1
|
Romero-Martín L, Tarrés-Freixas F, Pedreño-López N, de la Concepción MLR, Cunyat F, Hartigan-O'Connor D, Carrillo J, Mothe B, Blanco J, Ruiz-Riol M, Brander C, Olvera A. T-Follicular-Like CD8 + T Cell Responses in Chronic HIV Infection Are Associated With Virus Control and Antibody Isotype Switching to IgG. Front Immunol 2022; 13:928039. [PMID: 35784304 PMCID: PMC9241491 DOI: 10.3389/fimmu.2022.928039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/26/2023] Open
Abstract
T cell responses are considered critical for the in vivo control of HIV, but the contribution of different T cell subsets to this control remains unclear. Using a boosted flow cytometric approach that is able to differentiate CD4+ and CD8+ T cell Th1/Tc1, Th2/Tc2, Th17/Tc17, Treg and Tfh/Tfc-like HIV-specific T cell populations, we identified CD8+ Tfc responses that were related to HIV plasma viral loads and associated with rate of antibody isotype class switching to IgG. This favorable balance towards IgG responses positively correlated with increased virus neutralization, higher avidity of neutralizing antibodies and more potent antibody-dependent cell cytotoxicity (ADCC) in PBMCs from HIV controllers compared to non-controllers. Our results identified the CD8+ Tfc-like T-cell response as a component of effective virus control which could possibly be exploited therapeutically.
Collapse
Affiliation(s)
- Luis Romero-Martín
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Departament de Biologia Cellular, de Fisiologia i d’Immunologia, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Ferran Tarrés-Freixas
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Núria Pedreño-López
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Maria L. Rodríguez de la Concepción
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Francesc Cunyat
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Dennis Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Fundació Lluita contra la Sida, Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- AELIX Therapeutics, Barcelona, Spain
| | - Alex Olvera
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de salud Carlos III, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| |
Collapse
|
2
|
Whitehurst CB, Rizk M, Teklezghi A, Spagnuolo RA, Pagano JS, Wahl A. HIV co-infection augments EBV-induced tumorigenesis in vivo. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:861628. [PMID: 35611388 PMCID: PMC9126505 DOI: 10.3389/fviro.2022.861628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In most individuals, EBV maintains a life-long asymptomatic latent infection. However, EBV can induce the formation of B cell lymphomas in immune suppressed individuals including people living with HIV (PLWH). Most individuals who acquire HIV are already infected with EBV as EBV infection is primarily acquired during childhood and adolescence. Although antiretroviral therapy (ART) has substantially reduced the incidence of AIDS-associated malignancies, EBV positive PLWH are at an increased risk of developing lymphomas compared to the general population. The direct effect of HIV co-infection on EBV replication and EBV-induced tumorigenesis has not been experimentally examined. Using a humanized mouse model of EBV infection, we demonstrate that HIV co-infection enhances systemic EBV replication and immune activation. Importantly, EBV-induced tumorigenesis was augmented in EBV/HIV co-infected mice. Collectively, these results demonstrate a direct effect of HIV co-infection on EBV pathogenesis and disease progression and will facilitate future studies to address why the incidence of certain types of EBV-associated malignancies are stable or increasing in ART treated PLWH.
Collapse
Affiliation(s)
- Christopher B. Whitehurst
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Monica Rizk
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina at Chapel Hill, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Adonay Teklezghi
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina at Chapel Hill, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rae Ann Spagnuolo
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina at Chapel Hill, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph S. Pagano
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Angela Wahl
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina at Chapel Hill, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Asao H. Interleukin-21 in Viral Infections. Int J Mol Sci 2021; 22:ijms22179521. [PMID: 34502427 PMCID: PMC8430989 DOI: 10.3390/ijms22179521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-21 is a cytokine that affects the differentiation and function of lymphoid and myeloid cells and regulates both innate and adaptive immune responses. In addition to regulating the immune response to tumor and viral infections, IL-21 also has a profound effect on the development of autoimmune and inflammatory diseases. IL-21 is produced mainly from CD4+ T cells-in particular, follicular helper T (Tfh) cells-which have a great influence on the regulation of antibody production. It is also an important cytokine for the activation of CD8+ T cells, and its role in recovering the function of CD8+ T cells exhausted by chronic microbial infections and cancer has been clarified. Thus, IL-21 plays an extremely important role in viral infections, especially chronic viral infections. In this review, I will introduce the findings to date on how IL-21 is involved in some typical viral infections and the potential of treating viral diseases with IL-21.
Collapse
Affiliation(s)
- Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata City 990-9585, Japan
| |
Collapse
|
4
|
IL-21 Expands HIV-1-Specific CD8 + T Memory Stem Cells to Suppress HIV-1 Replication In Vitro. J Immunol Res 2019; 2019:1801560. [PMID: 31183385 PMCID: PMC6515191 DOI: 10.1155/2019/1801560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/16/2018] [Accepted: 03/27/2019] [Indexed: 01/05/2023] Open
Abstract
Due to the existence of viral reservoirs, the rebound of human immunodeficiency virus type 1 (HIV-1) viremia can occur within weeks after discontinuing combined antiretroviral therapy. Immunotherapy could potentially be applied to eradicate reactivated HIV-1 in latently infected CD4+ T lymphocytes. Although the existence of HIV-1-specific CD8+ T memory stem cells (TSCMs) is well established, there are currently no reports regarding methods using CD8+ TSCMs to treat HIV-1 infection. In this study, we quantified peripheral blood antigen-specific CD8+ TSCMs and then expanded HIV-1-specific TSCMs that targeted optimal antigen epitopes (SL9, IL9, and TL9) in the presence of interleukin- (IL-) 21 or IL-15. The suppressive capacity of the expanded CD8+ TSCMs on HIV-1 production was measured by assessing cell-associated viral RNA and performing viral outgrowth assays. We found that the number of unmutated TL9-specific CD8+ TSCMs positively correlated with the abundance of CD4+ T cells and that the expression of IFN-γ was higher in TL9-specific CD8+ TSCMs than that in non-TL9-specific CD8+ TSCMs. Moreover, the antiviral capacities of IL-21-stimulated CD8+ TSCMs exceeded those of conventional CD8+ memory T cells and IL-15-stimulated CD8+ TSCMs. Thus, we demonstrated that IL-21 could efficiently expand HIV-1-specific CD8+ TSCMs to suppress HIV-1 replication. Our study provides new insight into the function of IL-21 in the in vitro suppression of HIV-1 replication.
Collapse
|
5
|
Xiao L, Jia L, Bai L, He L, Yang B, Wu C, Li H. Phenotypic and functional characteristics of IL-21-expressing CD8(+) T cells in human nasal polyps. Sci Rep 2016; 6:30362. [PMID: 27468819 PMCID: PMC4965861 DOI: 10.1038/srep30362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022] Open
Abstract
Although CD4+ T cells are recognized to play an important role in the inflammatory response of nasal polyps (NPs), the biological functions of CD8+ T cells in polypogenesis remain unclear. In this study, we analyzed cell markers, cytokine expression and transcription factors in IL-21-expressing CD8+ T cells in polyp tissues of NP patients. The results showed that the majority of IL-21-producing CD8+ T cells were effector memory cells and they co-expressed IFN-γ. IL-21-expressing CD8+ T cells in polyp tissues expressed higher CXCR5, PD-1, and ICOS levels than cells in control tissues and showed significantly higher T-bet and Bcl-6 expression levels compared with IL-21−CD8+ T cells. Purified polyp CD8+ T cells promoted IgG production from isolated polyp B cells in vitro, and recombinant IL-12 modulated the expression of IL-21, IFN-γ and CD40L in purified polyp CD8+ T cells. Moreover, the percentage of IL-21+CD8+ T cells in polyp tissues was positively correlated with endoscopic and CT scan scores in NP patients. These findings indicated that polyp CD8+ T cells, by co-expressing IL-21 and IFN-γ and other markers, display a Tfh cell functionality, which is associated with the clinical severity of NP patients.
Collapse
Affiliation(s)
- Li Xiao
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Lei Jia
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Allergy Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lu Bai
- Department of Otolaryngology, Guangdong General Hospital, Guangzhou, China
| | - Long He
- Department of Otolaryngology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Binyan Yang
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Allergy Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Huabin Li
- Allergy Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Department of Otolaryngology, Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Abstract
IL-21 is a type I cytokine produced by T cells and natural killer T cells that has pleiotropic actions on a wide range of immune and non-immune cell types. Since its discovery in 2000, extensive studies on the biological actions of IL-21 have been performed in vitro and in vivo. Recent reports describing patients with primary immunodeficiency caused by mutations of IL21 or IL21R have further deepened our knowledge of the role of this cytokine in host defense. Elucidation of the molecular mechanisms that mediate IL-21's actions has provided the rationale for targeting IL-21 and IL-21 downstream mediators for therapeutic purposes. The use of next-generation sequencing technology has provided further insights into the complexity of IL-21 signaling and has identified transcription factors and co-factors involved in mediating the actions of this cytokine. In this review, we discuss recent advances in the biology and signaling of IL-21 and how this knowledge can be potentially translated into clinical settings.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethseda, Maryland, 20892, USA
| | - Chi-Keung Wan
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethseda, Maryland, 20892, USA
| |
Collapse
|
7
|
Li L, Jiang Y, Lao S, Yang B, Yu S, Zhang Y, Wu C. Mycobacterium tuberculosis-Specific IL-21+IFN-γ+CD4+ T Cells Are Regulated by IL-12. PLoS One 2016; 11:e0147356. [PMID: 26785168 PMCID: PMC4718545 DOI: 10.1371/journal.pone.0147356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/04/2016] [Indexed: 01/08/2023] Open
Abstract
In the current study of Mycobacterium tuberculosis (MTB)-specific T and B cells, we found that MTB-specific peptides from early secreted antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) induced the expression of IL-21 predominantly in CD4+ T cells. A fraction of IL-21-expressing CD4+ T cells simultaneously expressed Th1 cytokines but did not secrete Th2 or Th17 cytokines, suggesting that MTB-specific IL-21-expressing CD4+ T cells were different from Th1, Th2 and Th17 subpopulations. The majority of MTB-specific IL-21-expressing CD4+ T cells co-expressed IFN-γ and IL-21+IFN-γ+CD4+ T cells exhibited obviously polyfunctionality. In addition, MTB-specific IL-21-expressing CD4+ T cells displayed a CD45RO+CD62LlowCCR7lowCD40LhighICOShigh phenotype. Bcl-6-expression was significantly higher in IL-21-expressing CD4+ T cells than IL-21-CD4+ T cells. Moreover, IL-12 could up-regulate MTB-specific IL-21 expression, especially the frequency of IL-21+IFN-γ+CD4+ T cells. Taken together, our results demonstrated that MTB-specific IL-21+IFN-γ+CD4+ T cells from local sites of tuberculosis (TB) infection could be enhanced by IL-12, which have the features of both Tfh and Th1 cells and may have an important role in local immune responses against TB infection.
Collapse
Affiliation(s)
- Li Li
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Wuhan Institute for Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, China
| | - Yuxia Jiang
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Suihua Lao
- Chest Hospital of Guangzhou, Guangzhou, China
| | - Binyan Yang
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Sifei Yu
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yannan Zhang
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Idiopathic CD4⁺ lymphocytopenia (ICL) is defined by the reduction of the main lymphocyte subtype in peripheral blood and CD4⁺ T cells below 300/μl in the absence of any secondary known causes of lymphopenia, including viral causes. The present review aims to state the latest available data on clinical, pathological and therapeutic aspects related to ICL, published from 1990 to 2014. The last observed clinical presentation and complications of ICL patients are described. The latest findings and possible mechanisms involved in the development of ICL features are included in the present review; however, pathogenesis of ICL has remained mainly obscured. Finally, recent therapeutic efforts considered in ICL patients are discussed. RECENT FINDINGS In spite of the serious complications ICL has on the patients' quality of life, data on clinical, etiopathological and therapeutic behavior for ICL are very limited. On one side, an abnormal blood cell count may be the sole presentation; however, occurrence of disseminated malignant tumors is not uncommon in patients. Recent findings highlight the role of cytokines, especially interleukin-2, on features such as phenotype severity and responsiveness of the condition to therapy. In addition, some studies have suggested that a defect in hematopoietic stem cells may be involved in disease progression, an idea that is supported by the success of bone marrow transplantation in acquiring persistent remissions in ICL patients. SUMMARY ICL is a hematologic condition of increasing importance due to its diverse clinical and pathological spectrum. Molecular studies have shown the presence of mutations involved in lymphocyte development as potential factors that may contribute to ICL occurrence. ICL patients could present either with common infections or really serious malignant conditions. The role of cytokines, especially interleukin-2, has emerged as one of the main possible mechanisms involved in clinical and pathological behavior of ICL. Today, the main therapeutic approaches are controlling life-threatening infections and underlying disorders along with efforts to cure ICL through rising CD4⁺ cell counts using cytokine interventions and transplantation.
Collapse
|
9
|
IL-21: a pleiotropic cytokine with potential applications in oncology. J Immunol Res 2015; 2015:696578. [PMID: 25961061 PMCID: PMC4413888 DOI: 10.1155/2015/696578] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 12/29/2022] Open
Abstract
Interleukin- (IL-) 21 is a pleiotropic cytokine that regulates the activity of both innate and specific immunity. Indeed, it costimulates T and natural killer (NK) cell proliferation and function and regulates B cell survival and differentiation and the function of dendritic cells. In addition, IL-21 exerts divergent effects on different lymphoid cell leukemia and lymphomas, as it may support cell proliferation or on the contrary induce growth arrest or apoptosis of the neoplastic lymphoid cells. Several preclinical studies showed that IL-21 has antitumor activity in different tumor models, through mechanism involving the activation of NK and T or B cell responses. Moreover, IL-21's antitumor activity can be potentiated by its combination with other immune-enhancing molecules, monoclonal antibodies recognizing tumor antigens, chemotherapy, or molecular targeted agents. Clinical phase I-II studies of IL-21 in cancer patients showed immune stimulatory properties, acceptable toxicity profile, and antitumor effects in a fraction of patients. In view of its tolerability, IL-21 is also suitable for combinational therapeutic regimens with other agents. This review will summarize the biological functions of IL-21, and address its role in lymphoid malignancies and preclinical and clinical studies of cancer immunotherapy.
Collapse
|