies with neutralizing and hemagglutination-inhibiting activity against recent H3N2 viruses in vitro. Immune sera protected mice from heterologous challenge with viruses carrying H3 proteins from 1968 and 1982, whereas immune sera generated with a seasonal vaccine did not protect. Consequently, the mosaic vaccination approach provides a promising avenue toward a universal influenza virus vaccine.
Collapse
Affiliation(s)
- Felix Broecker
- 1Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Sean T H Liu
- 1Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Nungruthai Suntronwong
- 2Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Weina Sun
- 1Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Mark J Bailey
- 1Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Raffael Nachbagauer
- 1Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Florian Krammer
- 1Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Peter Palese
- 1Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA.,3Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
14
|
Behzadi MA, Stein KR, Bermúdez-González MC, Simon V, Nachbagauer R, Tortorella D. An Influenza Virus Hemagglutinin-Based Vaccine Platform Enables the Generation of Epitope Specific Human Cytomegalovirus Antibodies. Vaccines (Basel) 2019; 7:vaccines7020051. [PMID: 31207917 PMCID: PMC6630953 DOI: 10.3390/vaccines7020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/03/2022] Open
Abstract
Human cytomegalovirus (CMV) is a highly prevalent pathogen with ~60%–90% seropositivity in adults. CMV can contribute to organ rejection in transplant recipients and is a major cause of birth defects in newborns. Currently, there are no approved vaccines against CMV. The epitope of a CMV neutralizing monoclonal antibody against a conserved region of the envelope protein gH provided the basis for a new CMV vaccine design. We exploited the influenza A virus as a vaccine platform due to the highly immunogenic head domain of its hemagglutinin envelope protein. Influenza A variants were engineered by reverse genetics to express the epitope of an anti-CMV gH neutralizing antibody that recognizes native gH into the hemagglutinin antigenic Sa site. We determined that the recombinant influenza variants expressing 7, 10, or 13 residues of the anti-gH neutralizing antibody epitope were recognized and neutralized by the anti-gH antibody 10C10. Mice vaccinated with the influenza/CMV chimeric viruses induced CMV-specific antibodies that recognized the native gH protein and inhibited virus infection. In fact, the influenza variants expressing 7–13 gH residues neutralized a CMV infection at ~60% following two immunizations with variants expressing the 13 residue gH peptide produced the highest levels of neutralization. Collectively, our study demonstrates that a variant influenza virus inserted with a gH peptide can generate a humoral response that limits a CMV infection.
Collapse
Affiliation(s)
- Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Maria Carolina Bermúdez-González
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- The Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- The Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
15
|
Development of Influenza B Universal Vaccine Candidates Using the "Mosaic" Hemagglutinin Approach. J Virol 2019; 93:JVI.00333-19. [PMID: 30944178 DOI: 10.1128/jvi.00333-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
Influenza B viruses cause seasonal epidemics and are a considerable burden to public health. However, protection by current seasonal vaccines is suboptimal due to the antigenic changes of the circulating strains. In this study, we report a novel universal influenza B virus vaccination strategy based on "mosaic" hemagglutinins. We generated mosaic B hemagglutinins by replacing the major antigenic sites of the type B hemagglutinin with corresponding sequences from exotic influenza A hemagglutinins and expressed them as soluble trimeric proteins. Sequential vaccination with recombinant mosaic B hemagglutinin proteins conferred cross-protection against both homologous and heterologous influenza B virus strains in the mouse model. Of note, we rescued recombinant influenza B viruses expressing mosaic B hemagglutinins, which could serve as the basis for a universal influenza B virus vaccine.IMPORTANCE This work reports a universal influenza B virus vaccination strategy based on focusing antibody responses to conserved head and stalk epitopes of the hemagglutinin. Recombinant mosaic influenza B hemagglutinin proteins and recombinant viruses have been generated as novel vaccine candidates. This vaccine strategy provided broad cross-protection in the mouse model. Our findings will inform and drive development toward a more effective influenza B virus vaccine.
Collapse
|
16
|
Koutsakos M, Illing PT, Nguyen THO, Mifsud NA, Crawford JC, Rizzetto S, Eltahla AA, Clemens EB, Sant S, Chua BY, Wong CY, Allen EK, Teng D, Dash P, Boyd DF, Grzelak L, Zeng W, Hurt AC, Barr I, Rockman S, Jackson DC, Kotsimbos TC, Cheng AC, Richards M, Westall GP, Loudovaris T, Mannering SI, Elliott M, Tangye SG, Wakim LM, Rossjohn J, Vijaykrishna D, Luciani F, Thomas PG, Gras S, Purcell AW, Kedzierska K. Human CD8 + T cell cross-reactivity across influenza A, B and C viruses. Nat Immunol 2019; 20:613-625. [PMID: 30778243 DOI: 10.1038/s41590-019-0320-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
Abstract
Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally and infect humans, with IAV and IBV causing the most severe disease. CD8+ T cells confer cross-protection against IAV strains, however the responses of CD8+ T cells to IBV and ICV are understudied. We investigated the breadth of CD8+ T cell cross-recognition and provide evidence of CD8+ T cell cross-reactivity across IAV, IBV and ICV. We identified immunodominant CD8+ T cell epitopes from IBVs that were protective in mice and found memory CD8+ T cells directed against universal and influenza-virus-type-specific epitopes in the blood and lungs of healthy humans. Lung-derived CD8+ T cells displayed tissue-resident memory phenotypes. Notably, CD38+Ki67+CD8+ effector T cells directed against novel epitopes were readily detected in IAV- or IBV-infected pediatric and adult subjects. Our study introduces a new paradigm whereby CD8+ T cells confer unprecedented cross-reactivity across all influenza viruses, a key finding for the design of universal vaccines.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Patricia T Illing
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | | | - Simone Rizzetto
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Auda A Eltahla
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - E Kaitlynn Allen
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Don Teng
- Infection and Immunity Program & Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Pradyot Dash
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - David F Boyd
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ludivine Grzelak
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Biology Department, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Weiguang Zeng
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Aeron C Hurt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ian Barr
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- School of Applied Biomedical Sciences, Federation University, Churchill, Victoria, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Seqirus, Parkville, Victoria, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tom C Kotsimbos
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Central Clinical School, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, Victoria, Australia
| | - Michael Richards
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Glen P Westall
- Lung Transplant Unit, Alfred Hospital, Melbourne, Victoria, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | - Michael Elliott
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Chris O'Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Dhanasekaran Vijaykrishna
- Infection and Immunity Program & Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Fabio Luciani
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephanie Gras
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.
| |
Collapse
|
17
|
Antibody Responses toward the Major Antigenic Sites of Influenza B Virus Hemagglutinin in Mice, Ferrets, and Humans. J Virol 2019; 93:JVI.01673-18. [PMID: 30381487 DOI: 10.1128/jvi.01673-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
The influenza B virus hemagglutinin contains four major antigenic sites (the 120 loop, the 150 loop, the 160 loop, and the 190 helix) within the head domain. These immunodominant antigenic sites are the main targets of neutralizing antibodies and are subject to antigenic drift. Yet little is known about the specific antibody responses toward each site in terms of antibody prevalence and hemagglutination inhibition activity. In this study, we used modified hemagglutinins of influenza B virus which display only one or none of the major antigenic sites to measure antibody responses toward the classical as well as the noncanonical epitopes in mice, ferrets, and humans. With our novel reagents, we found that both hemagglutination inhibition antibodies and total IgGs were mostly induced by the major antigenic sites. However, in human adults, we observed high hemagglutination inhibition antibody responses toward the noncanonical epitopes. By stratifying the human samples into age groups, we found that the noncanonical antibody responses appeared to increase with age.IMPORTANCE This study dissected the specific antibody responses toward the major antigenic sites and the noncanonical epitopes of influenza B virus hemagglutinin in animals and humans using novel reagents. These findings will guide the design of the next generation of influenza virus vaccines.
Collapse
|
18
|
Immunodominance of Antigenic Site B in the Hemagglutinin of the Current H3N2 Influenza Virus in Humans and Mice. J Virol 2018; 92:JVI.01100-18. [PMID: 30045991 DOI: 10.1128/jvi.01100-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin protein of H3N2 influenza viruses is the major target of neutralizing antibodies induced by infection and vaccination. However, the virus frequently escapes antibody-mediated neutralization due to mutations in the globular head domain. Five topologically distinct antigenic sites in the head domain of H3 hemagglutinin, A to E, have been previously described by mapping the binding sites of monoclonal antibodies, yet little is known about the contribution of each site to the immunogenicity of modern H3 hemagglutinins, as measured by hemagglutination inhibition activity, which is known to correlate with protection. To investigate the hierarchy of antibody immunodominance, five Δ1 recombinant influenza viruses expressing hemagglutinin of the A/Hong Kong/4801/2014 (H3N2) strain with mutations in single antigenic sites were generated. Next, the Δ1 viruses were used to determine the hierarchy of immunodominance by measuring the hemagglutination inhibition reactivity of mouse antisera and plasma from 18 human subjects before and after seasonal influenza vaccination in 2017-2018. In both mice and humans, mutations in antigenic site B caused the most significant decrease in hemagglutination inhibition titers compared to wild-type hemagglutinin. This study revealed that antigenic site B is immunodominant in the H3N2 influenza virus strain included in the current vaccine preparations.IMPORTANCE Influenza viruses rapidly evade humoral immunity through antigenic drift, making current vaccines poorly effective and antibody-mediated protection short-lived. The majority of neutralizing antibodies target five antigenic sites in the head domain of the hemagglutinin protein that are also the most sequence-variable regions. A better understanding of the contribution of each antigenic site to the overall antibody response to hemagglutinin may help in the design of improved influenza virus vaccines.
Collapse
|