1
|
Prem S, Remberger M, Alotaibi A, Lam W, Law AD, Kim DDH, Michelis FV, Al-Shaibani Z, Lipton JH, Mattsson J, Viswabandya A, Kumar R, Ellison C. Relationship between certain HLA alleles and the risk of cytomegalovirus reactivation following allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2022; 24:e13879. [PMID: 35706108 DOI: 10.1111/tid.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Evidence is emerging to support an association between certain HLA alleles and the risk of cytomegalovirus (CMV) reactivation following allogeneic HSCT (allo-HSCT). The primary aim of this study was to identify HLA alleles associated with resistance or susceptibility to CMV reactivation. METHODS We studied 586 adults who underwent allo-HSCT for high-risk hematological malignancies. High resolution HLA typing data was available for recipient and donor. HLA Class I and II alleles observed at a frequency of > 5% in our population, were included in the analysis. A CMV viremia level of more than 200 IU/ml on weekly monitoring was considered to be indicative of CMV reactivation. RESULTS The median follow-up time in surviving patients was 21 months (range 4-74 months). The cumulative incidence of CMV reactivation at 6 months in the entire cohort was 55% (95% CI 50.8%-59.2%). Mismatched donor, increasing recipient age, occurrence of AGVHD and recipient CMV seropositivity were associated with increased risk of CMV reactivation. HLA B*07:02 (HR 0.59, 95% CI 0.40-0.83) was associated with decreased risk of CMV reactivation. Patients who developed CMV reactivation had a lower incidence of relapse, higher transplant related mortality (TRM) and lower overall survival (OS) compared to those without CMV reactivation. There was an adverse correlation of OS and TRM with increasing numbers of CMV reactivations. CONCLUSION We observed that HLA B*07:02 was associated with decreased risk of CMV reactivation. CMV reactivation was associated with lower relapse post-transplant, but this did not translate into a survival benefit due to higher transplant related mortality. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shruti Prem
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mats Remberger
- Department of Medical Sciences, Uppsala University and KFUE, Uppsala University Hospital, Uppsala, Sweden
| | - Ahmad Alotaibi
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wilson Lam
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Arjun Datt Law
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dennis Dong Hwan Kim
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fotios V Michelis
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zeyad Al-Shaibani
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey Howard Lipton
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonas Mattsson
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Auro Viswabandya
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rajat Kumar
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Cynthia Ellison
- HLA Laboratory, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Host-Adapted Gene Families Involved in Murine Cytomegalovirus Immune Evasion. Viruses 2022; 14:v14010128. [PMID: 35062332 PMCID: PMC8781790 DOI: 10.3390/v14010128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Cytomegaloviruses (CMVs) are host species-specific and have adapted to their respective mammalian hosts during co-evolution. Host-adaptation is reflected by “private genes” that have specialized in mediating virus-host interplay and have no sequence homologs in other CMV species, although biological convergence has led to analogous protein functions. They are mostly organized in gene families evolved by gene duplications and subsequent mutations. The host immune response to infection, both the innate and the adaptive immune response, is a driver of viral evolution, resulting in the acquisition of viral immune evasion proteins encoded by private gene families. As the analysis of the medically relevant human cytomegalovirus by clinical investigation in the infected human host cannot make use of designed virus and host mutagenesis, the mouse model based on murine cytomegalovirus (mCMV) has become a versatile animal model to study basic principles of in vivo virus-host interplay. Focusing on the immune evasion of the adaptive immune response by CD8+ T cells, we review here what is known about proteins of two private gene families of mCMV, the m02 and the m145 families, specifically the role of m04, m06, and m152 in viral antigen presentation during acute and latent infection.
Collapse
|
3
|
Becker S, Fink A, Podlech J, Giese I, Schmiedeke JK, Bukur T, Reddehase MJ, Lemmermann NA. Positive Role of the MHC Class-I Antigen Presentation Regulator m04/gp34 of Murine Cytomegalovirus in Antiviral Protection by CD8 T Cells. Front Cell Infect Microbiol 2020; 10:454. [PMID: 32984075 PMCID: PMC7479846 DOI: 10.3389/fcimb.2020.00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
Murine cytomegalovirus (mCMV) codes for MHC class-I trafficking modulators m04/gp34, m06/gp48, and m152/gp40. By interacting with the MHC class-Iα chain, these proteins disconnect peptide-loaded MHC class-I (pMHC-I) complexes from the constitutive vesicular flow to the cell surface. Based on the assumption that all three inhibit antigen presentation, and thus the recognition of infected cells by CD8 T cells, they were referred to as “immunoevasins.” Improved antigen presentation mediated by m04 in the presence of m152 after infection with deletion mutant mCMV-Δm06W, compared to mCMV-Δm04m06 expressing only m152, led us to propose renaming these molecules “viral regulators of antigen presentation” (vRAP) to account for both negative and positive functions. In accordance with a positive function, m04-pMHC-I complexes were found to be displayed on the cell surface, where they are primarily known as ligands for Ly49 family natural killer (NK) cell receptors. Besides the established role of m04 in NK cell silencing or activation, an anti-immunoevasive function by activation of CD8 T cells is conceivable, because the binding site of m04 to MHC class-Iα appears not to mask the peptide binding site for T-cell receptor recognition. However, functional evidence was based on mCMV-Δm06W, a virus of recently doubted authenticity. Here we show that mCMV-Δm06W actually represents a mixture of an authentic m06 deletion mutant and a mutant with an accidental additional deletion of a genome region encompassing also gene m152. Reanalysis of previously published experiments for the authentic mutant in the mixture confirms the previously concluded positive vRAP function of m04.
Collapse
Affiliation(s)
- Sara Becker
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Annette Fink
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Irina Giese
- TRON - Translational Oncology, Medical Center of the Johannes Gutenberg-University Mainz gGmbH, Mainz, Germany
| | - Julia K Schmiedeke
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Thomas Bukur
- TRON - Translational Oncology, Medical Center of the Johannes Gutenberg-University Mainz gGmbH, Mainz, Germany
| | - Matthias J Reddehase
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Niels A Lemmermann
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
4
|
Grosso D, Leiby B, Carabasi M, Filicko-O'Hara J, Gaballa S, O'Hara W, Wagner JL, Flomenberg N. The Presence of a CMV Immunodominant Allele in the Recipient Is Associated With Increased Survival in CMV Positive Patients Undergoing Haploidentical Hematopoietic Stem Cell Transplantation. Front Oncol 2019; 9:888. [PMID: 31608225 PMCID: PMC6758597 DOI: 10.3389/fonc.2019.00888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022] Open
Abstract
Specific major histocompatibility (MHC) class I alleles dominate anti-CMV responses in a hierarchal manner. These CMV immunodominant (IMD) alleles are associated with a higher magnitude and frequency of cytotoxic lymphocyte responses as compared to other human leukocyte antigen (HLA) alleles. CMV reactivation has been associated with an increased incidence of graft-vs.-host disease and non-relapse mortality, as well as protection from relapse in HLA-matched HSCT settings. Less is known about the impact of CMV reactivation on these major outcomes after haploidentical (HI) HSCT, an increasingly applied therapeutic option. In HI HSCT, the efficiency of the immune response is decreased due to the immune suppression required to cross the MHC barrier as well as MHC mismatch between presenting and responding cells. We hypothesized that the presence of a CMV IMD allele would increase the efficiency of CMV responses after HI HSCT potentially impacting CMV-related outcomes. In this retrospective, multivariable review of 216 HI HSCT patients, we found that CMV+ recipients possessing at least 1 of 5 identified CMV IMD alleles had a lower hazard of death (HR = 0.40, p = 0.003) compared to CMV+ recipients not possessing a CMV IMD allele, and an overall survival rate similar to their CMV- counterparts. The analysis delineated subgroups within the CMV+ population at greater risk for death due to CMV reactivation.
Collapse
Affiliation(s)
- Dolores Grosso
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Benjamin Leiby
- Pharmacology and Experimental Therapeutics, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Matthew Carabasi
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Joanne Filicko-O'Hara
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Sameh Gaballa
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - William O'Hara
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - John L. Wagner
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Neal Flomenberg
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Cicin-Sain L. Cytomegalovirus memory inflation and immune protection. Med Microbiol Immunol 2019; 208:339-347. [PMID: 30972476 DOI: 10.1007/s00430-019-00607-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
Cytomegalovirus (CMV) infection induces powerful and sustained T-cell responses against a few selected immunodominant antigenic epitopes. This immune response was named memory inflation, because it does not contract in the long term, and may even expand over months and years of virus latency. It is by now understood that memory inflation does not occur at the expense of the naïve T-cell pool, but rather as a competitive selection process within the effector pool, where viral antigens with higher avidity of TCR binding and with earlier expression patterns outcompete those that are expressed later and bind TCRs less efficiently. It is also understood that inflationary epitopes require processing by the constitutive proteasome in non-hematopoietic cells, and this likely implies that memory inflation is fuelled by direct low-level antigenic expression in latently infected cells. This review proposes that these conditions make inflationary epitopes the optimal candidates for adoptive immunotherapy of CMV disease in the immunocompromised host. At present, functional target CMV epitopes have been defined only for the most common HLA haplotypes. Mapping the uncharacterized inflationary epitopes in less frequent HLAs may, thus, be a strategy for the identification of optimal immunotherapeutic targets in patients with uncommon haplotypes.
Collapse
Affiliation(s)
- Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany. .,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany. .,Centre for Individualised Infection Medicine (CIIM), A Joint Venture of HZI and MHH, Braunschweig, Germany. .,German Centre for Infection Research (DZIF), Hannover-Braunschweig site, Braunschweig, Germany.
| |
Collapse
|
6
|
Dekhtiarenko I, Ratts RB, Blatnik R, Lee LN, Fischer S, Borkner L, Oduro JD, Marandu TF, Hoppe S, Ruzsics Z, Sonnemann JK, Mansouri M, Meyer C, Lemmermann NAW, Holtappels R, Arens R, Klenerman P, Früh K, Reddehase MJ, Riemer AB, Cicin-Sain L. Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors. PLoS Pathog 2016; 12:e1006072. [PMID: 27977791 PMCID: PMC5158087 DOI: 10.1371/journal.ppat.1006072] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/17/2016] [Indexed: 12/30/2022] Open
Abstract
Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy. Experimental cytomegalovirus (CMV) based vaccine vectors have provided highly encouraging results as innovative vaccine formulations against deadly virus infections, such as Ebola or AIDS. Nevertheless, it has remained incompletely understood why CMV is so efficient at stimulating T-lymphocytes, the immune cells that recognize pathogens within infected cells. We have generated an array of CMV mutants expressing the same antigen in different genes or in different parts of the same gene. This allowed us to identify that the immediate environment of the antigen, rather than properties of the antigen itself, crucially determine the immune protection conferred by CMV-based vaccines, implying that optimal immunity depends on the ability of host cells to degrade CMV proteins into peptides, short units that are recognized by T-cells. Detailed analysis revealed that strong and sustained T-cell immunity occurs only when their antigenic targets are processed by a primitive cellular machinery that is present in all cells of the body, rather than by its newly-evolved counterpart, which is present only in specialized antigen-presenting cells. Most importantly, our results provide a simple strategy to develop improved CMV vaccines by positioning the antigenic peptides at the right spot in CMV proteins.
Collapse
Affiliation(s)
- Iryna Dekhtiarenko
- Department of Vaccinology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Renata Blatnik
- Immunotherapy and prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Lian N. Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sonja Fischer
- Department of Vaccinology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Borkner
- Department of Vaccinology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jennifer D. Oduro
- Department of Vaccinology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas F. Marandu
- Department of Vaccinology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Stephanie Hoppe
- Immunotherapy and prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Zsolt Ruzsics
- Institute for Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Julia K. Sonnemann
- Department of Vaccinology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mandana Mansouri
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | | | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Klaus Früh
- TomegaVax Inc., Portland, Oregon, United States of America
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Angelika B. Riemer
- Immunotherapy and prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover/Braunschweig, Germany
- Institute for Virology, Medical School Hannover, Germany
- * E-mail:
| |
Collapse
|
7
|
Effros RB. The silent war of CMV in aging and HIV infection. Mech Ageing Dev 2016; 158:46-52. [PMID: 26404009 PMCID: PMC4808485 DOI: 10.1016/j.mad.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/19/2022]
Abstract
Human cytomegalovirus (CMV), the prototypical β-herpervirus, is a widespread pathogen that establishes a lifelong latent infection in myeloid progenitor, and possibly other cells as well. Although immunocompetent individuals show mild or no symptoms despite periodic reactivation during myeloid cell differentiation, CMV is responsible for considerable morbidity and mortality in older adults and in persons chronically infected with HIV. Indeed, in these individuals, reactivation of CMV can cause serious complications. This review will focus of the effects of CMV during aging and HIV/AIDS, with particular attention to the cellular immunity and age-related pathology outcomes from this persistent infection. The impact of the long-term chronic exposure to CMV antigens on the expansion of CD8 T cells with features of replicative senescence will be highlighted.
Collapse
Affiliation(s)
- Rita B Effros
- Department of Pathology & Laboratory Medicine and UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Refining human T-cell immunotherapy of cytomegalovirus disease: a mouse model with 'humanized' antigen presentation as a new preclinical study tool. Med Microbiol Immunol 2016; 205:549-561. [PMID: 27539576 DOI: 10.1007/s00430-016-0471-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
With the cover headline 'T cells on the attack,' the journal Science celebrated individualized cancer immunotherapy by adoptive transfer of T cells as the 'Breakthrough of the Year' 2013 (J. Couzin-Frankel in Science 342:1432-1433, 2013). It is less well recognized and appreciated that individualized T cell immunotherapy of cytomegalovirus (CMV) infection is approaching clinical application for preventing CMV organ manifestations, interstitial CMV pneumonia in particular. This coincident medical development is particularly interesting as reactivated CMV infection is a major viral complication in the state of transient immunodeficiency after the therapy of hematopoietic malignancies by hematopoietic cell transplantation (HCT). It may thus be attractive to combine T cell immunotherapy of 'minimal residual disease/leukemia (MRD)' and CMV-specific T cell immunotherapy to combat both risks in HCT recipients simultaneously, and ideally with T cells derived from the respective HLA-matched HCT donor. Although clinical trials of human CMV-specific T cell immunotherapy were promising in that the incidence of virus reactivation and disease was found to be reduced with statistical significance, animal models are still instrumental for providing 'proof of concept' by directly documenting the prevention of viral multiple-organ histopathology and organ failure under controlled conditions of the absence versus presence of the therapy, which obviously is not feasible in an individual human patient. Further, animal models can make predictions regarding parameters that determine the efficacy of T cell immunotherapy for improved study design in clinical investigations, and they allow for manipulating host and virus genetics. The latter is of particular value as it opens the possibility for epitope specificity controls that are inherently missing in clinical trials. Here, we review a recently developed new mouse model that is more approximated to human CMV-specific T cell immunotherapy by 'humanizing' antigen presentation using antigenically chimeric CMV and HLA-transgenic mice to allow for an in vivo testing of the antiviral function of human CMV-specific T cells. As an important new message, this model predicts that T cell immunotherapy is most efficient if CD4 T cells are equipped with a transduced TCR directed against an epitope presented by MHC/HLA class-I for local delivery of 'cognate' help to CD8 effector T cells at infected MHC/HLA class-II-negative host tissue cells.
Collapse
|
9
|
Holtappels R, Lemmermann NAW, Podlech J, Ebert S, Reddehase MJ. Reconstitution of CD8 T Cells Protective against Cytomegalovirus in a Mouse Model of Hematopoietic Cell Transplantation: Dynamics and Inessentiality of Epitope Immunodominance. Front Immunol 2016; 7:232. [PMID: 27379095 PMCID: PMC4905951 DOI: 10.3389/fimmu.2016.00232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/30/2016] [Indexed: 12/02/2022] Open
Abstract
Successful reconstitution of cytomegalovirus (CMV)-specific CD8+ T cells by hematopoietic cell transplantation (HCT) gives a favorable prognosis for the control of CMV reactivation and prevention of CMV disease after hematoablative therapy of hematopoietic malignancies. In the transient immunocompromised state after HCT, pre-emptive cytoimmunotherapy with viral epitope-specific effector or memory CD8+ T cells is a promising option to speed up antiviral control. Despite high-coding capacity of CMVs and a broad CD8+ T-cell response on the population level, which reflects polymorphism in major histocompatibility complex class-I (MHC-I) glycoproteins, the response in terms of quantity of CD8+ T cells in any individual is directed against a limited set of CMV-encoded epitopes selected for presentation by the private repertoire of MHC-I molecules. Such epitopes are known as “immunodominant” epitopes (IDEs). Besides host immunogenetics, genetic variance in CMV strains harbored as latent viruses by an individual HCT recipient can also determine the set of IDEs, which complicates a “personalized immunotherapy.” It is, therefore, an important question if IDE-specific CD8+ T-cell reconstitution after HCT is critical or dispensable for antiviral control. As viruses with targeted mutations of IDEs cannot be experimentally tested in HCT patients, we employed the well-established mouse model of HCT. Notably, control of murine CMV (mCMV) after HCT was comparably efficient for IDE-deletion mutant mCMV-Δ4IDE and the corresponding IDE-expressing revertant virus mCMV-Δ4IDE-rev. Thus, antigenicity-loss mutations in IDEs do not result in loss-of-function of a polyclonal CD8+ T-cell population. Although IDE deletion was not associated with global changes in the response to non-IDE epitopes, the collective of non-IDE-specific CD8+ T-cells infiltrates infected tissue and confines infection within nodular inflammatory foci. We conclude from the model, and predict also for human CMV, that there is no need to exclusively aim for IDE-specific immunoreconstitution.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Niels A W Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Stefan Ebert
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| |
Collapse
|
10
|
Thomas S, Klobuch S, Podlech J, Plachter B, Hoffmann P, Renzaho A, Theobald M, Reddehase MJ, Herr W, Lemmermann NAW. Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice. PLoS Pathog 2015; 11:e1005049. [PMID: 26181057 PMCID: PMC4504510 DOI: 10.1371/journal.ppat.1005049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/25/2015] [Indexed: 01/05/2023] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) can cause severe disease in recipients of hematopoietic stem cell transplantation. Although preclinical research in murine models as well as clinical trials have provided 'proof of concept' for infection control by pre-emptive CD8 T-cell immunotherapy, there exists no predictive model to experimentally evaluate parameters that determine antiviral efficacy of human T cells in terms of virus control in functional organs, prevention of organ disease, and host survival benefit. We here introduce a novel mouse model for testing HCMV epitope-specific human T cells. The HCMV UL83/pp65-derived NLV-peptide was presented by transgenic HLA-A2.1 in the context of a lethal infection of NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV, mCMV-NLV. Scenarios of HCMV-seropositive and -seronegative human T-cell donors were modeled by testing peptide-restimulated and T-cell receptor-transduced human T cells, respectively. Upon transfer, the T cells infiltrated host tissues in an epitope-specific manner, confining the infection to nodular inflammatory foci. This resulted in a significant reduction of viral load, diminished organ pathology, and prolonged survival. The model has thus proven its potential for a preclinical testing of the protective antiviral efficacy of HCMV epitope-specific human T cells in the evaluation of new approaches to an immunotherapy of CMV disease. Pre-emptive CD8 T-cell therapy of human cytomegalovirus (HCMV) disease in immunocompromised recipients of hematopoietic stem cell transplantation gave promising results in clinical trials, but limited efficacy and the need of HCMV-seropositive memory cell donors has so far prevented adoptive cell transfer from becoming clinical routine. Further development is currently hampered by the lack of experimental animal models that allow preclinical testing of the protective efficacy of human T cells in functional organs. While humanized mouse models with human tissue implants are technically and statistically demanding, and are limited to studying human T-cell activation and local virus control in the implants, a more feasible model for control of systemic infection and prevention of multiple-organ CMV disease is regrettably missing. Here we introduce such a model based on infection of genetically immunocompromised, HLA-A2.1-transgenic NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV engineered to express the HCMV NLV-peptide epitope. Mimicking the scenario of HCMV-unexperienced donors, human T cells transduced with a human T-cell receptor specific for HLA-A.2.1-presented NLV peptide controlled systemic infection and moderated organ disease resulting in a survival benefit. The model promises to become instrumental in defining T-cell properties that determine their protective efficacy for a further development of adoptive immunotherapy of post-transplantation CMV infection.
Collapse
Affiliation(s)
- Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- * E-mail:
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Bodo Plachter
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Angelique Renzaho
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Theobald
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
11
|
Arapović J, Arapović M, Golemac M, Traven L, Tomac J, Rumora D, Ražić E, Krmpotić A, Jonjić S. The specific NK cell response in concert with perforin prevents CD8(+) T cell-mediated immunopathology after mouse cytomegalovirus infection. Med Microbiol Immunol 2015; 204:335-44. [PMID: 25809566 DOI: 10.1007/s00430-015-0409-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/13/2015] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) and CD8(+) T cells play a crucial role in the control of mouse cytomegalovirus (MCMV) infection. These effector cells exert their functions by releasing antiviral cytokines and by cytolytic mechanisms including perforin activation. In addition to their role in virus control, NK cells play an immunoregulatory role since they shape the CD8(+) T cell response to MCMV. To investigate the role of perforin-dependent cytolytic mechanism in NK cell modulation of CD8(+) T cell response during acute MCMV infection, we have used perforin-deficient C57BL/6 mice (Prf1(-/-)) and have shown that virus control by CD8(+) T cells in Prf1(-/-) mice is more efficient if NK cells are activated by the engagement of the Ly49H receptor with the m157 MCMV protein. A lack of perforin results in severe liver inflammation after MCMV infection, which is characterized by immunopathological lesions that are more pronounced in Prf1(-/-) mice infected with virus unable to activate NK cells. This immunopathology is caused by an abundant infiltration of activated CD8(+) T cells. The depletion of CD8(+) T cells has markedly reduced pathohistological lesions in the liver and improved the survival of Prf1(-/-) mice in spite of an increased viral load. Altogether, the results of our study suggest that a lack of perforin and absence of the specific activation of NK cells during acute MCMV infection lead to an unleashed CD8(+) T cell response that is detrimental for the host.
Collapse
Affiliation(s)
- Jurica Arapović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka, Croatia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ameres S, Besold K, Plachter B, Moosmann A. CD8 T cell-evasive functions of human cytomegalovirus display pervasive MHC allele specificity, complementarity, and cooperativity. THE JOURNAL OF IMMUNOLOGY 2014; 192:5894-905. [PMID: 24808364 DOI: 10.4049/jimmunol.1302281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunoevasive proteins ("evasins") of human CMV (HCMV) modulate stability and localization of MHC class I (MHC I) molecules, and their supply of antigenic peptides. However, it is largely unknown to what extent these evasins interfere with recognition by virus-specific CD8 T cells. We analyzed the recognition of HCMV-infected cells by a panel of CD8 T cells restricted through one of nine different MHC I allotypes. We employed a set of HCMV mutants deleted for three or all four of the MHC I modulatory genes US2, US3, US6, and US11. We found that different HCMV evasins exhibited different allotype-specific patterns of interference with CD8 T cell recognition of infected cells. In contrast, recognition of different epitopes presented by the same given MHC I allotype was uniformly reduced. For some allotypes, single evasins largely abolished T cell recognition; for others, a concerted action of evasins was required to abrogate recognition. In infected cells whose Ag presentation efficiency had been enhanced by IFN-γ pretreatment, HCMV evasins cooperatively impared T cell recognition for several different MHC I allotypes. T cell recognition and MHC I surface expression under influence of evasins were only partially congruent, underscoring the necessity to probe HCMV immunomodulation using specific T cells. We conclude that the CD8 T cell evasins of HCMV display MHC I allotype specificity, complementarity, and cooperativity.
Collapse
Affiliation(s)
- Stefanie Ameres
- Klinische Kooperationsgruppe Immunonkologie, Medizinische Klinik III, Klinikum der Universität München, 81377 Munich, Germany; Abteilung Genvektoren, Helmholtz Zentrum München, 81377 Munich, Germany; German Center for Infection Research, 81675 Munich, Germany; and
| | - Katrin Besold
- Institut für Virologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, 55131 Mainz, Germany
| | - Bodo Plachter
- Institut für Virologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, 55131 Mainz, Germany
| | - Andreas Moosmann
- Klinische Kooperationsgruppe Immunonkologie, Medizinische Klinik III, Klinikum der Universität München, 81377 Munich, Germany; Abteilung Genvektoren, Helmholtz Zentrum München, 81377 Munich, Germany; German Center for Infection Research, 81675 Munich, Germany; and
| |
Collapse
|
13
|
Terrazzini N, Kern F. Cell-mediated immunity to human CMV infection: a brief overview. F1000PRIME REPORTS 2014; 6:28. [PMID: 24860650 PMCID: PMC4018181 DOI: 10.12703/p6-28] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cellular immune response to human cytomegalovirus (HCMV) has different components originating from both the adaptive and innate immune systems. There is a significant global interest in understanding how the immune system keeps HCMV under control, in particular with a view to situations where HCMV infection causes severe damage. Such settings include HIV infection, transplantation, and maybe most importantly perinatal medicine, HCMV being a major cause of sometimes catastrophic birth defects. The development of an active HCMV vaccine has proven very difficult but some recent successes raise hope that this might be available in the future. However, adoptive transfer of HCMV-specific T cells has been successfully used to prevent CMV disease after bone marrow transplantation for many years. In fact, the CD8 T cell response has been thought to be the most important effector response, with numerous reports focusing on specific T cell subsets recognizing select peptides in select human leukocyte antigen (HLA) contexts. However, it is becoming increasingly clear now that other cells, first and foremost CD4 T cells, but also gamma/delta (γ/δ) T cells and natural killer cells, are critically involved in the cellular immune response to HCMV. This commentary aims to provide a brief overview of the field.
Collapse
Affiliation(s)
- Nadia Terrazzini
- Pathogen Host Interaction Group (PHI), Immunology, Division of Medicine, Brighton and Sussex Medical SchoolBiology Road, Brighton, BN1 9PSUK
| | - Florian Kern
- Pathogen Host Interaction Group (PHI), Immunology, Division of Medicine, Brighton and Sussex Medical SchoolBiology Road, Brighton, BN1 9PSUK
| |
Collapse
|
14
|
Ameres S, Mautner J, Schlott F, Neuenhahn M, Busch DH, Plachter B, Moosmann A. Presentation of an immunodominant immediate-early CD8+ T cell epitope resists human cytomegalovirus immunoevasion. PLoS Pathog 2013; 9:e1003383. [PMID: 23717207 PMCID: PMC3662661 DOI: 10.1371/journal.ppat.1003383] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 04/10/2013] [Indexed: 02/07/2023] Open
Abstract
Control of human cytomegalovirus (HCMV) depends on CD8+ T cell responses that are shaped by an individual's repertoire of MHC molecules. MHC class I presentation is modulated by a set of HCMV-encoded proteins. Here we show that HCMV immunoevasins differentially impair T cell recognition of epitopes from the same viral antigen, immediate-early 1 (IE-1), that are presented by different MHC class I allotypes. In the presence of immunoevasins, HLA-A- and HLA-B-restricted T cell clones were ineffective, but HLA-C*0702-restricted T cell clones recognized and killed infected cells. Resistance of HLA-C*0702 to viral immunoevasins US2 and US11 was mediated by the alpha3 domain and C-terminal region of the HLA heavy chain. In healthy donors, HLA-C*0702-restricted T cells dominated the T cell response to IE-1. The same HLA-C allotype specifically protected infected cells from attack by NK cells that expressed a corresponding HLA-C-specific KIR. Thus, allotype-specific viral immunoevasion allows HCMV to escape control by NK cells and HLA-A- and HLA-B-restricted T cells, while the virus becomes selectively vulnerable to an immunodominant population of HLA-C-restricted T cells. Our work identifies a T cell population that may be of particular efficiency in HCMV-specific immunotherapy.
Collapse
Affiliation(s)
- Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Department of Medicine III, Klinikum der Universität München, and Department of Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- DZIF – German Center for Infection Research, Munich, Germany
| | - Josef Mautner
- DZIF – German Center for Infection Research, Munich, Germany
- Clinical Cooperation Group Pediatric Tumor Immunology, Helmholtz Zentrum München, and Children's Hospital, Technische Universität München, Munich, Germany
| | - Fabian Schlott
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Michael Neuenhahn
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Dirk H. Busch
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center, Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Department of Medicine III, Klinikum der Universität München, and Department of Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- DZIF – German Center for Infection Research, Munich, Germany
- * E-mail:
| |
Collapse
|
15
|
Busche A, Jirmo AC, Welten SPM, Zischke J, Noack J, Constabel H, Gatzke AK, Keyser KA, Arens R, Behrens GMN, Messerle M. Priming of CD8+ T cells against cytomegalovirus-encoded antigens is dominated by cross-presentation. THE JOURNAL OF IMMUNOLOGY 2013; 190:2767-77. [PMID: 23390296 DOI: 10.4049/jimmunol.1200966] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CMV can infect dendritic cells (DCs), and direct Ag presentation could, therefore, lead to the priming of CMV-specific CD8(+) T cells. However, CMV-encoded immune evasins severely impair Ag presentation in the MHC class I pathway; thus, it is widely assumed that cross-presentation drives the priming of antiviral T cells. We assessed the contribution of direct versus cross priming in mouse CMV (MCMV) infection using recombinant viruses. DCs infected with an MCMV strain encoding the gB498 epitope from HSV-1 were unable to stimulate in vitro naive gB498-specific CD8(+) T cells from TCR transgenic mice. Infection of C57BL/6 mice with this recombinant virus led, however, to the generation of abundant numbers of gB498-specific T cells in vivo. Of the DC subsets isolated from infected mice, only CD8α(+) DCs were able to stimulate naive T cells, suggesting that this DC subset cross-presents MCMV-encoded Ag in vivo. Upon infection of mice with MCMV mutants encoding Ag that can either be well or hardly cross-presented, mainly CD8(+) T cells specific for cross-presented epitopes were generated. Moreover, even in the absence of immune evasion genes interfering with MHC class I-mediated Ag presentation, priming of T cells to Ag that can only be presented directly was not observed. We conclude that the host uses mainly DCs capable of cross-presentation to induce the CMV-specific CD8(+) T cell response during primary, acute infection and discuss the implications for the development of a CMV vaccine.
Collapse
Affiliation(s)
- Andreas Busche
- Department of Virology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ebert S, Podlech J, Gillert-Marien D, Gergely KM, Büttner JK, Fink A, Freitag K, Thomas D, Reddehase MJ, Holtappels R. Parameters determining the efficacy of adoptive CD8 T-cell therapy of cytomegalovirus infection. Med Microbiol Immunol 2012; 201:527-39. [PMID: 22972232 DOI: 10.1007/s00430-012-0258-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 02/02/2023]
Abstract
Reactivation of latent cytomegalovirus (CMV) in the transient state of immunodeficiency after hematopoietic cell transplantation (HCT) is the most frequent and severe viral complication endangering leukemia therapy success. By infecting the bone marrow (BM) stroma of the transplantation recipient, CMV can directly interfere with BM repopulation by the transplanted donor-derived hematopoietic cells and thus delay immune reconstitution of the recipient. Cytopathogenic virus spread in tissues can result in CMV disease with multiple organ manifestations of which interstitial pneumonia is the most feared. There exists a 'window of risk' between hematoablative treatment and reconstitution of antiviral immunity after HCT, whereby timely reconstitution of antiviral CD8 T cells is a recognized positive prognostic parameter for the control of reactivated CMV infection and prevention of CMV disease. Supplementation of endogenous reconstitution by adoptive cell transfer of 'ready-to-go' effector and/or memory virus epitope-specific CD8 T cells is a therapeutic option to bridge the 'window of risk.' Preclinical research in murine models of CMV disease has been pivotal by providing 'proof of concept' for a benefit from CD8 T-cell therapy of HCT-associated CMV disease (reviewed in Holtappels et al. Med Microbiol Immunol 197:125-134, 2008). Here, we give an update of our previous review with focus on parameters that determine the efficacy of adoptive immunotherapy of CMV infection by antiviral CD8 T cells in the murine model.
Collapse
Affiliation(s)
- Stefan Ebert
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Murine cytomegalovirus immune evasion proteins operative in the MHC class I pathway of antigen processing and presentation: state of knowledge, revisions, and questions. Med Microbiol Immunol 2012; 201:497-512. [PMID: 22961127 DOI: 10.1007/s00430-012-0257-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 12/15/2022]
Abstract
Medical interest in cytomegalovirus (CMV) is based on lifelong neurological sequelae, such as sensorineural hearing loss and mental retardation, resulting from congenital infection of the fetus in utero, as well as on CMV disease with multiple organ manifestations and graft loss in recipients of hematopoietic cell transplantation or solid organ transplantation. CMV infection of transplantation recipients occurs consequent to reactivation of virus harbored in a latent state in the transplanted donor cells and tissues, or in the tissues of the transplantation recipient herself or himself. Hence, CMV infection is a paradigm for a viral infection that causes disease primarily in the immunocompromised host, while infection of the immunocompetent host is associated with only mild and nonspecific symptoms so that it usually goes unnoticed. Thus, CMV is kept under strict immune surveillance. These medical facts are in apparent conflict with the notion that CMVs in general, human CMV as well as animal CMVs, are masters of 'immune evasion', which during virus-host co-speciation have convergently evolved sophisticated mechanisms to avoid their recognition by innate and adaptive immunity of their respective host species, with viral genes apparently dedicated to serve just this purpose (Reddehase in Nat Rev Immunol 2:831-844, 2002). With focus on viral interference with antigen presentation to CD8 T cells in the preclinical model of murine CMV infection, we try here to shed some more light on the in vivo balance between host immune surveillance of CMV infection and viral 'immune evasion' strategies.
Collapse
|
18
|
Fink A, Lemmermann NAW, Gillert-Marien D, Thomas D, Freitag K, Böhm V, Wilhelmi V, Reifenberg K, Reddehase MJ, Holtappels R. Antigen presentation under the influence of 'immune evasion' proteins and its modulation by interferon-gamma: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells. Med Microbiol Immunol 2012; 201:513-25. [PMID: 22961126 DOI: 10.1007/s00430-012-0256-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 11/24/2022]
Abstract
Cytomegalovirus (CMV) disease with multiple organ manifestations is the most feared viral complication limiting the success of hematopoietic cell transplantation as a therapy of hematopoietic malignancies. A timely endogenous reconstitution of CD8 T cells controls CMV infection, and adoptive transfer of antiviral CD8 T cells is a therapeutic option to prevent CMV disease by bridging the gap between an early CMV reactivation and delayed endogenous reconstitution of protective immunity. Preclinical research in murine models has provided 'proof of concept' for CD8 T-cell therapy of CMV disease. Protection by CD8 T cells appears to be in conflict with the finding that CMVs encode proteins that inhibit antigen presentation to CD8 T cells by interfering with the constitutive trafficking of peptide-loaded MHC class I molecules (pMHC-I complexes) to the cell surface. Here, we have systematically explored antigen presentation in the presence of the three currently noted immune evasion proteins of murine CMV in all possible combinations and its modulation by pre-treatment of cells with interferon-gamma (IFN-γ). The data reveal improvement in antigen processing by pre-treatment with IFN-γ can almost overrule the inhibitory function of immune evasion molecules in terms of pMHC-I expression levels capable of triggering most of the specific CD8 T cells, though the intensity of stimulation did not retrieve their full functional capacity. Notably, an in vivo conditioning of host tissue cells with IFN-γ in adoptive cell transfer recipients constitutively overexpressing IFN-γ (B6-SAP-IFN-γ mice) enhanced the antiviral efficiency of CD8 T cells in this transgenic cytoimmunotherapy model.
Collapse
Affiliation(s)
- Annette Fink
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Seckert CK, Schader SI, Ebert S, Thomas D, Freitag K, Renzaho A, Podlech J, Reddehase MJ, Holtappels R. Antigen-presenting cells of haematopoietic origin prime cytomegalovirus-specific CD8 T-cells but are not sufficient for driving memory inflation during viral latency. J Gen Virol 2011; 92:1994-2005. [PMID: 21632567 DOI: 10.1099/vir.0.031815-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Expansion of the CD8 T-cell memory pool, also known as 'memory inflation', for certain but not all viral epitopes in latently infected host tissues is a special feature of the immune response to cytomegalovirus. The L(d)-presented murine cytomegalovirus (mCMV) immediate-early (IE) 1 peptide is the prototype of an epitope that is associated with memory inflation. Based on the detection of IE1 transcripts in latently infected lungs it was previously proposed that episodes of viral gene expression and antigenic activity due to desilencing of a limited number of viral genes may drive epitope-specific memory inflation. This would imply direct antigen presentation through latently infected host tissue cells rather than cell death-associated cross-presentation of viral antigens derived from productively infected cells through uninfected, professional antigen-presenting cells (profAPCs). To address the role of bone marrow-derived profAPCs in CD8 T-cell priming and memory to mCMV, we have used here a combined sex-mismatched and MHC class-I mismatched dual-marker bone marrow chimera model in which presentation of the IE1 epitope is restricted to donor-derived sry(+)L(d+) cells of haematopoietic differentiation lineages. Successful CD8 T-cell priming specific for the L(d)- and D(d)-presented inflationary epitopes IE1 and m164, respectively, but selective failure in IE1 epitope-specific memory inflation in these chimeras indicates different modes of antigen presentation involved in CD8 T-cell priming and memory inflation. These data suggest that memory inflation during mCMV latency requires expression of the epitope-presenting MHC class-I molecule by latently infected non-haematopoietic host tissue cells and thus predicts a role for direct antigen presentation in memory inflation.
Collapse
Affiliation(s)
- Christof K Seckert
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Sina I Schader
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Stefan Ebert
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Doris Thomas
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Angélique Renzaho
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Matthias J Reddehase
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Rafaela Holtappels
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| |
Collapse
|
20
|
Lemmermann NAW, Böhm V, Holtappels R, Reddehase MJ. In vivo impact of cytomegalovirus evasion of CD8 T-cell immunity: facts and thoughts based on murine models. Virus Res 2010; 157:161-74. [PMID: 20933556 DOI: 10.1016/j.virusres.2010.09.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 12/13/2022]
Abstract
Cytomegaloviruses (CMVs) co-exist with their respective host species and have evolved to avoid their elimination by the hosts' immune effector mechanisms and to persist in a non-replicative state, known as viral latency. There is evidence to suggest that latency is nevertheless a highly dynamic condition during which episodes of viral gene desilencing, which can be viewed as incomplete reactivations, cause intermittent antigenic activity that stimulates CD8 memory-effector T cells and drives their clonal expansion. These T cells are supposed to terminate reactivation before completion of the productive viral cycle. In this view, CMVs do not "evade" their respective host's immune response but are actually held in check all the time, unless the host gets immunocompromised. Accordingly, CMV disease is typically a disease of the immunocompromised host only. Here we review current knowledge about the in vivo role of viral proteins involved in subverting the immune recognition of infected cells with focus on the CD8 T-cell response and viral interference with the MHC class-I pathway of antigenic peptide presentation. Whereas the intracellular functions of these "immune-evasion proteins" are known in molecular detail, knowledge of their in vivo role in CMV biology is only beginning to take shape. Experimental studies on the in vivo function of human CMV (hCMV) immune-evasion proteins prohibits, of course. Studying animal CMVs paradigmatically in the corresponding natural host is therefore used to identify principles from which the role of hCMV immune-evasion proteins can hopefully be inferred. Here we summarize recent insights gained primarily from the murine model.
Collapse
Affiliation(s)
- Niels A W Lemmermann
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | | | | | | |
Collapse
|
21
|
Lawlor G, Moss AC. Cytomegalovirus in inflammatory bowel disease: pathogen or innocent bystander? Inflamm Bowel Dis 2010; 16:1620-7. [PMID: 20232408 DOI: 10.1002/ibd.21275] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of cytomegalovirus (CMV) in exacerbations of inflammatory bowel disease (IBD) remains a topic of ongoing debate. Current data are conflicting as to whether CMV worsens inflammation in those with severe colitis, or is merely a surrogate marker for severe disease. The interpretation of existing results is limited by mostly small, retrospective studies, with varying definitions of disease severity and CMV disease. CMV colitis is rare in patients with Crohn's disease or mild-moderate ulcerative colitis. In patients with severe and/or steroid-refractory ulcerative colitis, local reactivation of CMV can be detected in actively inflamed colonic tissue in about 30% of cases. Where comparisons between CMV+ and CMV- steroid-refractory patients can be made, most, but not all, studies show no difference in outcomes according to CMV status. Treatment with antiviral therapy has allowed some patients with severe colitis to avoid colectomy despite poor response to conventional IBD therapies. This article reviews the immunobiology of CMV disease, the evidence for CMV's role in disease severity, and discusses the outcomes with antiviral therapy.
Collapse
Affiliation(s)
- Garrett Lawlor
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, Center for Inflammatory Bowel Disease, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
22
|
Yewdell JW. Designing CD8+ T cell vaccines: it's not rocket science (yet). Curr Opin Immunol 2010; 22:402-10. [PMID: 20447814 PMCID: PMC2908899 DOI: 10.1016/j.coi.2010.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/12/2010] [Indexed: 01/09/2023]
Abstract
CD8+ T cells play important roles in clearing viral infections and eradicating tumors. Designing vaccines that elicit effective CD8+ T cell responses requires a thorough knowledge of the pathways of antigen presentation in vivo. Here, I review recent progress in understanding the activation of naïve CD8+ T cells in vivo, with particular emphasis on cross-priming, the presentation of protein antigens acquired by dendritic cells from their environment. With the rapid advances in this area of research, the dawn of rational vaccine design is at hand.
Collapse
|
23
|
A spread-deficient cytomegalovirus for assessment of first-target cells in vaccination. J Virol 2010; 84:7730-42. [PMID: 20463067 DOI: 10.1128/jvi.02696-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a human pathogen that causes severe disease primarily in the immunocompromised or immunologically immature individual. To date, no vaccine is available. We describe use of a spread-deficient murine CMV (MCMV) as a novel approach for betaherpesvirus vaccination. To generate a spread-deficient MCMV, the conserved, essential gene M94 was deleted. Immunization with MCMV-DeltaM94 is apathogenic and protective against wild-type challenge even in highly susceptible IFNalphabetaR(-/-) mice. MCMV-DeltaM94 was able to induce a robust CD4(+) and CD8(+) T-cell response as well as a neutralizing antibody response comparable to that induced by wild-type infection. Endothelial cells were identified as activators of CD8(+) T cells in vivo. Thus, the vaccination with a spread-deficient betaherpesvirus is a safe and protective strategy and allows the linkage between cell tropism and immunogenicity. Furthermore, genomes of MCMV-DeltaM94 were present in lungs 12 months after infection, revealing first-target cells as sites of genome maintenance.
Collapse
|
24
|
Kern M, Popov A, Scholz K, Schumak B, Djandji D, Limmer A, Eggle D, Sacher T, Zawatzky R, Holtappels R, Reddehase MJ, Hartmann G, Debey-Pascher S, Diehl L, Kalinke U, Koszinowski U, Schultze J, Knolle PA. Virally infected mouse liver endothelial cells trigger CD8+ T-cell immunity. Gastroenterology 2010; 138:336-46. [PMID: 19737567 DOI: 10.1053/j.gastro.2009.08.057] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/29/2009] [Accepted: 08/24/2009] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Dendritic cell activation through ligation of pattern recognition receptors leading to full functional maturation causes induction of CD8(+) T-cell immunity through increased delivery of costimulatory signals instead of tolerance. Here we investigate whether organ-resident antigen-presenting cells, such as liver sinusoidal endothelial cells (LSECs), also switch from tolerogenic to immunogenic CD8(+) T-cell activation upon such stimulation. METHODS Murine LSECs were isolated by immunomagnetic separation and analyzed for functional maturation upon triggering pattern recognition receptors or viral infection employing gene expression analysis and T cell coculture assays. In vivo relevance of the findings was confirmed with bone-marrow chimeric animals. RESULTS LSECs expressed numerous pattern recognition receptors that allowed for sentinel function, but ligand-induced activation of these receptors was not sufficient to overcome tolerance induction of CD8(+) T cells. Importantly, viral infection with murine cytomegalovirus caused functional maturation of antigen-presenting LSECs and was sufficient to promote antigen-specific differentiation into effector CD8(+) T cells in the absence of dendritic cells and independent of CD80/86. CONCLUSIONS These results shed new light on the generation of organ-specific immunity and may contribute to overcoming tolerance in relevant situations, such as cancer.
Collapse
Affiliation(s)
- Michaela Kern
- Institute of Molecular Medicine, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lemmermann NA, Podlech J, Seckert CK, Kropp KA, Grzimek NK, Reddehase MJ, Holtappels R. CD8 T-Cell Immunotherapy of Cytomegalovirus Disease in the Murine Model. IMMUNOLOGY OF INFECTION 2010. [DOI: 10.1016/s0580-9517(10)37016-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Immune evasion proteins of murine cytomegalovirus preferentially affect cell surface display of recently generated peptide presentation complexes. J Virol 2009; 84:1221-36. [PMID: 19906905 DOI: 10.1128/jvi.02087-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
For recognition of infected cells by CD8 T cells, antigenic peptides are presented at the cell surface, bound to major histocompatibility complex class I (MHC-I) molecules. Downmodulation of cell surface MHC-I molecules is regarded as a hallmark function of cytomegalovirus-encoded immunoevasins. The molecular mechanisms by which immunoevasins interfere with the MHC-I pathway suggest, however, that this downmodulation may be secondary to an interruption of turnover replenishment and that hindrance of the vesicular transport of recently generated peptide-MHC (pMHC) complexes to the cell surface is the actual function of immunoevasins. Here we have used the model of murine cytomegalovirus (mCMV) infection to provide experimental evidence for this hypothesis. To quantitate pMHC complexes at the cell surface after infection in the presence and absence of immunoevasins, we generated the recombinant viruses mCMV-SIINFEKL and mCMV-Deltam06m152-SIINFEKL, respectively, expressing the K(b)-presented peptide SIINFEKL with early-phase kinetics in place of an immunodominant peptide of the viral carrier protein gp36.5/m164. The data revealed approximately 10,000 K(b) molecules presenting SIINFEKL in the absence of immunoevasins, which is an occupancy of approximately 10% of all cell surface K(b) molecules, whereas immunoevasins reduced this number to almost the detection limit. To selectively evaluate their effect on preexisting pMHC complexes, cells were exogenously loaded with SIINFEKL peptide shortly after infection with mCMV-SIINFEKA, in which endogenous presentation is prevented by an L174A mutation of the C-terminal MHC-I anchor residue. The data suggest that pMHC complexes present at the cell surface in advance of immunoevasin gene expression are downmodulated due to constitutive turnover in the absence of resupply.
Collapse
|