1
|
Abstract
Trichomonas vaginalis viruses (TVVs) are double-stranded RNA (dsRNA) viruses that cohabitate in Trichomonas vaginalis, the causative pathogen of trichomoniasis, the most common nonviral sexually transmitted disease worldwide. Featuring an unsegmented dsRNA genome encoding a single capsid shell protein (CSP), TVVs contrast with multisegmented dsRNA viruses, such as the diarrhea-causing rotavirus, whose larger genome is split into 10 dsRNA segments encoding 5 unique capsid proteins. Trichomonas vaginalis, the causative pathogen for the most common nonviral sexually transmitted infection worldwide, is itself frequently infected with one or more of the four types of small double-stranded RNA (dsRNA) Trichomonas vaginalis viruses (TVV1 to 4, genus Trichomonasvirus, family Totiviridae). Each TVV encloses a nonsegmented genome within a single-layered capsid and replicates entirely intracellularly, like many dsRNA viruses, and unlike those in the Reoviridae family. Here, we have determined the structure of TVV2 by cryo-electron microscopy (cryoEM) at 3.6 Å resolution and derived an atomic model of its capsid. TVV2 has an icosahedral, T = 2*, capsid comprised of 60 copies of the icosahedral asymmetric unit (a dimer of the two capsid shell protein [CSP] conformers, CSP-A and CSP-B), typical of icosahedral dsRNA virus capsids. However, unlike the robust CSP-interlocking interactions such as the use of auxiliary “clamping” proteins among Reoviridae, only lateral CSP interactions are observed in TVV2, consistent with an assembly strategy optimized for TVVs’ intracellular-only replication cycles within their protozoan host. The atomic model reveals both a mostly negatively charged capsid interior, which is conducive to movement of the loosely packed genome, and channels at the 5-fold vertices, which we suggest as routes of mRNA release during transcription. Structural comparison of TVV2 to the Saccharomyces cerevisiae L-A virus reveals a conserved helix-rich fold within the CSP and putative guanylyltransferase domain along the capsid exterior, suggesting conserved mRNA maintenance strategies among Totiviridae. This first atomic structure of a TVV provides a framework to guide future biochemical investigations into the interplay between Trichomonas vaginalis and its viruses.
Collapse
|
2
|
Phosphatidylinositol 3-Phosphate Mediates the Establishment of Infectious Bursal Disease Virus Replication Complexes in Association with Early Endosomes. J Virol 2021; 95:JVI.02313-20. [PMID: 33361427 DOI: 10.1128/jvi.02313-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is the archetypal member of the family Birnaviridae and the etiological agent of Gumboro disease, a highly contagious immunosuppressive infection of concern to the global poultry sector for its adverse health effects in chicks. Unlike most double-stranded RNA (dsRNA) viruses, which enclose their genomes within specialized cores throughout their viral replication cycle, birnaviruses organize their bisegmented dsRNA genome in ribonucleoprotein (RNP) structures. Recently, we demonstrated that IBDV exploits endosomal membranes for replication. The establishment of IBDV replication machinery on the cytosolic leaflet of endosomal compartments is mediated by the viral protein VP3 and its intrinsic ability to target endosomes. In this study, we identified the early endosomal phosphatidylinositol 3-phosphate [PtdIns(3)P] as a key host factor of VP3 association with endosomal membranes and consequent establishment of IBDV replication complexes in early endosomes. Indeed, our data reveal a crucial role for PtdIns(3)P in IBDV replication. Overall, our findings provide new insights into the replicative strategy of birnaviruses and strongly suggest that it resembles those of positive-strand RNA (+ssRNA) viruses, which replicate in association with host membranes. Furthermore, our findings support the role of birnaviruses as evolutionary intermediaries between +ssRNA and dsRNA viruses and, importantly, demonstrate a novel role for PtdIns(3)P in the replication of a dsRNA virus.IMPORTANCE Infectious bursal disease virus (IBDV) infects chicks and is the causative agent of Gumboro disease. During IBDV outbreaks in recent decades, the emergence of very virulent variants and the lack of effective prevention/treatment strategies to fight this disease have had devastating consequences for the poultry industry. IBDV belongs to the peculiar family Birnaviridae Unlike most dsRNA viruses, birnaviruses organize their genomes in ribonucleoprotein complexes and replicate in a core-independent manner. We recently demonstrated that IBDV exploits host cell endosomes as platforms for viral replication, a process that depends on the VP3 viral protein. In this study, we delved deeper into the molecular characterization of IBDV-endosome association and investigated the role of host cell phosphatidylinositide lipids in VP3 protein localization and IBDV infection. Together, our findings demonstrate that PtdIns(3)P serves as a scaffold for the association of VP3 to endosomes and reveal its essential role for IBDV replication.
Collapse
|
3
|
Shahi S, Chiba S, Kondo H, Suzuki N. Cryphonectria nitschkei chrysovirus 1 with unique molecular features and a very narrow host range. Virology 2020; 554:55-65. [PMID: 33383414 DOI: 10.1016/j.virol.2020.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Cryphonectria nitschkei chrysovirus 1 (CnCV1), was described earlier from an ascomycetous fungus, Cryphonectria nitschkei strain OB5/11, collected in Japan; its partial sequence was reported a decade ago. Complete sequencing of the four genomic dsRNA segments revealed molecular features similar to but distinct from previously reported members of the family Chrysoviridae. Unique features include the presence of a mini-cistron preceding the major large open reading frame in each genomic segment. Common features include the presence of CAA repeats in the 5'-untranslated regions and conserved terminal sequences. CnCV1-OB5/11 could be laterally transferred to C. nitschkei and its relatives C. radicalis and C. naterciae via coculturing, virion transfection and protoplast fusion, but not to fungal species other than the three species mentioned above, even within the genus Cryphonectria, suggesting a very narrow host range. Phenotypic comparison of a few sets of CnCV1-infected and -free isogenic strains showed symptomless infection in new hosts.
Collapse
Affiliation(s)
- Sabitree Shahi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
4
|
Mata CP, Rodríguez JM, Suzuki N, Castón JR. Structure and assembly of double-stranded RNA mycoviruses. Adv Virus Res 2020; 108:213-247. [PMID: 33837717 DOI: 10.1016/bs.aivir.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycoviruses are a diverse group that includes ssRNA, dsRNA, and ssDNA viruses, with or without a protein capsid, as well as with a complex envelope. Most mycoviruses are transmitted by cytoplasmic interchange and are thought to lack an extracellular phase in their infection cycle. Structural analysis has focused on dsRNA mycoviruses, which usually package their genome in a 120-subunit T=1 icosahedral capsid, with a capsid protein (CP) dimer as the asymmetric unit. The atomic structure is available for four dsRNA mycovirus from different families: Saccharomyces cerevisiae virus L-A (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). Their capsids show structural variations of the same framework, with asymmetric or symmetric CP dimers respectively for ScV-L-A and PsV-F, dimers of similar domains of a single CP for PcV, or of two different proteins for RnQV1. The CP dimer is the building block, and assembly proceeds through dimers of dimers or pentamers of dimers, in which the genome is packed as ssRNA by interaction with CP and/or viral polymerase. These capsids remain structurally undisturbed throughout the viral cycle. The T=1 capsid participates in RNA synthesis, organizing the viral polymerase (1-2 copies) and a single loosely packaged genome segment. It also acts as a molecular sieve, to allow the passage of viral transcripts and nucleotides, but to prevent triggering of host defense mechanisms. Due to the close mycovirus-host relationship, CP evolved to allocate peptide insertions with enzyme activity, as reflected in a rough outer capsid surface.
Collapse
Affiliation(s)
- Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Javier M Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
5
|
Abstract
Viruses are the most abundant biological entities on Earth. In addition to their impact on animal and plant health, viruses have important roles in ecosystem dynamics as well as in the evolution of the biosphere. Circular Rep-encoding single-stranded (CRESS) DNA viruses are ubiquitous in nature, many are agriculturally important, and they appear to have multiple origins from prokaryotic plasmids. A subset of CRESS-DNA viruses, the cruciviruses, have homologues of capsid proteins encoded by RNA viruses. The genetic structure of cruciviruses attests to the transfer of capsid genes between disparate groups of viruses. However, the evolutionary history of cruciviruses is still unclear. By collecting and analyzing cruciviral sequence data, we provide a deeper insight into the evolutionary intricacies of cruciviruses. Our results reveal an unexpected diversity of this virus group, with frequent recombination as an important determinant of variability. The discovery of cruciviruses revealed the most explicit example of a common protein homologue between DNA and RNA viruses to date. Cruciviruses are a novel group of circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) viruses that encode capsid proteins that are most closely related to those encoded by RNA viruses in the family Tombusviridae. The apparent chimeric nature of the two core proteins encoded by crucivirus genomes suggests horizontal gene transfer of capsid genes between DNA and RNA viruses. Here, we identified and characterized 451 new crucivirus genomes and 10 capsid-encoding circular genetic elements through de novo assembly and mining of metagenomic data. These genomes are highly diverse, as demonstrated by sequence comparisons and phylogenetic analysis of subsets of the protein sequences they encode. Most of the variation is reflected in the replication-associated protein (Rep) sequences, and much of the sequence diversity appears to be due to recombination. Our results suggest that recombination tends to occur more frequently among groups of cruciviruses with relatively similar capsid proteins and that the exchange of Rep protein domains between cruciviruses is rarer than intergenic recombination. Additionally, we suggest members of the stramenopiles/alveolates/Rhizaria supergroup as possible crucivirus hosts. Altogether, we provide a comprehensive and descriptive characterization of cruciviruses.
Collapse
|
6
|
Mitra S, Demeler B. Probing RNA-Protein Interactions and RNA Compaction by Sedimentation Velocity Analytical Ultracentrifugation. Methods Mol Biol 2020; 2113:281-317. [PMID: 32006321 PMCID: PMC10958623 DOI: 10.1007/978-1-0716-0278-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent advances in multi-wavelength analytical ultracentrifugation (MWL-AUC) combine the power of an exquisitely sensitive hydrodynamic-based separation technique with the added dimension of spectral separation. This added dimension has opened up new doors to much improved characterization of multiple, interacting species in solution. When applied to structural investigations of RNA, MWL-AUC can precisely report on the hydrodynamic radius and the overall shape of an RNA molecule by enabling precise measurements of its sedimentation and diffusion coefficients and identify the stoichiometry of interacting components based on spectral decomposition. Information provided in this chapter will allow an investigator to design experiments for probing ion and/or protein-induced global conformational changes of an RNA molecule and exploit spectral differences between proteins and RNA to characterize their interactions in a physiological solution environment.
Collapse
Affiliation(s)
- Somdeb Mitra
- Department of Chemistry, New York University, New York, NY, USA.
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
7
|
Shamsi W, Sato Y, Jamal A, Shahi S, Kondo H, Suzuki N, Bhatti MF. Molecular and biological characterization of a novel botybirnavirus identified from a Pakistani isolate of Alternaria alternata. Virus Res 2019; 263:119-128. [DOI: 10.1016/j.virusres.2019.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/15/2022]
|
8
|
Mäntynen S, Sundberg LR, Oksanen HM, Poranen MM. Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology. Viruses 2019; 11:E76. [PMID: 30669250 PMCID: PMC6356626 DOI: 10.3390/v11010076] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. Membrane-containing phages have provided a framework for understanding virus evolution. The original observation on membrane-containing bacteriophage PRD1 and human pathogenic adenovirus has been fundamental in delineating the concept of "viral lineages", postulating that the fold of the major capsid protein can be used as an evolutionary fingerprint to trace long-distance evolutionary relationships that are unrecognizable from the primary sequences. This has brought the early evolutionary paths of certain eukaryotic, bacterial, and archaeal viruses together, and potentially enables the reorganization of the nearly immeasurable virus population (~1 × 1031) on Earth into a reasonably low number of groups representing different architectural principles. In addition, the research on membrane-containing phages can support the development of novel tools and strategies for human therapy and crop protection.
Collapse
Affiliation(s)
- Sari Mäntynen
- Center of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| | - Lotta-Riina Sundberg
- Center of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
9
|
Almansour I, Alhagri M, Alfares R, Alshehri M, Bakhashwain R, Maarouf A. IRAM: virus capsid database and analysis resource. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5531860. [PMID: 31318422 PMCID: PMC6637973 DOI: 10.1093/database/baz079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/12/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022]
Abstract
IRAM is an online, open access, comprehensive database and analysis resource for virus capsids. The database includes over 200 000 hierarchically organized capsid-associated nucleotide and amino acid sequences, as well as 193 capsids structures of high resolution (1-5 Å). Each capsid's structure includes a data file for capsid domain (PDB), capsid symmetry unit (PDB) and capsid structure information (PSF); these contain capsid structural information that is necessary to run further computational studies. Physicochemical properties analysis is implemented for calculating capsid total charge at given radii and for calculating charge distributions. This resource includes BLASTn and BLASTp tools, which can be applied to compare nucleotide and amino acid sequences. The diverse functionality of IRAM is valuable to researchers because it integrates different aspects of virus capsids via a user-friendly interface. Such data are critical for studying capsid evolution and patterns of conservation. The IRAM database can also provide initial necessary information for the design of synthetic capsids for various biotechnological applications.
Collapse
Affiliation(s)
- Iman Almansour
- Epidemic Diseases Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Mazen Alhagri
- Scientific and High Performance Computing Center, Deanship of Information and Communication Technology, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Rahaf Alfares
- Epidemic Diseases Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Manal Alshehri
- Epidemic Diseases Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Razan Bakhashwain
- Department of Physics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| | - Ahmed Maarouf
- Department of Physics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441 Saudi Arabia
| |
Collapse
|
10
|
Shah UA, Kotta-Loizou I, Fitt BDL, Coutts RHA. Identification, Molecular Characterization, and Biology of a Novel Quadrivirus Infecting the Phytopathogenic Fungus Leptosphaeria biglobosa. Viruses 2018; 11:E9. [PMID: 30585188 PMCID: PMC6356713 DOI: 10.3390/v11010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 01/18/2023] Open
Abstract
Here we report the molecular characterisation of a novel dsRNA virus isolated from the filamentous, plant pathogenic fungus Leptosphaeria biglobosa and known to cause significant alterations to fungal pigmentation and growth and to result in hypervirulence, as illustrated by comparisons between virus-infected and -cured isogenic fungal strains. The virus forms isometric particles approximately 40⁻45 nm in diameter and has a quadripartite dsRNA genome structure with size ranges of 4.9 to 4 kbp, each possessing a single ORF. Sequence analysis of the putative proteins encoded by dsRNAs 1⁻4, termed P1⁻P4, respectively, revealed modest similarities to the amino acid sequences of equivalent proteins predicted from the nucleotide sequences of known and suspected members of the family Quadriviridae and for that reason the virus was nominated Leptosphaeria biglobosa quadrivirus-1 (LbQV-1). Sequence and phylogenetic analysis using the P3 sequence, which encodes an RdRP, revealed that LbQV-1 was most closely related to known and suspected quadriviruses and monopartite totiviruses rather than other quadripartite mycoviruses including chrysoviruses and alternaviruses. Of the remaining encoded proteins, LbQV-1 P2 and P4 are structural proteins but the function of P1 is unknown. We propose that LbQV-1 is a novel member of the family Quadriviridae.
Collapse
Affiliation(s)
- Unnati A Shah
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| | - Ioly Kotta-Loizou
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | - Bruce D L Fitt
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| | - Robert H A Coutts
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| |
Collapse
|
11
|
Sato Y, Castón JR, Suzuki N. The biological attributes, genome architecture and packaging of diverse multi-component fungal viruses. Curr Opin Virol 2018; 33:55-65. [DOI: 10.1016/j.coviro.2018.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
|
12
|
Chiba S, Castón JR, Ghabrial SA, Suzuki N, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Quadriviridae. J Gen Virol 2018; 99:1480-1481. [PMID: 30265238 DOI: 10.1099/jgv.0.001152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Quadriviridae is a monogeneric family of non-enveloped spherical viruses with quadripartite dsRNA genomes, each segment of 3.5-5.0 kbp, comprising 16.8-17.1 kbp in total. The family includes the single species Rosellinia necatrix quadrivirus 1. All quadriviruses infect filamentous fungi, and have unique virion structures compared with other known dsRNA viruses. Pathogenicity has not been reported for these viruses. This is a summary of the ICTV Report on the taxonomy of family Quadriviridae, which is available at http://www.ictv.global/report/quadriviridae.
Collapse
Affiliation(s)
- Sotaro Chiba
- 1Asian Satellite Campuses Institute, Nagoya University, Nagoya 464-0861, Japan
| | - José R Castón
- 2Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid 28049, Spain
| | - Said A Ghabrial
- 3Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Nobuhiro Suzuki
- 4Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 7100046, Japan
| | | |
Collapse
|
13
|
Capsid Structure of dsRNA Fungal Viruses. Viruses 2018; 10:v10090481. [PMID: 30205532 PMCID: PMC6164181 DOI: 10.3390/v10090481] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 01/27/2023] Open
Abstract
Most fungal, double-stranded (ds) RNA viruses lack an extracellular life cycle stage and are transmitted by cytoplasmic interchange. dsRNA mycovirus capsids are based on a 120-subunit T = 1 capsid, with a dimer as the asymmetric unit. These capsids, which remain structurally undisturbed throughout the viral cycle, nevertheless, are dynamic particles involved in the organization of the viral genome and the viral polymerase necessary for RNA synthesis. The atomic structure of the T = 1 capsids of four mycoviruses was resolved: the L-A virus of Saccharomyces cerevisiae (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). These capsids show structural variations of the same framework, with 60 asymmetric or symmetric homodimers for ScV-L-A and PsV-F, respectively, monomers with a duplicated similar domain for PcV, and heterodimers of two different proteins for RnQV1. Mycovirus capsid proteins (CP) share a conserved α-helical domain, although the latter may carry different peptides inserted at preferential hotspots. Insertions in the CP outer surface are likely associated with enzymatic activities. Within the capsid, fungal dsRNA viruses show a low degree of genome compaction compared to reoviruses, and contain one to two copies of the RNA-polymerase complex per virion.
Collapse
|
14
|
A neo-virus lifestyle exhibited by a (+)ssRNA virus hosted in an unrelated dsRNA virus: Taxonomic and evolutionary considerations. Virus Res 2018; 244:75-83. [DOI: 10.1016/j.virusres.2017.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 12/21/2022]
|
15
|
Mata CP, Luque D, Gómez-Blanco J, Rodríguez JM, González JM, Suzuki N, Ghabrial SA, Carrascosa JL, Trus BL, Castón JR. Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses. PLoS Pathog 2017; 13:e1006755. [PMID: 29220409 PMCID: PMC5738138 DOI: 10.1371/journal.ppat.1006755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/20/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
Unlike their counterparts in bacterial and higher eukaryotic hosts, most fungal viruses are transmitted intracellularly and lack an extracellular phase. Here we determined the cryo-EM structure at 3.7 Å resolution of Rosellinia necatrix quadrivirus 1 (RnQV1), a fungal double-stranded (ds)RNA virus. RnQV1, the type species of the family Quadriviridae, has a multipartite genome consisting of four monocistronic segments. Whereas most dsRNA virus capsids are based on dimers of a single protein, the ~450-Å-diameter, T = 1 RnQV1 capsid is built of P2 and P4 protein heterodimers, each with more than 1000 residues. Despite a lack of sequence similarity between the two proteins, they have a similar α-helical domain, the structural signature shared with the lineage of the dsRNA bluetongue virus-like viruses. Domain insertions in P2 and P4 preferential sites provide additional functions at the capsid outer surface, probably related to enzyme activity. The P2 insertion has a fold similar to that of gelsolin and profilin, two actin-binding proteins with a function in cytoskeleton metabolism, whereas the P4 insertion suggests protease activity involved in cleavage of the P2 383-residue C-terminal region, absent in the mature viral particle. Our results indicate that the intimate virus-fungus partnership has altered the capsid genome-protective and/or receptor-binding functions. Fungal virus evolution has tended to allocate enzyme activities to the virus capsid outer surface. Most fungal RNA viruses are transmitted by cytoplasmic interchange without leaving the host. We report the cryo-electron microscopy structure, at near-atomic resolution, of the double-stranded RNA Rosellinia necatrix quadrivirus 1 (RnQV1); this virus infects the fungus Rosellinia necatrix, a pathogenic ascomycete to a wide range of plants. At difference most dsRNA viruses, whose capsid is made of protein homodimers, RnQV1 is based on a single-shelled lattice built of 60 P2-P4 heterodimers. Despite a lack of sequence similarity, P2 and P4 have a similar α-helical domain, a structural signature shared with the dsRNA virus lineage. In addition to organizing the viral genome and replicative machinery, P2 and P4 have acquired new functions by inserting complex domains in preferential insertion sites. Whereas the P2 insertion domain has a fold like that of actin-binding proteins, the structure of the P4 insertion domain indicates proteolytic activity. Understanding the structure of a fungal virus capsid with enzyme activities could allow its development as nanoreactors for biotechnological application.
Collapse
Affiliation(s)
- Carlos P. Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
| | - Daniel Luque
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
- Centro Nacional de Microbiología/ISCIII, Majadahonda, Madrid, Spain
| | - Josué Gómez-Blanco
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
| | | | - José M. González
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
| | | | - Said A. Ghabrial
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - José L. Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
| | - Benes L. Trus
- Imaging Sciences Laboratory, CIT, NIH, Bethesda, MD, United States of America
| | - José R. Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
16
|
Characterization of a novel botybirnavirus isolated from a phytopathogenic Alternaria fungus. Arch Virol 2017; 162:3907-3911. [DOI: 10.1007/s00705-017-3543-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
|