1
|
Lücking D, Alarcón-Schumacher T, Erdmann S. Distribution and Implications of Haloarchaeal Plasmids Disseminated in Self-Encoded Plasmid Vesicles. Microorganisms 2023; 12:5. [PMID: 38276173 PMCID: PMC10818511 DOI: 10.3390/microorganisms12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Even though viruses and plasmids are both drivers of horizontal gene transfer, they differ fundamentally in their mode of transfer. Virus genomes are enclosed in virus capsids and are not dependent on cell-to-cell contacts for their dissemination. In contrast, the transfer of plasmids most often requires physical contact between cells. However, plasmid pR1SE of Halorubrum lacusprofundi is disseminated between cells, independent of cell-cell contacts, in specialized membrane vesicles that contain plasmid proteins. In this study, we searched for pR1SE-like elements in public databases and a metagenomics dataset from Australian salt lakes and identified 40 additional pR1SE-like elements in hypersaline environments worldwide. Herein, these elements are named apHPVs (archaeal plasmids of haloarchaea potentially transferred in plasmid vesicles). They share two sets of closely related proteins with conserved synteny, strongly indicating an organization into different functional clusters. We find that apHPVs, besides transferring themselves, have the potential to transfer large fragments of DNA between host cells, including virus defense systems. Most interestingly, apHPVs likely play an important role in the evolution of viruses and plasmids in haloarchaea, as they appear to recombine with both of them. This further supports the idea that plasmids and viruses are not distinct but closely related mobile genetic elements.
Collapse
Affiliation(s)
| | | | - Susanne Erdmann
- Max-Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| |
Collapse
|
2
|
Overton MS, Manuel RD, Lawrence CM, Snyder JC. Viruses of the Turriviridae: an emerging model system for studying archaeal virus-host interactions. Front Microbiol 2023; 14:1258997. [PMID: 37808280 PMCID: PMC10551542 DOI: 10.3389/fmicb.2023.1258997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Viruses have played a central role in the evolution and ecology of cellular life since it first arose. Investigations into viral molecular biology and ecological dynamics have propelled abundant progress in our understanding of living systems, including genetic inheritance, cellular signaling and trafficking, and organismal development. As well, the discovery of viral lineages that infect members of all three domains suggest that these lineages originated at the earliest stages of biological evolution. Research into these viruses is helping to elucidate the conditions under which life arose, and the dynamics that directed its early development. Archaeal viruses have only recently become a subject of intense study, but investigations have already produced intriguing and exciting results. STIV was originally discovered in Yellowstone National Park and has been the focus of concentrated research. Through this research, a viral genetic system was created, a novel lysis mechanism was discovered, and the interaction of the virus with cellular ESCRT machinery was revealed. This review will summarize the discoveries within this group of viruses and will also discuss future work.
Collapse
Affiliation(s)
- Michael S. Overton
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Manuel
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
| | - C. Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Jamie C. Snyder
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
| |
Collapse
|
3
|
Lang J, Zhen J, Li G, Li B, Xie J. Characterization and genome analysis of G1 sub-cluster mycobacteriophage Lang. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105417. [PMID: 36804468 DOI: 10.1016/j.meegid.2023.105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Phage therapy is revitalized as an alternative to antibiotics therapy against antimicrobials resistant pathogens. Mycobacteriophages are genetically diverse viruses that can specifically infect Mycobacterium genus including Mycobacterium tuberculosis and Mycobacterium smegmatis. Here, we isolated and annotated the genome of a mycobacteriophage Lang, a temperate mycobacteriophage isolated from the soil of Hohhot, Inner Mongolia, China, by using Mycolicibacterium smegmatis mc2 155 as the host. It belongs to the Siphoviridae family of Caudovirales as determined by transmission electron microscopy. The morphological characteristics and certain biological properties of the phage were considered in detail. Phage Lang genomes is 41,487 bp in length with 66.85% GC content and encodes 60 putative open reading frames and belongs to the G1 sub-cluster. Genome annotation indicated that genes for structure proteins, assembly proteins, replications/transcription and lysis of the host are present in function clucters. The genome sequence of phage Lang is more than 95% similar to that of mycobacteriophage Grizzly and Sweets, differing in substitutions, insertions and deletions in Lang. One-step growth curve revealed that Lang has a latent period of 30 min and a outbreak period of 90 min. The short latent period and rapid outbreak mark the unique properties of phage Lang, which can be another potential source for combating M. tuberculosis.
Collapse
Affiliation(s)
- Junying Lang
- Tuberculosis Department of Hohhot Second Hospital, Inner Mongolia, 010020, China; Hohhot Tuberculosis Prevention and Control Institute, Inner Mongolia, 010020, China
| | - Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Guimei Li
- Tuberculosis Department of Hohhot Second Hospital, Inner Mongolia, 010020, China
| | - Bin Li
- Intensive Care Medicine Department of Hohhot First Hospital, Inner Mongolia, 010020, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Baquero DP, Liu Y, Wang F, Egelman EH, Prangishvili D, Krupovic M. Structure and assembly of archaeal viruses. Adv Virus Res 2020; 108:127-164. [PMID: 33837715 DOI: 10.1016/bs.aivir.2020.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viruses of archaea represent one of the most enigmatic parts of the virosphere. Most of the characterized archaeal viruses infect extremophilic hosts and display remarkable diversity of virion morphotypes, many of which have never been observed among bacteriophages or viruses of eukaryotes. However, recent environmental studies have shown that archaeal viruses are widespread also in moderate ecosystems, where they play an important ecological role by influencing the turnover of microbial communities, with a global impact on the carbon and nitrogen cycles. In this review, we summarize recent advances in understanding the molecular details of virion organization and assembly of archaeal viruses. We start by briefly introducing the 20 officially recognized families of archaeal viruses and then outline the similarities and differences of archaeal virus assembly with the morphogenesis pathways used by bacterial and eukaryotic viruses, and discuss the evolutionary implications of these observations. Generally, the assembly of the icosahedral archaeal viruses closely follows the mechanisms employed by evolutionarily related bacterial and eukaryotic viruses with the HK97 fold and double jelly-roll major capsid proteins, emphasizing the overall conservation of these pathways over billions of years of evolution. By contrast, archaea-specific viruses employ unique virion assembly mechanisms. We also highlight some of the molecular adaptations underlying the stability of archaeal viruses in extreme environments. Despite considerable progress during the past few years, the archaeal virosphere continues to represent one of the least studied parts of the global virome, with many molecular features awaiting to be discovered and characterized.
Collapse
Affiliation(s)
- Diana P Baquero
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France; Sorbonne Université, Collège Doctoral, Paris, France
| | - Ying Liu
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - David Prangishvili
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France; Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France.
| |
Collapse
|
5
|
Sinha A, Eniyan K, Manohar P, Ramesh N, Bajpai U. Characterization and genome analysis of B1 sub-cluster mycobacteriophage PDRPxv. Virus Res 2020; 279:197884. [PMID: 31981773 DOI: 10.1016/j.virusres.2020.197884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 11/15/2022]
Abstract
Mycobacteriophages are viruses specific to mycobacteria that have gained attention as alternative therapeutic strategies for treating antibiotic-resistant infections. Mycobacteriophages are highly diverse and have been grouped into 29 clusters, 71 sub-clusters and 10 singletons based on the genome sequence. Here, we annotate the genome of PDRPxv, a lytic mycobacteriophage isolated from New Delhi; it belongs to the Siphoviridae family as determined by transmission electron microscopy. This phage survives at higher temperatures (up to 55 °C) and in alkaline conditions (up to pH11). PDRPxv phage genome is 69,171 bp in length with 66.35 % GC content and encodes 107 putative open reading frames and belongs to the B1 sub-cluster. Genome annotation indicated that genes for DNA encapsidation, structural proteins, replication/transcription and lysis of the host are present in functional clusters. Structural proteins encoded by Gp10-Gp12, Gp18, Gp25 and Gp28-Gp33 were identified by mass spectrometry. Interestingly, no gene encoding a holin function was found. Single-step growth curve revealed that PDRPxv has an adsorption time of 45 min, a latency time of 135 min and an average burst size of 99 phage particles per infected cell. The short latency period and the large burst size mark the lytic nature of the PDRPxv phage, which could therefore be a promising therapeutic candidate against pathogenic Mycobacterium species.
Collapse
Affiliation(s)
- Avni Sinha
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi) Govindpuri, Kalkaji, New-Delhi, 110019, India
| | - Kandasamy Eniyan
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi) Govindpuri, Kalkaji, New-Delhi, 110019, India; Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Prasanth Manohar
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Nachimuthu Ramesh
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi) Govindpuri, Kalkaji, New-Delhi, 110019, India.
| |
Collapse
|
6
|
Abstract
One of the most prominent features of archaea is the extraordinary diversity of their DNA viruses. Many archaeal viruses differ substantially in morphology from bacterial and eukaryotic viruses and represent unique virus families. The distinct nature of archaeal viruses also extends to the gene composition and architectures of their genomes and the properties of the proteins that they encode. Environmental research has revealed prominent roles of archaeal viruses in influencing microbial communities in ocean ecosystems, and recent metagenomic studies have uncovered new groups of archaeal viruses that infect extremophiles and mesophiles in diverse habitats. In this Review, we summarize recent advances in our understanding of the genomic and morphological diversity of archaeal viruses and the molecular biology of their life cycles and virus-host interactions, including interactions with archaeal CRISPR-Cas systems. We also examine the potential origins and evolution of archaeal viruses and discuss their place in the global virosphere.
Collapse
|
7
|
Isolation and Characterization of Metallosphaera Turreted Icosahedral Virus, a Founding Member of a New Family of Archaeal Viruses. J Virol 2017; 91:JVI.00925-17. [PMID: 28768871 DOI: 10.1128/jvi.00925-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/25/2017] [Indexed: 11/20/2022] Open
Abstract
Our understanding of archaeal virus diversity and structure is just beginning to emerge. Here we describe a new archaeal virus, tentatively named Metallosphaera turreted icosahedral virus (MTIV), that was isolated from an acidic hot spring in Yellowstone National Park, USA. Two strains of the virus were identified and were found to replicate in an archaeal host species closely related to Metallosphaera yellowstonensis Each strain encodes a 9.8- to 9.9-kb linear double-stranded DNA (dsDNA) genome with large inverted terminal repeats. Each genome encodes 21 open reading frames (ORFs). The ORFs display high homology between the strains, but they are quite distinct from other known viral genes. The 70-nm-diameter virion is built on a T=28 icosahedral lattice. Both single particle cryo-electron microscopy and cryotomography reconstructions reveal an unusual structure that has 42 turret-like projections: 12 pentameric turrets positioned on the icosahedral 5-fold axes and 30 turrets with apparent hexameric symmetry positioned on the icosahedral 2-fold axes. Both the virion structural properties and the genome content support MTIV as the founding member of a new family of archaeal viruses.IMPORTANCE Many archaeal viruses are quite different from viruses infecting bacteria and eukaryotes. Initial characterization of MTIV reveals a virus distinct from other known bacterial, eukaryotic, and archaeal viruses; this finding suggests that viruses infecting Archaea are still an understudied group. As the first known virus infecting a Metallosphaera sp., MTIV provides a new system for exploring archaeal virology by examining host-virus interactions and the unique features of MTIV structure-function relationships. These studies will likely expand our understanding of virus ecology and evolution.
Collapse
|
8
|
Lee ML, Hsu WL, Wang CY, Chen HY, Lin FY, Chang MH, Chang HY, Wong ML, Chan KW. Goatpoxvirus ATPase activity is increased by dsDNA and decreased by zinc ion. Virus Genes 2016; 52:625-32. [PMID: 27146321 DOI: 10.1007/s11262-016-1349-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/08/2016] [Indexed: 11/30/2022]
Abstract
Viral-encoded ATPase can act as a part of molecular motor in genome packaging of DNA viruses, such as vaccinia virus and adenovirus, by ATP hydrolysis and interaction with DNA. Poxviral ATPase (also called A32) is involved in genomic double-stranded DNA (dsDNA) encapsidation, and inhibition of the expression of A32 causes formation of immature virions lacking viral DNA. However, the role of A32 in goatpoxvirus genome packaging and its dsDNA binding property are not known. In this study, purified recombinant goatpoxvirus A32 protein (rA32) was examined for its dsDNA binding property as well as the effect of dsDNA on ATP hydrolysis. We found that rA32 could bind dsDNA, and its ATPase activity was significant increased with dsDNA binding. Effects of magnesium and calcium ions on ATP hydrolysis were investigated also. The ATPase activity was dramatically enhanced by dsDNA in the presence of Mg(2+); in contrast, ATPase function was not altered by Ca(2+). Furthermore, the enzyme activity of rA32 was completely blocked by Zn(2+). Regarding DNA-protein interaction, the rA32-ATP-Mg(2+) showed lower dsDNA binding affinity than that of rA32-ATP-Ca(2+). The DNA-protein binding was stronger in the presence of zinc ion. Our results implied that A32 may play a role in viral genome encapsidation and DNA condensation.
Collapse
Affiliation(s)
- Ming-Liang Lee
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, 60061, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Veterinary Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Chi-Young Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Hui-Yu Chen
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, 60061, Taiwan
| | - Fong-Yuan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Ming-Huang Chang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, 60061, Taiwan
| | | | - Min-Liang Wong
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Kun-Wei Chan
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, 60061, Taiwan.
| |
Collapse
|
9
|
Shu D, Pi F, Wang C, Zhang P, Guo P. New approach to develop ultra-high inhibitory drug using the power function of the stoichiometry of the targeted nanomachine or biocomplex. Nanomedicine (Lond) 2016; 10:1881-97. [PMID: 26139124 DOI: 10.2217/nnm.15.37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS To find methods for potent drug development by targeting to biocomplex with high copy number. METHODS Phi29 DNA packaging motor components with different stoichiometries were used as model to assay virion assembly with Yang Hui's Triangle [Formula: see text], where Z = stoichiometry, M = drugged subunits per biocomplex, p and q are the fraction of drugged and undrugged subunits in the population. RESULTS Inhibition efficiency follows a power function. When number of drugged subunits to block the function of the complex K = 1, the uninhibited biocomplex equals q(z), demonstrating the multiplicative effect of stoichiometry on inhibition with stoichiometry 1000 > 6 > 1. Complete inhibition of virus replication was found when Z = 6. CONCLUSION Drug inhibition potency depends on the stoichiometry of the targeted components of the biocomplex or nanomachine. The inhibition effect follows a power function of the stoichiometry of the target biocomplex.
Collapse
Affiliation(s)
- Dan Shu
- Department of Pharmaceutical Sciences, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Fengmei Pi
- Department of Pharmaceutical Sciences, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Department of Biostatistics & Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peng Zhang
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Peixuan Guo
- Department of Pharmaceutical Sciences, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
10
|
Structure-Based Mutagenesis of Sulfolobus Turreted Icosahedral Virus B204 Reveals Essential Residues in the Virion-Associated DNA-Packaging ATPase. J Virol 2015; 90:2729-39. [PMID: 26699645 DOI: 10.1128/jvi.02435-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Sulfolobus turreted icosahedral virus (STIV), an archaeal virus that infects the hyperthermoacidophile Sulfolobus solfataricus, is one of the most well-studied viruses of the domain Archaea. STIV shares structural, morphological, and sequence similarities with viruses from other domains of life, all of which are thought to belong to the same viral lineage. Several of these common features include a conserved coat protein fold, an internal lipid membrane, and a DNA-packaging ATPase. B204 is the ATPase encoded by STIV and is thought to drive packaging of viral DNA during the replication process. Here, we report the crystal structure of B204 along with the biochemical analysis of B204 mutants chosen based on structural information and sequence conservation patterns observed among members of the same viral lineage and the larger FtsK/HerA superfamily to which B204 belongs. Both in vitro ATPase activity assays and transfection assays with mutant forms of B204 confirmed the essentiality of conserved and nonconserved positions. We also have identified two distinct particle morphologies during an STIV infection that differ in the presence or absence of the B204 protein. The biochemical and structural data presented here are not only informative for the STIV replication process but also can be useful in deciphering DNA-packaging mechanisms for other viruses belonging to this lineage. IMPORTANCE STIV is a virus that infects a host from the domain Archaea that replicates in high-temperature, acidic environments. While STIV has many unique features, there exist several striking similarities between this virus and others that replicate in different environments and infect a broad range of hosts from Bacteria and Eukarya. Aside from structural features shared by viruses from this lineage, there exists a significant level of sequence similarity between the ATPase genes carried by these different viruses; this gene encodes an enzyme thought to provide energy that drives DNA packaging into the virion during infection. The experiments described here highlight the elements of this enzyme that are essential for proper function and also provide supporting evidence that B204 is present in the mature STIV virion.
Collapse
|
11
|
Veesler D, Kearney BM, Johnson JE. Integration of X-ray crystallography and electron cryo-microscopy in the analysis of virus structure and function. CRYSTALLOGR REV 2015. [DOI: 10.1080/0889311x.2015.1038530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Snyder JC, Bolduc B, Young MJ. 40 Years of archaeal virology: Expanding viral diversity. Virology 2015; 479-480:369-78. [PMID: 25866378 DOI: 10.1016/j.virol.2015.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/07/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
The first archaeal virus was isolated over 40 years ago prior to the recognition of the three domain structure of life. In the ensuing years, our knowledge of Archaea and their viruses has increased, but they still remain the most mysterious of life's three domains. Currently, over 100 archaeal viruses have been discovered, but few have been described in biochemical or structural detail. However, those that have been characterized have revealed a new world of structural, biochemical and genetic diversity. Several model systems for studying archaeal virus-host interactions have been developed, revealing evolutionary linkages between viruses infecting the three domains of life, new viral lysis systems, and unusual features of host-virus interactions. It is likely that the study of archaeal viruses will continue to provide fertile ground for fundamental discoveries in virus diversity, structure and function.
Collapse
Affiliation(s)
- Jamie C Snyder
- Department of Biological Sciences, California State Polytechnic University - Pomona, Pomona, CA, USA
| | - Benjamin Bolduc
- Departments of Plant Sciences and Microbiology, Montana State University, Bozeman, MT, USA
| | - Mark J Young
- Departments of Plant Sciences and Microbiology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
13
|
Atanasova NS, Senčilo A, Pietilä MK, Roine E, Oksanen HM, Bamford DH. Comparison of lipid-containing bacterial and archaeal viruses. Adv Virus Res 2015; 92:1-61. [PMID: 25701885 DOI: 10.1016/bs.aivir.2014.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lipid-containing bacteriophages were discovered late and considered to be rare. After further phage isolations and the establishment of the domain Archaea, several new prokaryotic viruses with lipids were observed. Consequently, the presence of lipids in prokaryotic viruses is reasonably common. The wealth of information about how prokaryotic viruses use their lipids comes from a few well-studied model viruses (PM2, PRD1, and ϕ6). These bacteriophages derive their lipid membranes selectively from the host during the virion assembly process which, in the case of PM2 and PRD1, culminates in the formation of protein capsid with an inner membrane, and for ϕ6 an outer envelope. Several inner membrane-containing viruses have been described for archaea, and their lipid acquisition models are reminiscent to those of PM2 and PRD1. Unselective acquisition of lipids has been observed for bacterial mycoplasmaviruses and archaeal pleolipoviruses, which resemble each other by size, morphology, and life style. In addition to these shared morphotypes of bacterial and archaeal viruses, archaea are infected by viruses with unique morphotypes, such as lemon-shaped, helical, and globular ones. It appears that structurally related viruses may or may not have a lipid component in the virion, suggesting that the significance of viral lipids might be to provide viruses extended means to interact with the host cell.
Collapse
Affiliation(s)
- Nina S Atanasova
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ana Senčilo
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maija K Pietilä
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Elina Roine
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hanna M Oksanen
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Dennis H Bamford
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Hong C, Oksanen HM, Liu X, Jakana J, Bamford DH, Chiu W. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus. PLoS Biol 2014; 12:e1002024. [PMID: 25514469 PMCID: PMC4267777 DOI: 10.1371/journal.pbio.1002024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/03/2014] [Indexed: 02/01/2023] Open
Abstract
Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.
Collapse
Affiliation(s)
- Chuan Hong
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hanna M. Oksanen
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Xiangan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joanita Jakana
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dennis H. Bamford
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Wah Chiu
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
15
|
Rzechorzek NJ, Blackwood JK, Bray SM, Maman JD, Pellegrini L, Robinson NP. Structure of the hexameric HerA ATPase reveals a mechanism of translocation-coupled DNA-end processing in archaea. Nat Commun 2014; 5:5506. [PMID: 25420454 PMCID: PMC4376295 DOI: 10.1038/ncomms6506] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/07/2014] [Indexed: 11/25/2022] Open
Abstract
The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualises at atomic resolution the N-terminal HerA-ATP Synthase (HAS) domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.
Collapse
Affiliation(s)
- Neil J Rzechorzek
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - John K Blackwood
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sian M Bray
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Joseph D Maman
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Nicholas P Robinson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
16
|
Happonen LJ, Erdmann S, Garrett RA, Butcher SJ. Adenosine triphosphatases of thermophilic archaeal double-stranded DNA viruses. Cell Biosci 2014; 4:37. [PMID: 25105011 PMCID: PMC4124505 DOI: 10.1186/2045-3701-4-37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 06/13/2014] [Indexed: 12/02/2022] Open
Abstract
Adenosine triphosphatases (ATPases) of double-stranded (ds) DNA archaeal viruses are structurally related to the AAA+ hexameric helicases and translocases. These ATPases have been implicated in viral life cycle functions such as DNA entry into the host, and viral genome packaging into preformed procapsids. We summarize bioinformatical analyses of a wide range of archaeal ATPases, and review the biochemical and structural properties of those archaeal ATPases that have measurable ATPase activity. We discuss their potential roles in genome delivery into the host, virus assembly and genome packaging in comparison to hexameric helicases and packaging motors from bacteriophages.
Collapse
Affiliation(s)
- Lotta J Happonen
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Susanne Erdmann
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Roger A Garrett
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Sarah J Butcher
- Institute of Biotechnology, University of Helsinki, (Viikinkaari 1), P.O. Box 65, FI-00014 Helsinki, Finland
| |
Collapse
|
17
|
Abstract
The Archaea-and their viruses-remain the most enigmatic of life's three domains. Once thought to inhabit only extreme environments, archaea are now known to inhabit diverse environments. Even though the first archaeal virus was described over 40 years ago, only 117 archaeal viruses have been discovered to date. Despite this small number, these viruses have painted a portrait of enormous morphological and genetic diversity. For example, research centered around the various steps of the archaeal virus life cycle has led to the discovery of unique mechanisms employed by archaeal viruses during replication, maturation, and virion release. In many instances, archaeal virus proteins display very low levels of sequence homology to other proteins listed in the public database, and therefore, structural characterization of these proteins has played an integral role in functional assignment. These structural studies have not only provided insights into structure-function relationships but have also identified links between viruses across all three domains of life.
Collapse
Affiliation(s)
- Nikki Dellas
- Thermal Biology Institute and Departments of.,Plant Sciences and
| | - Jamie C Snyder
- Thermal Biology Institute and Departments of.,Plant Sciences and
| | - Benjamin Bolduc
- Thermal Biology Institute and Departments of.,Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717;
| | - Mark J Young
- Thermal Biology Institute and Departments of.,Plant Sciences and
| |
Collapse
|
18
|
Peralta B, Gil-Carton D, Castaño-Díez D, Bertin A, Boulogne C, Oksanen HM, Bamford DH, Abrescia NGA. Mechanism of membranous tunnelling nanotube formation in viral genome delivery. PLoS Biol 2013; 11:e1001667. [PMID: 24086111 PMCID: PMC3782422 DOI: 10.1371/journal.pbio.1001667] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 08/15/2013] [Indexed: 11/19/2022] Open
Abstract
In internal membrane-containing viruses, a lipid vesicle enclosed by the icosahedral capsid protects the genome. It has been postulated that this internal membrane is the genome delivery device of the virus. Viruses built with this architectural principle infect hosts in all three domains of cellular life. Here, using a combination of electron microscopy techniques, we investigate bacteriophage PRD1, the best understood model for such viruses, to unveil the mechanism behind the genome translocation across the cell envelope. To deliver its double-stranded DNA, the icosahedral protein-rich virus membrane transforms into a tubular structure protruding from one of the 12 vertices of the capsid. We suggest that this viral nanotube exits from the same vertex used for DNA packaging, which is biochemically distinct from the other 11. The tube crosses the capsid through an aperture corresponding to the loss of the peripentonal P3 major capsid protein trimers, penton protein P31 and membrane protein P16. The remodeling of the internal viral membrane is nucleated by changes in osmolarity and loss of capsid-membrane interactions as consequence of the de-capping of the vertices. This engages the polymerization of the tail tube, which is structured by membrane-associated proteins. We have observed that the proteo-lipidic tube in vivo can pierce the gram-negative bacterial cell envelope allowing the viral genome to be shuttled to the host cell. The internal diameter of the tube allows one double-stranded DNA chain to be translocated. We conclude that the assembly principles of the viral tunneling nanotube take advantage of proteo-lipid interactions that confer to the tail tube elastic, mechanical and functional properties employed also in other protein-membrane systems.
Collapse
Affiliation(s)
- Bibiana Peralta
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Derio, Spain
| | | | - Daniel Castaño-Díez
- Center for Cellular Imaging and Nano-Analitics (C-CINA) Biozentrum, University of Basel, Basel, Switzerland
| | - Aurelie Bertin
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université de Paris–Sud, Orsay, France
| | - Claire Boulogne
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université de Paris–Sud, Orsay, France
| | - Hanna M. Oksanen
- Institute of Biotechnology and Department of Biosciences, Viikki Biocenter, University of Helsinki, Finland
| | - Dennis H. Bamford
- Institute of Biotechnology and Department of Biosciences, Viikki Biocenter, University of Helsinki, Finland
| | - Nicola G. A. Abrescia
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- * E-mail:
| |
Collapse
|
19
|
Guo P, Schwartz C, Haak J, Zhao Z. Discovery of a new motion mechanism of biomotors similar to the earth revolving around the sun without rotation. Virology 2013; 446:133-43. [PMID: 24074575 PMCID: PMC3941703 DOI: 10.1016/j.virol.2013.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/27/2013] [Accepted: 07/21/2013] [Indexed: 12/14/2022]
Abstract
Biomotors have been classified into linear and rotational motors. For 35 years, it has been popularly believed that viral dsDNA-packaging apparatuses are pentameric rotation motors. Recently, a third class of hexameric motor has been found in bacteriophage phi29 that utilizes a mechanism of revolution without rotation, friction, coiling, or torque. This review addresses how packaging motors control dsDNA one-way traffic; how four electropositive layers in the channel interact with the electronegative phosphate backbone to generate four steps in translocating one dsDNA helix; how motors resolve the mismatch between 10.5 bases and 12 connector subunits per cycle of revolution; and how ATP regulates sequential action of motor ATPase. Since motors with all number of subunits can utilize the revolution mechanism, this finding helps resolve puzzles and debates concerning the oligomeric nature of packaging motors in many phage systems. This revolution mechanism helps to solve the undesirable dsDNA supercoiling issue involved in rotation.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiotechnology Center, and Markey Cancer Center, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|