1
|
Haga K, Tokui T, Miyamoto K, Takai-Todaka R, Kudo S, Ishikawa A, Ishiyama R, Kato A, Yokoyama M, Katayama K, Nakanishi A. Neonatal Fc receptor is a functional receptor for classical human astrovirus. Genes Cells 2024. [PMID: 39266307 DOI: 10.1111/gtc.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 09/14/2024]
Abstract
Human astrovirus (HAstV) is a global cause of gastroenteritis in infants, the elderly, and the immunocompromised. However, the molecular mechanisms that control its susceptibility are not fully understood, as the functional receptor used by the virus has yet to be identified. Here, a genome-wide CRISPR-Cas9 library screen in Caco2 cells revealed that the neonatal Fc receptor (FcRn) can function as a receptor for classical HAstV (Mamastrovirus genotype 1). Deletion of FCGRT or B2M, which encode subunits of FcRn, rendered Caco2 cells and intestinal organoid cells resistant to HAstV infection. We also showed that human FcRn expression renders non-susceptible cells permissive to viral infection and that FcRn binds directly to the HAstV spike protein. Therefore, our findings provide insight into the entry mechanism of HAstV into susceptible cells. We anticipate that this information can be used to develop new therapies targeting human astroviruses, providing new strategies to treat this global health issue.
Collapse
Affiliation(s)
- Kei Haga
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Takashi Tokui
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kana Miyamoto
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Shiori Kudo
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Azusa Ishikawa
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Ryoka Ishiyama
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akiko Kato
- National Center for Geriatrics and Gerontology, Department of Aging Intervention, Laboratory of Gene Therapy, and Laboratory for Radiation safety, Aichi, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akira Nakanishi
- National Center for Geriatrics and Gerontology, Department of Aging Intervention, Laboratory of Gene Therapy, and Laboratory for Radiation safety, Aichi, Japan
- Department of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| |
Collapse
|
2
|
Flynn TG, Olortegui MP, Kosek MN. Viral gastroenteritis. Lancet 2024; 403:862-876. [PMID: 38340741 DOI: 10.1016/s0140-6736(23)02037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/17/2023] [Accepted: 09/18/2023] [Indexed: 02/12/2024]
Abstract
Since the discovery of norovirus in 1972 as a cause of what was contemporarily known as acute infectious non-bacterial gastroenteritis, scientific understanding of the viral gastroenteritides has continued to evolve. It is now recognised that a small number of viruses are the predominant cause of acute gastroenteritis worldwide, in both high-income and low-income settings. Although treatment is still largely restricted to the replacement of fluid and electrolytes, improved diagnostics have allowed attribution of illness, enabling both targeted treatment of individual patients and prioritisation of interventions for populations worldwide. Questions remain regarding specific genetic and immunological factors underlying host susceptibility, and the optimal clinical management of patients who are susceptible to severe or prolonged manifestations of disease. Meanwhile, the worldwide implementation of rotavirus vaccines has led to substantial reductions in morbidity and mortality, and spurred interest in vaccine development to diminish the impact of the most prevalent viruses that are implicated in this syndrome.
Collapse
Affiliation(s)
- Thomas G Flynn
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Bou JV, Taguwa S, Matsuura Y. Trick-or-Trap: Extracellular Vesicles and Viral Transmission. Vaccines (Basel) 2023; 11:1532. [PMID: 37896936 PMCID: PMC10611016 DOI: 10.3390/vaccines11101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid membrane-enclosed particles produced by most cells, playing important roles in various biological processes. They have been shown to be involved in antiviral mechanisms such as transporting antiviral molecules, transmitting viral resistance, and participating in antigen presentation. While viral transmission was traditionally thought to occur through independent viral particles, the process of viral infection is complex, with multiple barriers and challenges that viruses must overcome for successful infection. As a result, viruses exploit the intercellular communication pathways of EVs to facilitate cluster transmission, increasing their chances of infecting target cells. Viral vesicle transmission offers two significant advantages. Firstly, it enables the collective transmission of viral genomes, increasing the chances of infection and promoting interactions between viruses in subsequent generations. Secondly, the use of vesicles as vehicles for viral transmission provides protection to viral particles against environmental factors, while also expanding the cell tropism allowing viruses to reach cells in a receptor-independent manner. Understanding the role of EVs in viral transmission is crucial for comprehending virus evolution and developing innovative antiviral strategies, therapeutic interventions, and vaccine approaches.
Collapse
Affiliation(s)
- Juan-Vicente Bou
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuhei Taguwa
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Advanced Modalities and DDS, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Advanced Modalities and DDS, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Porto PS, Rivera A, Moonrinta R, Wobus CE. Entry and egress of human astroviruses. Adv Virus Res 2023; 117:81-119. [PMID: 37832992 DOI: 10.1016/bs.aivir.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Astroviruses encapsidate a positive-sense, single-stranded RNA genome into ∼30nm icosahedral particles that infect a wide range of mammalian and avian species, but their biology is not well understood. Human astroviruses (HAstV) are divided into three clades: classical HAstV serotypes 1-8, and novel or non-classical HAstV of the MLB and VA clades. These viruses are part of two genogroups and phylogenetically cluster with other mammalian astroviruses, highlighting their zoonotic potential. HAstV are a highly prevalent cause of nonbacterial gastroenteritis, primarily in children, the elderly and immunocompromised. Additionally, asymptomatic infections and extraintestinal disease (e.g., encephalitis), are also observed, mostly in immunocompetent or immunocompromised individuals, respectively. While these viruses are highly prevalent, no approved vaccines or antivirals are available to prevent or treat infections. This is in large part due to their understudied nature and the limited understanding of even very basic features of their life cycle and pathogenesis at the cellular and organismal level. This review will summarize molecular features of human astrovirus biology, pathogenesis, and tropism, and then focus on two stages of the viral life cycle, namely entry and egress, since these are proven targets for therapeutic interventions. We will further highlight gaps in knowledge in hopes of stimulating future research into these understudied viruses.
Collapse
Affiliation(s)
- Pedro Soares Porto
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Andres Rivera
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Rootjikarn Moonrinta
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states.
| |
Collapse
|