1
|
Grimes SL, Heaton BE, Anderson ML, Burke K, Stevens L, Lu X, Heaton NS, Denison MR, Anderson-Daniels J. The coronavirus nsp14 exoribonuclease interface with the cofactor nsp10 is essential for efficient virus replication and enzymatic activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615217. [PMID: 39386528 PMCID: PMC11463354 DOI: 10.1101/2024.09.26.615217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Coronaviruses (CoVs) encode nonstructural proteins (nsps) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease (ExoN) in nsp14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The in vitro enzymatic activity of nsp14 ExoN is enhanced in the presence of the cofactor nsp10. We introduced alanine substitutions in nsp14 of murine hepatitis virus (MHV) at the nsp14-10 interface and recovered mutant viruses with a range of impairments in replication and in vitro biochemical exonuclease activity. Two of these substitutions, nsp14 K7A and D8A, had impairments intermediate between WT-MHV nsp14 and the known ExoN(-) D89A/E91A nsp14 catalytic inactivation mutant. All introduced nsp14-10 interface alanine substitutions impaired in vitro exonuclease activity. Passage of the K7A and D8A mutant viruses selected second-site non-synonymous mutations in nsp14 associated with improved mutant virus replication and exonuclease activity. These results confirm the essential role of the nsp14-nsp10 interaction for efficient enzymatic activity and virus replication, identify proximal and long-distance determinants of nsp14-nsp10 interaction, and support targeting the nsp14-10 interface for viral inhibition and attenuation. IMPORTANCE Coronavirus replication requires assembly of a replication transcription complex composed of nonstructural proteins (nsp), including polymerase, helicase, exonuclease, capping enzymes, and non-enzymatic cofactors. The coronavirus nsp14 exoribonuclease mediates several functions in the viral life cycle including genomic and subgenomic RNA synthesis, RNA recombination, RNA proofreading and high-fidelity replication, and native resistance to many nucleoside analogs. The nsp-14 exonuclease activity in vitro requires the non-enzymatic co-factor nsp10, but the determinants and importance the nsp14-10 interactions during viral replication have not been defined. Here we show that for the coronavirus murine hepatitis virus, nsp14 residues at the nsp14-10 interface are essential for efficient viral replication and in vitro exonuclease activity. These results shed new light on the requirements for protein interactions within the coronavirus replication transcription complex, and they may reveal novel non active-site targets for virus inhibition and attenuation.
Collapse
|
2
|
Grimes SL, Denison MR. The Coronavirus helicase in replication. Virus Res 2024; 346:199401. [PMID: 38796132 PMCID: PMC11177069 DOI: 10.1016/j.virusres.2024.199401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
The coronavirus nonstructural protein (nsp) 13 encodes an RNA helicase (nsp13-HEL) with multiple enzymatic functions, including unwinding and nucleoside phosphatase (NTPase) activities. Attempts for enzymatic inactivation have defined the nsp13-HEL as a critical enzyme for viral replication and a high-priority target for antiviral development. Helicases have been shown to play numerous roles beyond their canonical ATPase and unwinding activities, though these functions are just beginning to be explored in coronavirus biology. Recent genetic and biochemical studies, as well as work in structurally-related helicases, have provided evidence that supports new hypotheses for the helicase's potential role in coronavirus replication. Here, we review several aspects of the coronavirus nsp13-HEL, including its reported and proposed functions in viral replication and highlight fundamental areas of research that may aid the development of helicase inhibitors.
Collapse
Affiliation(s)
- Samantha L Grimes
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mark R Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Samrat SK, Kumar P, Liu Y, Chen K, Lee H, Li Z, Chen Y, Li H. An ISG15-Based High-Throughput Screening Assay for Identification and Characterization of SARS-CoV-2 Inhibitors Targeting Papain-like Protease. Viruses 2024; 16:1239. [PMID: 39205213 PMCID: PMC11359932 DOI: 10.3390/v16081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Emergence of newer variants of SARS-CoV-2 underscores the need for effective antivirals to complement the vaccination program in managing COVID-19. The multi-functional papain-like protease (PLpro) of SARS-CoV-2 is an essential viral protein that not only regulates the viral replication but also modulates the host immune system, making it a promising therapeutic target. To this end, we developed an in vitro interferon stimulating gene 15 (ISG15)-based Förster resonance energy transfer (FRET) assay and screened the National Cancer Institute (NCI) Diversity Set VI compound library, which comprises 1584 small molecules. Subsequently, we assessed the PLpro enzymatic activity in the presence of screened molecules. We identified three potential PLpro inhibitors, namely, NSC338106, 651084, and 679525, with IC50 values in the range from 3.3 to 6.0 µM. These molecules demonstrated in vitro inhibition of the enzyme activity and exhibited antiviral activity against SARS-CoV-2, with EC50 values ranging from 0.4 to 4.6 µM. The molecular docking of all three small molecules to PLpro suggested their specificity towards the enzyme's active site. Overall, our study contributes promising prospects for further developing potential antivirals to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Prashant Kumar
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Yuchen Liu
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Ke Chen
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy and Biophysics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Zhong Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Yin Chen
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (P.K.); (Y.L.); (K.C.); (Z.L.); (Y.C.)
- Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson, AZ 85721, USA
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Davies JP, Plate L. The glycoprotein quality control factor Malectin promotes coronavirus replication and viral protein biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597051. [PMID: 38895409 PMCID: PMC11185542 DOI: 10.1101/2024.06.02.597051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Coronaviruses (CoV) rewire host protein homeostasis (proteostasis) networks through interactions between viral nonstructural proteins (nsps) and host factors to promote infection. With the emergence of SARS-CoV-2, it is imperative to characterize host interactors shared across nsp homologs. Using quantitative proteomics and functional genetic screening, we identify conserved proteostasis interactors of nsp2 and nsp4 that serve pro-viral roles during infection of murine hepatitis virus - a model betacoronavirus. We uncover a glycoprotein quality control factor, Malectin (MLEC), which significantly reduces infectious titers when knocked down. During infection, nsp2 interacts with MLEC-associated proteins and the MLEC-interactome is drastically altered, stabilizing association with the Oligosaccheryltransferase (OST) complex, a crucial component of viral glycoprotein production. MLEC promotes viral protein levels and genome replication through its quality control activity. Lastly, we show MLEC promotes SARS-CoV-2 replication. Our results reveal a role for MLEC in mediating CoV infection and identify a potential target for pan-CoV antivirals.
Collapse
Affiliation(s)
- Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
- Vanderbilt Institute of Infection, Immunology and Inflammation, Nashville, TN, 37235
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
- Vanderbilt Institute of Infection, Immunology and Inflammation, Nashville, TN, 37235
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37235
| |
Collapse
|
5
|
Zhou B, Chen D, Zhang T, Song C, Zhang X, Lin L, Huang J, Peng X, Liu Y, Wu G, Li J, Chen W. Recent advancements in the discovery of small-molecule non-nucleoside inhibitors targeting SARS-CoV-2 RdRp. Biomed Pharmacother 2024; 171:116180. [PMID: 38266622 DOI: 10.1016/j.biopha.2024.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 plays a pivotal role in the life cycle of the novel coronavirus and stands as a significant and promising target for anti-SARS-CoV-2 drugs. Non-nucleoside inhibitors (NNIs), as a category of compounds directed against SARS-CoV-2 RdRp, exhibit a unique and highly effective mechanism, effectively overcoming various factors contributing to drug resistance against nucleoside inhibitors (NIs). This review investigates various NNIs, including both natural and synthetic inhibitors, that closely interacting with the SARS-CoV-2 RdRp with valid evidences from in vitro and in silico studies.
Collapse
Affiliation(s)
- Bangdi Zhou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Dianming Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Tingyan Zhang
- School of Nusing, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenggui Song
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Xianwu Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Leying Lin
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Jiuzhong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Yuanchang Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Gaorong Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Jingyuan Li
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Weiming Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
6
|
Grimes SL, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, Pruijssers AJ, Agostini ML, Abu-Shmais A, Lu X, Darst SA, Campbell E, Denison MR. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. mBio 2023; 14:e0106023. [PMID: 37338298 PMCID: PMC10470589 DOI: 10.1128/mbio.01060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/21/2023] Open
Abstract
Coronaviruses (CoVs) encode nonstructural proteins 1-16 (nsps 1-16) which form replicase complexes that mediate viral RNA synthesis. Remdesivir (RDV) is an adenosine nucleoside analog antiviral that inhibits CoV RNA synthesis. RDV resistance mutations have been reported only in the nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp). We here show that a substitution mutation in the nsp13-helicase (nsp13-HEL A335V) of the betacoronavirus murine hepatitis virus (MHV) that was selected during passage with the RDV parent compound confers partial RDV resistance independently and additively when expressed with co-selected RDV resistance mutations in the nsp12-RdRp. The MHV A335V substitution did not enhance replication or competitive fitness compared to WT MHV and remained sensitive to the active form of the cytidine nucleoside analog antiviral molnupiravir (MOV). Biochemical analysis of the SARS-CoV-2 helicase encoding the homologous substitution (A336V) demonstrates that the mutant protein retained the ability to associate with the core replication proteins nsps 7, 8, and 12 but had impaired helicase unwinding and ATPase activity. Together, these data identify a novel determinant of nsp13-HEL enzymatic activity, define a new genetic pathway for RDV resistance, and demonstrate the importance of surveillance for and testing of helicase mutations that arise in SARS-CoV-2 genomes. IMPORTANCE Despite the development of effective vaccines against COVID-19, the continued circulation and emergence of new variants support the need for antivirals such as RDV. Understanding pathways of antiviral resistance is essential for surveillance of emerging variants, development of combination therapies, and for identifying potential new targets for viral inhibition. We here show a novel RDV resistance mutation in the CoV helicase also impairs helicase functions, supporting the importance of studying the individual and cooperative functions of the replicase nonstructural proteins 7-16 during CoV RNA synthesis. The homologous nsp13-HEL mutation (A336V) has been reported in the GISAID database of SARS-CoV-2 genomes, highlighting the importance of surveillance of and genetic testing for nucleoside analog resistance in the helicase.
Collapse
Affiliation(s)
- Samantha L. Grimes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Young J. Choi
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Anoosha Banerjee
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, New York, USA
| | - Gabriel Small
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Jordan Anderson-Daniels
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer Gribble
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrea J. Pruijssers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, USA
| | - Maria L. Agostini
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexandra Abu-Shmais
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Elizabeth Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Mark R. Denison
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Huang HX, Zhao CC, Lei XX, Zhang XY, Li YY, Lan T, Zhao BP, Lu JY, Sun WC, Lu HJ, Jin NY. Swine acute diarrhoea syndrome coronavirus (SADS-CoV) Nsp5 antagonizes type I interferon signaling by cleaving DCP1A. Front Immunol 2023; 14:1196031. [PMID: 37283741 PMCID: PMC10239798 DOI: 10.3389/fimmu.2023.1196031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Swine acute diarrhoea syndrome coronavirus (SADS-CoV), which is a recently discovered enteric coronavirus, is the major aetiological agent that causes severe clinical diarrhoea and intestinal pathological damage in pigs, and it has caused significant economic losses to the swine industry. Nonstructural protein 5, also called 3C-like protease, cleaves viral polypeptides and host immune-related molecules to facilitate viral replication and immune evasion. Here, we demonstrated that SADS-CoV nsp5 significantly inhibits the Sendai virus (SEV)-induced production of IFN-β and inflammatory cytokines. SADS-CoV nsp5 targets and cleaves mRNA-decapping enzyme 1a (DCP1A) via its protease activity to inhibit the IRF3 and NF-κB signaling pathways in order to decrease IFN-β and inflammatory cytokine production. We found that the histidine 41 and cystine 144 residues of SADS-CoV nsp5 are critical for its cleavage activity. Additionally, a form of DCP1A with a mutation in the glutamine 343 residue is resistant to nsp5-mediated cleavage and has a stronger ability to inhibit SADS-CoV infection than wild-type DCP1A. In conclusion, our findings reveal that SADS-CoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by alpha coronaviruses.
Collapse
Affiliation(s)
- Hai-xin Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Chen-chen Zhao
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Xiao-xiao Lei
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Xin-yu Zhang
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Yu-ying Li
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Tian Lan
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Bao-peng Zhao
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Jing-yi Lu
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Wen-chao Sun
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Hui-jun Lu
- Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ning-yi Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
8
|
Harrison CM, Doster JM, Landwehr EH, Kumar NP, White EJ, Beachboard DC, Stobart CC. Evaluating the Virology and Evolution of Seasonal Human Coronaviruses Associated with the Common Cold in the COVID-19 Era. Microorganisms 2023; 11:microorganisms11020445. [PMID: 36838410 PMCID: PMC9961755 DOI: 10.3390/microorganisms11020445] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Approximately 15-30% of all cases of the common cold are due to human coronavirus infections. More recently, the emergence of the more severe respiratory coronaviruses, SARS-CoV and MERS-CoV, have highlighted the increased pathogenic potential of emergent coronaviruses. Lastly, the current emergence of SARS-CoV-2 has demonstrated not only the potential for significant disease caused by emerging coronaviruses, but also the capacity of novel coronaviruses to promote pandemic spread. Largely driven by the global response to the COVID-19 pandemic, significant research in coronavirus biology has led to advances in our understanding of these viruses. In this review, we evaluate the virology, emergence, and evolution of the four endemic coronaviruses associated with the common cold, their relationship to pandemic SARS-CoV-2, and discuss the potential for future emergent human coronaviruses.
Collapse
Affiliation(s)
- Cameron M. Harrison
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Jayden M. Doster
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Emily H. Landwehr
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Nidhi P. Kumar
- Department of Biology, DeSales University, Central Valley, PA 18034, USA
| | - Ethan J. White
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Dia C. Beachboard
- Department of Biology, DeSales University, Central Valley, PA 18034, USA
| | - Christopher C. Stobart
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
- Correspondence:
| |
Collapse
|
9
|
Shiraz R, Tripathi S. Enhanced recombination among Omicron subvariants of SARS-CoV-2 contributes to viral immune escape. J Med Virol 2023; 95:e28519. [PMID: 36691935 DOI: 10.1002/jmv.28519] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Genetic recombination is an important driver of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution, which requires the coinfection of a single host cell with different SARS-CoV-2 strains. To understand the emergence and prevalence of recombinant SARS-CoV-2 lineages through time and space, we analyzed SARS-CoV-2 genome sequences collected from November 2019 to July 2022. We observed an extraordinary increase in the emergence of SARS-CoV-2 recombinant lineages during the Omicron wave, particularly in Northern America and Europe. This phenomenon was independent of the sequencing frequency or genetic diversity of circulating SARS-CoV-2 strains. The recombination breakpoints were more prevalent in the 3'-untranslated region of the viral genome. Importantly, we noted the enrichment of certain amino acids in the Spike protein of recombinant lineages, which have been reported to confer immune escape from neutralizing antibodies and increase angiotensin-converting enzyme 2 receptor binding in some cases. We also observed I42V amino acid change genetically fixated in the NSP14 of the Omicron lineage, which needs further characterization for its potential role in enhanced recombination. Overall, we report the important and timely observation of accelerated recombination in the currently circulating SARS-CoV-2 Omicron variants and explore their potential contribution to viral fitness, particularly immune escape.
Collapse
Affiliation(s)
- Rishad Shiraz
- Microbiology and Cell Biology Department, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Microbiology and Cell Biology Department, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| |
Collapse
|