1
|
Jia Y, Li F, Liu Z, Liu S, Huang M, Gao X, Su X, Wang Z, Wang T. Interaction between the SFTSV envelope glycoprotein Gn and STING inhibits the formation of the STING-TBK1 complex and suppresses the NF-κB signaling pathway. J Virol 2024; 98:e0181523. [PMID: 38421179 PMCID: PMC10949458 DOI: 10.1128/jvi.01815-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/11/2024] [Indexed: 03/02/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus with high pathogenicity. There has been a gradual increase in the number of reported cases in recent years, with high morbidity and mortality rates. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway plays an important role in the innate immune defense activated by viral infection; however, the role of the cGAS-STING signaling pathway during SFTSV infection is still unclear. In this study, we investigated the relationship between SFTSV infection and cGAS-STING signaling. We found that SFTSV infection caused the release of mitochondrial DNA into the cytoplasm and inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. We found that the SFTSV envelope glycoprotein Gn was a potent inhibitor of the cGAS-STING pathway and blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Gn of SFTSV interacted with STING to inhibit STING dimerization and inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. In addition, Gn was found to be involved in inducing STING degradation, further inhibiting the downstream immune response. In conclusion, this study identified the important role of the glycoprotein Gn in the antiviral innate immune response and revealed a novel mechanism of immune escape for SFTSV. Moreover, this study increases the understanding of the pathogenic mechanism of SFTSV and provides new insights for further treatment of SFTS. IMPORTANCE Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly discovered virus associated with severe hemorrhagic fever in humans. However, the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway during SFTSV infection is still unclear. We found that SFTSV infection inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. In addition, SFTSV Gn blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Moreover, we determined that Gn of SFTSV inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. We found that the SFTSV envelope glycoprotein Gn is a potent inhibitor of the cGAS-STING pathway. In conclusion, this study highlights the crucial function of the glycoprotein Gn in the antiviral innate immune response and reveals a new method of immune escape of SFTSV.
Collapse
Affiliation(s)
- Yupei Jia
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Feifei Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zixiang Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Sihua Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoning Gao
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xin Su
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Chang M, Min YQ, Xu Z, Deng F, Wang H, Ning YJ. Host factor MxA restricts Dabie bandavirus infection by targeting the viral NP protein to inhibit NP-RdRp interaction and ribonucleoprotein activity. J Virol 2024; 98:e0156823. [PMID: 38054738 PMCID: PMC10805036 DOI: 10.1128/jvi.01568-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high case mortality rates, which is caused by Dabie bandavirus (DBV), a novel pathogen also termed as SFTS virus (SFTSV). Currently, no specific therapeutic drugs or vaccines are available for SFTS. Myxovirus resistance protein A (MxA) has been shown to inhibit multiple viral pathogens; however, the role of MxA in DBV infection is unknown. Here, we demonstrated that DBV stimulates MxA expression which, in turn, restricts DBV infection. Mechanistic target analysis revealed that MxA specifically interacts with the viral nucleocapsid protein (NP) in a manner independent of RNA. Minigenome reporter assay showed that in agreement with its targeting of NP, MxA inhibits DBV ribonucleoprotein (RNP) activity. In detail, MxA interacts with the NP N-terminal and disrupts the interaction of NP with the viral RNA-dependent RNA polymerase (RdRp) but not NP multimerization, the critical activities of NP for RNP formation and function. Furthermore, MxA N-terminal domain was identified as the functional domain inhibiting DBV infection, and, consistently, then was shown to interact with NP and obstruct the NP-RdRp interaction. Additionally, threonine 103 within the N-terminal domain is important for MxA inhibition to DBV, and its mutation (T103A) attenuates MxA binding to NP and obstruction of the NP-RdRp interaction. This study uncovers MxA inhibition of DBV with a series of functional and mechanistical analyses, providing insights into the virus-host interactions and probably helping inform the development of antiviral agents in the future.IMPORTANCEDBV/SFTSV is an emerging high-pathogenic virus. Since its first identification in China in 2009, cases of DBV infection have been reported in many other countries, posing a significant threat to public health. Uncovering the mechanisms of DBV-host interactions is necessary to understand the viral pathogenesis and host response and may advance the development of antiviral therapeutics. Here, we found that host factor MxA whose expression is induced by DBV restricts the virus infection. Mechanistically, MxA specifically interacts with the viral NP and blocks the NP-RdRp interaction, inhibiting the viral RNP activity. Further studies identified the key domain and amino acid residue required for MxA inhibition to DBV. Consistently, they were then shown to be important for MxA targeting of NP and obstruction of the NP-RdRp association. These findings unravel the restrictive role of MxA in DBV infection and the underlying mechanism, expanding our knowledge of the virus-host interactions.
Collapse
Affiliation(s)
- Meng Chang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qin Min
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhao Xu
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
3
|
Talukdar SN, Osan J, Ryan K, Grove B, Perley D, Kumar BD, Yang S, Dallman S, Hollingsworth L, Bailey KL, Mehedi M. RSV-induced Expanded Ciliated Cells Contribute to Bronchial Wall Thickening.. [DOI: 10.1101/2022.10.31.514471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractViral infection, particularly respiratory syncytial virus (RSV), causes inflammation in the bronchiolar airways (bronchial wall thickening, also known as bronchiolitis), reducing airflow through the bronchioles. This bronchial wall thickening is a common pathophysiological feature in RSV infection, but it causes more fatalities in infants than in children and adults. However, the molecular mechanism of RSV-induced bronchial wall thickening remains unknown, particularly in healthy adults. RSV infection in the airway epithelium of healthy adult bronchial cells reveals RSV-infects primarily ciliated cells. RSV infection expands the cell cytoskeleton substantially without compromising epithelial membrane integrity and ciliary functions. The RSV-induced actin cytoskeleton expansion increases ununiformly epithelial height, and cytoskeletal (actin polymerization), immunological (INF-L1, TNF-α, IP10/CXCL10), and viral (NS2) factors are probably responsible. Interestingly, RSV-infected cell cytoskeleton’s expansion resembles a noncanonical inflammatory phenotype, which contributes to bronchial wall thickening, and is termed cytoskeletal inflammation.Author SummaryRSV infects everyone. Although RSV-induced fatal pathophysiology (e.g., bronchiolitis) is more common in infants than adults, this bronchiolitis (or bronchial wall thickening) is common in the lower respiratory tract due to RSV infection in all ages. To determine the molecular mechanism of RSV-induced bronchial wall thickening, we infectedin vitroadult airway epithelium with RSV. We found that RSV-infection induced a substantial actin-cytoskeleton expansion, consequently increased the height of the epithelium. We identified actin polymerization, secretion of proinflammatory cytokines and chemokines, and viral proteins contribute to the RSV-induced cytoskeletal expansion. Our results suggest that RSV-induces a novel noncanonical epithelial host response termed cytoskeletal inflammation, which may contribute to bronchial wall thickening.
Collapse
|