1
|
Hasan M, He Z, Jia M, Leung ACF, Natarajan K, Xu W, Yap S, Zhou F, Chen S, Su H, Zhu K, Su H. Dynamic expedition of leading mutations in SARS-CoV-2 spike glycoproteins. Comput Struct Biotechnol J 2024; 23:2407-2417. [PMID: 38882678 PMCID: PMC11176665 DOI: 10.1016/j.csbj.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the recent pandemic, has generated countless new variants with varying fitness. Mutations of the spike glycoprotein play a particularly vital role in shaping its evolutionary trajectory, as they have the capability to alter its infectivity and antigenicity. We present a time-resolved statistical method, Dynamic Expedition of Leading Mutations (deLemus), to analyze the evolutionary dynamics of the SARS-CoV-2 spike glycoprotein. The proposed L -index of the deLemus method is effective in quantifying the mutation strength of each amino acid site and outlining evolutionarily significant sites, allowing the comprehensive characterization of the evolutionary mutation pattern of the spike glycoprotein.
Collapse
Affiliation(s)
- Muhammad Hasan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhouyi He
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Mengqi Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Alvin C F Leung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | - Wentao Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shanqi Yap
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Feng Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shihong Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hailei Su
- Bengbu Hospital of Traditional Chinese Medicine, 4339 Huai-shang Road, Anhui 233080, China
| | - Kaicheng Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Haibin Su
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
2
|
Razzaq A, Disoma C, Iqbal S, Nisar A, Hameed M, Qadeer A, Waqar M, Mehmood SA, Gao L, Khan S, Xia Z. Genomic epidemiology and evolutionary dynamics of the Omicron variant of SARS-CoV-2 during the fifth wave of COVID-19 in Pakistan. Front Cell Infect Microbiol 2024; 14:1484637. [PMID: 39502171 PMCID: PMC11534695 DOI: 10.3389/fcimb.2024.1484637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed extraordinary challenges to global health systems and economies. The virus's rapid evolution has resulted in several variants of concern (VOCs), including the highly transmissible Omicron variant, characterized by extensive mutations. In this study, we investigated the genetic diversity, population differentiation, and evolutionary dynamics of the Omicron VOC during the fifth wave of COVID-19 in Pakistan. Methods A total of 954 Omicron genomes sequenced during the fifth wave of COVID-19 in Pakistan were analyzed. A Bayesian framework was employed for phylogenetic reconstructions, molecular dating, and population dynamics analysis. Results Using a population genomics approach, we analyzed Pakistani Omicron samples, revealing low within-population genetic diversity and significant structural variation in the spike (S) protein. Phylogenetic analysis showed that the Omicron variant in Pakistan originated from two distinct lineages, BA.1 and BA.2, which were introduced from South Africa, Thailand, Spain, and Belgium. Omicron-specific mutations, including those in the receptor-binding domain, were identified. The estimated molecular evolutionary rate was 2.562E-3 mutations per site per year (95% HPD interval: 8.8067E-4 to 4.1462E-3). Bayesian skyline plot analysis indicated a significant population expansion at the end of 2021, coinciding with the global Omicron outbreak. Comparative analysis with other VOCs showed Omicron as a highly divergent, monophyletic group, suggesting a unique evolutionary pathway. Conclusions This study provides a comprehensive overview of Omicron's genetic diversity, genomic epidemiology, and evolutionary dynamics in Pakistan, emphasizing the need for global collaboration in monitoring variants and enhancing pandemic preparedness.
Collapse
Affiliation(s)
- Aroona Razzaq
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Cyrollah Disoma
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Sonia Iqbal
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Muddassar Hameed
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Waqar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | | | - Lidong Gao
- Hunan Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
3
|
Freidel MR, Armen RS. Research Progress on Spike-Dependent SARS-CoV-2 Fusion Inhibitors and Small Molecules Targeting the S2 Subunit of Spike. Viruses 2024; 16:712. [PMID: 38793593 PMCID: PMC11125925 DOI: 10.3390/v16050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, extensive drug repurposing efforts have sought to identify small-molecule antivirals with various mechanisms of action. Here, we aim to review research progress on small-molecule viral entry and fusion inhibitors that directly bind to the SARS-CoV-2 Spike protein. Early in the pandemic, numerous small molecules were identified in drug repurposing screens and reported to be effective in in vitro SARS-CoV-2 viral entry or fusion inhibitors. However, given minimal experimental information regarding the exact location of small-molecule binding sites on Spike, it was unclear what the specific mechanism of action was or where the exact binding sites were on Spike for some inhibitor candidates. The work of countless researchers has yielded great progress, with the identification of many viral entry inhibitors that target elements on the S1 receptor-binding domain (RBD) or N-terminal domain (NTD) and disrupt the S1 receptor-binding function. In this review, we will also focus on highlighting fusion inhibitors that target inhibition of the S2 fusion function, either by disrupting the formation of the postfusion S2 conformation or alternatively by stabilizing structural elements of the prefusion S2 conformation to prevent conformational changes associated with S2 function. We highlight experimentally validated binding sites on the S1/S2 interface and on the S2 subunit. While most substitutions to the Spike protein to date in variants of concern (VOCs) have been localized to the S1 subunit, the S2 subunit sequence is more conserved, with only a few observed substitutions in proximity to S2 binding sites. Several recent small molecules targeting S2 have been shown to have robust activity over recent VOC mutant strains and/or greater broad-spectrum antiviral activity for other more distantly related coronaviruses.
Collapse
Affiliation(s)
| | - Roger S. Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, 901 Walnut St. Suite 918, Philadelphia, PA 19170, USA;
| |
Collapse
|
4
|
Oktavianthi S, Lages AC, Kusuma R, Kurniasih TS, Trimarsanto H, Andriani F, Rustandi D, Meriyanti T, Yusuf I, Malik SG, Jo J, Suriapranata I. Whole-Genome Sequencing and Mutation Analyses of SARS-CoV-2 Isolates from Indonesia. Pathogens 2024; 13:279. [PMID: 38668234 PMCID: PMC11053823 DOI: 10.3390/pathogens13040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 04/29/2024] Open
Abstract
The SARS-CoV-2 infection that caused the COVID-19 pandemic has become a significant public health concern. New variants with distinct mutations have emerged, potentially impacting its infectivity, immune evasion capacity, and vaccine response. A whole-genome sequencing study of 292 SARS-CoV-2 isolates collected from selected regions of Indonesia between January and October 2021 was performed to identify the distribution of SARS-CoV-2 variants and common mutations in Indonesia. During January-April 2021, Indonesian lineages B.1.466.2 and B.1.470 dominated, but from May 2021, Delta's AY.23 lineage outcompeted them. An analysis of 7515 published sequences from January 2021 to June 2022 revealed a decline in Delta in November 2021, followed by the emergence of Omicron variants in December 2021. We identified C241T (5'UTR), P314L (NSP12b), F106F (NSP3), and D614G (Spike) mutations in all sequences. The other common substitutions included P681R (76.4%) and T478K (60%) in Spike, D377Y in Nucleocapsid (61%), and I82T in Membrane (60%) proteins. Breakthrough infection and prolonged viral shedding cases were associated with Delta variants carrying the Spike T19R, G142D, L452R, T478K, D614G, P681R, D950N, and V1264L mutations. The dynamic of SARS-CoV-2 variants in Indonesia highlights the importance of continuous genomic surveillance in monitoring and identifying potential strains leading to disease outbreaks.
Collapse
Affiliation(s)
- Sukma Oktavianthi
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Aksar Chair Lages
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Rinaldy Kusuma
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Tri Shinta Kurniasih
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
- Menzies School of Health Research, Charles Darwin University, Darwin 0811, Australia
| | - Febi Andriani
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - David Rustandi
- Siloam Hospital Lippo Village, Tangerang 15810, Indonesia; (D.R.); (T.M.)
| | - Tandry Meriyanti
- Siloam Hospital Lippo Village, Tangerang 15810, Indonesia; (D.R.); (T.M.)
| | - Irawan Yusuf
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Safarina G. Malik
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Juandy Jo
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Ivet Suriapranata
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| |
Collapse
|
5
|
Ponpinit T, Joyjinda Y, Ampoot W, Yomrat S, Virojanapirom P, Ruchisrisarod C, Saraya AW, Hemachudha P, Hemachudha T. Spike S2 Subunit: Possible Target for Detecting Novel SARS-CoV-2 Variants with Multiple Mutations. Trop Med Infect Dis 2024; 9:50. [PMID: 38393139 PMCID: PMC10893286 DOI: 10.3390/tropicalmed9020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Novel SARS-CoV-2 variants have multiple mutations that may impact molecular diagnostics. The markedly conserved S2 subunit may be utilized to detect new variants. A comparison of 694 specimens (2019-2022) in Thailand using a commercial RT-PCR kit and the kit in combination with S2 primers and a probe was performed. Delayed amplification in ORF1ab was detected in one BA.4 omicron, whereas no amplification problem was encountered in the S2 target. There were no statistically significant differences in mean Ct value between the target genes (E, N, ORF1ab, and S2) and no significant differences in mean Ct value between the reagents. Furthermore, 230,821 nucleotide sequences submitted by 20 representative counties in each region (Jan-Oct 2022) have been checked for mutations in S2 primers and probe using PrimerChecker; there is a very low chance of encountering performance problems. The S2 primers and probe are still bound to the top five currently circulating variants in all countries and Thailand without mismatch recognition (Jun-Nov 2023). This study shows the possible benefits of detecting S2 in combination with simultaneously detecting three genes in a kit without affecting the Ct value of each target. The S2 subunit may be a promising target for the detection of SARS-CoV-2 variants with multiple mutations.
Collapse
Affiliation(s)
- Teerada Ponpinit
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand; (Y.J.); (W.A.); (S.Y.); (P.V.); (C.R.); (A.W.S.); (P.H.)
| | - Yutthana Joyjinda
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand; (Y.J.); (W.A.); (S.Y.); (P.V.); (C.R.); (A.W.S.); (P.H.)
| | - Weenassarin Ampoot
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand; (Y.J.); (W.A.); (S.Y.); (P.V.); (C.R.); (A.W.S.); (P.H.)
| | - Siriporn Yomrat
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand; (Y.J.); (W.A.); (S.Y.); (P.V.); (C.R.); (A.W.S.); (P.H.)
| | - Phatthamon Virojanapirom
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand; (Y.J.); (W.A.); (S.Y.); (P.V.); (C.R.); (A.W.S.); (P.H.)
| | - Chanida Ruchisrisarod
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand; (Y.J.); (W.A.); (S.Y.); (P.V.); (C.R.); (A.W.S.); (P.H.)
| | - Abhinbhen W. Saraya
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand; (Y.J.); (W.A.); (S.Y.); (P.V.); (C.R.); (A.W.S.); (P.H.)
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pasin Hemachudha
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand; (Y.J.); (W.A.); (S.Y.); (P.V.); (C.R.); (A.W.S.); (P.H.)
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thiravat Hemachudha
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand; (Y.J.); (W.A.); (S.Y.); (P.V.); (C.R.); (A.W.S.); (P.H.)
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Elko EA, Mead HL, Nelson GA, Zaia JA, Ladner JT, Altin JA. Recurrent SARS-CoV-2 mutations at Spike D796 evade antibodies from pre-Omicron convalescent and vaccinated subjects. Microbiol Spectr 2024; 12:e0329123. [PMID: 38189279 PMCID: PMC10871546 DOI: 10.1128/spectrum.03291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages of the Omicron variant rapidly became dominant in early 2022 and frequently cause human infections despite vaccination or prior infection with other variants. In addition to antibody-evading mutations in the receptor-binding domain, Omicron features amino acid mutations elsewhere in the Spike protein; however, their effects generally remain ill defined. The Spike D796Y substitution is present in all Omicron sub-variants and occurs at the same site as a mutation (D796H) selected during viral evolution in a chronically infected patient. Here, we map antibody reactivity to a linear epitope in the Spike protein overlapping position 796. We show that antibodies binding this region arise in pre-Omicron SARS-CoV-2 convalescent and vaccinated subjects but that both D796Y and D796H abrogate their binding. These results suggest that D796Y contributes to the fitness of Omicron in hosts with pre-existing immunity to other variants of SARS-CoV-2 by evading antibodies targeting this site.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved substantially through the coronavirus disease 2019 (COVID-19) pandemic: understanding the drivers and consequences of this evolution is essential for projecting the course of the pandemic and developing new countermeasures. Here, we study the immunological effects of a particular mutation present in the Spike protein of all Omicron strains and find that it prevents the efficient binding of a class of antibodies raised by pre-Omicron vaccination and infection. These findings reveal a novel consequence of a poorly understood Omicron mutation and shed light on the drivers and effects of SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Evan A. Elko
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Heather L. Mead
- The Translational Genomics Research Institute (TGen), Flagstaff, Arizona, USA
| | - Georgia A. Nelson
- The Translational Genomics Research Institute (TGen), Flagstaff, Arizona, USA
| | - John A. Zaia
- Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Jason T. Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - John A. Altin
- The Translational Genomics Research Institute (TGen), Flagstaff, Arizona, USA
| |
Collapse
|