1
|
Jordan-Paiz A, Franco S, Martinez MA. Reducing HIV-1 env gene CpG frequency increases the replication capacity of the HXB2 virus strain. Virus Res 2022; 310:198685. [PMID: 35041864 DOI: 10.1016/j.virusres.2022.198685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
Abstract
Synonymous replacement of CpG dinucleotides in the HIV-1 envelope (env) coding region has been correlated with evasion of the antiviral activity of the zinc-finger antiviral protein (ZAP). We aimed to explore the effect of depleting HIV-1 env CpG dinucleotides by synonymous substitution on ex vivo viral replication capacity. To this end, we eliminated 11 env CpG dinucleotides through synonymous substitutions in the CXCR4-tropic HXB2 strain. The replication kinetics in MT-4 cells and peripheral blood mononuclear cells (PBMCs) of the WT and synonymously recoded mutant viruses were indistinguishable. However, virus competition assays in MT4 cells between the WT and recoded viruses showed that the mutant with fewer CpG dinucleotides quickly overgrew the WT virus. These results demonstrate that a reduction in HIV-1 env CpG dinucleotide frequency can improve viral replication capacity in cell culture. Our results support the previous observation that the frequency of CpGs in the HIV-1 env region correlates with differences in clinical progression rates in infected individuals.
Collapse
Affiliation(s)
- Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain.
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain.
| | - Miguel Angel Martinez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain.
| |
Collapse
|
2
|
Jordan-Paiz A, Franco S, Martinez MA. Synonymous Codon Pair Recoding of the HIV-1 env Gene Affects Virus Replication Capacity. Cells 2021; 10:cells10071636. [PMID: 34209946 PMCID: PMC8304268 DOI: 10.3390/cells10071636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
Synonymous codon pair deoptimization is an efficient strategy for virus attenuation; however, the underlying mechanism remains controversial. Here, we optimized and deoptimized the codon pair bias (CPB) of the human immunodeficiency virus type 1 (HIV-1) envelope (env) gene to investigate the influence of env synonymous CPB recoding on virus replication capacity, as well as the potential mechanism. We found that env CPB deoptimization did not always generate attenuation, whereas CPB optimization attenuated virus replication in MT-4 cells. Furthermore, virus attenuation correlated with reduced Env protein production but not with decreased viral RNA synthesis. Remarkably, in our model, increasing the number of CpG dinucleotides in the 5′ end of env did not reduce the replication capacity of HIV-1. These results indicate that factors other than CPB or CpG content may have impacted the viral fitness of the synonymously recoded study variants. Our findings provide evidence that CPB recoding-associated attenuation can affect translation efficiency. Moreover, we demonstrated that an increased number of CpGs in the 5′ end of HIV-1 env is not always associated with reduced virus replication capacity.
Collapse
|
3
|
Tournier JN, Kononchik J. Virus Eradication and Synthetic Biology: Changes with SARS-CoV-2? Viruses 2021; 13:569. [PMID: 33800626 PMCID: PMC8066276 DOI: 10.3390/v13040569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
The eradication of infectious diseases has been achieved only once in history, in 1980, with smallpox. Since 1988, significant effort has been made to eliminate poliomyelitis viruses, but eradication is still just out of reach. As the goal of viral disease eradication approaches, the ability to recreate historically eradicated viruses using synthetic biology has the potential to jeopardize the long-term sustainability of eradication. However, the emergence of the severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 pandemic has highlighted our ability to swiftly and resolutely respond to a potential outbreak. This virus has been synthetized faster than any other in the past and is resulting in vaccines before most attenuated candidates reach clinical trials. Here, synthetic biology has the opportunity to demonstrate its truest potential to the public and solidify a footing in the world of vaccines.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- CNRS UMR-3569, Innovative Vaccine Laboratory, Virology Department, Institut Pasteur, 75015 Paris, France
- Ecole du Val-de-Grâce, 75005 Paris, France
| | - Joseph Kononchik
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 8350 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
- Toxicology and Chemical Risk Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
4
|
Jordan-Paiz A, Franco S, Martínez MA. Impact of Synonymous Genome Recoding on the HIV Life Cycle. Front Microbiol 2021; 12:606087. [PMID: 33796084 PMCID: PMC8007914 DOI: 10.3389/fmicb.2021.606087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Synonymous mutations within protein coding regions introduce changes in DNA or messenger (m) RNA, without mutating the encoded proteins. Synonymous recoding of virus genomes has facilitated the identification of previously unknown virus biological features. Moreover, large-scale synonymous recoding of the genome of human immunodeficiency virus type 1 (HIV-1) has elucidated new antiviral mechanisms within the innate immune response, and has improved our knowledge of new functional virus genome structures, the relevance of codon usage for the temporal regulation of viral gene expression, and HIV-1 mutational robustness and adaptability. Continuous improvements in our understanding of the impacts of synonymous substitutions on virus phenotype - coupled with the decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments - have enhanced our ability to identify potential HIV-1 and host factors and other aspects involved in the infection process. In this review, we address how silent mutagenesis impacts HIV-1 phenotype and replication capacity. We also discuss the general potential of synonymous recoding of the HIV-1 genome to elucidate unknown aspects of the virus life cycle, and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|
5
|
Abstract
The development of safe and effective vaccines against viruses is central to disease control. With advancements in DNA synthesis technology, the production of synthetic viral genomes has fueled many research efforts that aim to generate attenuated viruses by introducing synonymous mutations. Elucidation of the mechanisms underlying virus attenuation through synonymous mutagenesis is revealing interesting new biology that can be exploited for vaccine development. Here, we review recent advancements in this field of synthetic virology and focus on the molecular mechanisms of attenuation by genetic recoding of viruses. We highlight the action of the zinc finger antiviral protein (ZAP) and RNase L, two proteins involved in the inhibition of viruses enriched for CpG and UpA dinucleotides, that are often the products of virus recoding algorithms. Additionally, we discuss current challenges in the field as well as studies that may illuminate how other host functions, such as translation, are potentially involved in the attenuation of recoded viruses.
Collapse
|
6
|
HIV-1 Lethality and Loss of Env Protein Expression Induced by Single Synonymous Substitutions in the Virus Genome Intronic-Splicing Silencer. J Virol 2020; 94:JVI.01108-20. [PMID: 32817222 DOI: 10.1128/jvi.01108-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Synonymous genome recoding has been widely used to study different aspects of virus biology. Codon usage affects the temporal regulation of viral gene expression. In this study, we performed synonymous codon mutagenesis to investigate whether codon usage affected HIV-1 Env protein expression and virus viability. We replaced the codons AGG, GAG, CCU, ACU, CUC, and GGG of the HIV-1 env gene with the synonymous codons CGU, GAA, CCG, ACG, UUA, and GGA, respectively. We found that recoding the Env protein gp120 coding region (excluding the Rev response element [RRE]) did not significantly affect virus replication capacity, even though we introduced 15 new CpG dinucleotides. In contrast, changing a single codon (AGG to CGU) located in the gp41 coding region (HXB2 env position 2125 to 2127), which was included in the intronic splicing silencer (ISS), completely abolished virus replication and Env expression. Computational analyses of this mutant revealed a severe disruption in the ISS RNA secondary structure. A variant that restored ISS secondary RNA structure also reestablished Env production and virus viability. Interestingly, this codon variant prevented both virus replication and Env translation in a eukaryotic expression system. These findings suggested that disrupting mRNA splicing was not the only means of inhibiting translation. Our findings indicated that synonymous gp120 recoding was not always deleterious to HIV-1 replication. Importantly¸ we found that disrupting an external ISS loop strongly affected HIV-1 replication and Env translation.IMPORTANCE Synonymous substitutions can influence virus phenotype, replication capacity, and virulence. In this study, we explored how synonymous codon mutations impacted HIV-1 Env protein expression and virus replication capacity. We changed a single codon, AGG to CGU, which was located in the gp41 coding region (env nucleotide residues 2125 to 2127) and was included in the HIV-1 intronic splicing silencer. This change completely abolished virus replication and Env expression. We also found that changing codon usage in the gp120 region by including an increased number of CpG dinucleotides did not significantly affect Env expression or virus viability. Our findings showed that synonymous recoding was useful for altering viral phenotype and exploring virus biology.
Collapse
|
7
|
Martínez MA, Jordan-Paiz A, Franco S, Nevot M. Synonymous genome recoding: a tool to explore microbial biology and new therapeutic strategies. Nucleic Acids Res 2020; 47:10506-10519. [PMID: 31584076 PMCID: PMC6846928 DOI: 10.1093/nar/gkz831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022] Open
Abstract
Synthetic genome recoding is a new means of generating designed organisms with altered phenotypes. Synonymous mutations introduced into the protein coding region tolerate modifications in DNA or mRNA without modifying the encoded proteins. Synonymous genome-wide recoding has allowed the synthetic generation of different small-genome viruses with modified phenotypes and biological properties. Recently, a decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments (e.g. lambda red recombination and CRISPR-based editing) have enabled the construction of an Escherichia coli variant with a 4-Mb synthetic synonymously recoded genome with a reduced number of sense codons (n = 59) encoding the 20 canonical amino acids. Synonymous genome recoding is increasing our knowledge of microbial interactions with innate immune responses, identifying functional genome structures, and strategically ameliorating cis-inhibitory signaling sequences related to splicing, replication (in eukaryotes), and complex microbe functions, unraveling the relevance of codon usage for the temporal regulation of gene expression and the microbe mutant spectrum and adaptability. New biotechnological and therapeutic applications of this methodology can easily be envisaged. In this review, we discuss how synonymous genome recoding may impact our knowledge of microbial biology and the development of new and better therapeutic methodologies.
Collapse
Affiliation(s)
- Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Maria Nevot
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|
8
|
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation; mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physical-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate. A distinction is made between mechanistically unavoidable and evolutionarily relevant mutation and recombination.
Collapse
|
9
|
HIV-1 Protease Evolvability Is Affected by Synonymous Nucleotide Recoding. J Virol 2018; 92:JVI.00777-18. [PMID: 29875244 DOI: 10.1128/jvi.00777-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022] Open
Abstract
One unexplored aspect of HIV-1 genetic architecture is how codon choice influences population diversity and evolvability. Here we compared the levels of development of HIV-1 resistance to protease inhibitors (PIs) between wild-type (WT) virus and a synthetic virus (MAX) carrying a codon-pair-reengineered protease sequence including 38 (13%) synonymous mutations. The WT and MAX viruses showed indistinguishable replication in MT-4 cells or peripheral blood mononuclear cells (PBMCs). Both viruses were subjected to serial passages in MT-4 cells, with selective pressure from the PIs atazanavir (ATV) and darunavir (DRV). After 32 successive passages, both the WT and MAX viruses developed phenotypic resistance to PIs (50% inhibitory concentrations [IC50s] of 14.6 ± 5.3 and 21.2 ± 9 nM, respectively, for ATV and 5.9 ± 1.0 and 9.3 ± 1.9, respectively, for DRV). Ultradeep sequence clonal analysis revealed that both viruses harbored previously described mutations conferring resistance to ATV and DRV. However, the WT and MAX virus proteases showed different resistance variant repertoires, with the G16E and V77I substitutions observed only in the WT and the L33F, S37P, G48L, Q58E/K, and L89I substitutions detected only in the MAX virus. Remarkably, the G48L and L89I substitutions are rarely found in vivo in PI-treated patients. The MAX virus showed significantly higher nucleotide and amino acid diversity of the propagated viruses with and without PIs (P < 0.0001), suggesting a higher selective pressure for change in this recoded virus. Our results indicate that the HIV-1 protease position in sequence space delineates the evolution of its mutant spectrum. Nevertheless, the investigated synonymously recoded variant showed mutational robustness and evolvability similar to those of the WT virus.IMPORTANCE Large-scale synonymous recoding of virus genomes is a new tool for exploring various aspects of virus biology. Synonymous virus genome recoding can be used to investigate how a virus's position in sequence space defines its mutant spectrum, evolutionary trajectory, and pathogenesis. In this study, we evaluated how synonymous recoding of the human immunodeficiency virus type 1 (HIV-1) protease affects the development of protease inhibitor (PI) resistance. HIV-1 protease is a main target of current antiretroviral therapies. Our present results demonstrate that the wild-type (WT) virus and a virus with recoded protease exhibited different patterns of resistance mutations after PI treatment. Nevertheless, the developed PI resistance phenotypes were indistinguishable between the recoded virus and the WT virus, suggesting that the HIV-1 strain with synonymously recoded protease and the WT virus are equally robust and evolvable.
Collapse
|