1
|
Gao YY, Wang Q, Li HW, Zhang S, Zhao J, Bao D, Zhao H, Wang K, Hu GX, Gao FS. Genomic composition and pathomechanisms of porcine circoviruses: A review. Virulence 2024; 15:2439524. [PMID: 39662970 PMCID: PMC11639455 DOI: 10.1080/21505594.2024.2439524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 11/01/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Porcine circovirus (PCV) belongs to the genus Circovirus within the family Circoviridae; it has the smallest genome and a complicated classification system comprising PCV1, PCV2, PCV3, and PCV4. Most types of these viruses can cause animals to develop serious diseases; in pigs in particular, it may manifest as postweaning multisystemic wasting syndrome (PMWS), reproductive failure, porcine dermatitis and nephropathy syndrome (PDNS), congenital tremors (CTs), proliferative and necrotizing pneumonia (PNP), lymphoid injury, and immunosuppression. Different types of PCVs cause different types of diseases and sometimes feature no pathogenicity; these various PCV types are associated with different pathomechanisms in animals. In this review, the genomic composition and systemic pathomechanisms of porcine circoviruses are introduced, and future research prospects are discussed.
Collapse
Affiliation(s)
- Yong-Yu Gao
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Qian Wang
- The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Han-Wen Li
- College of Life Sciences, Nankai University, Tianjing, China
| | - Shuang Zhang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Jian Zhao
- ChangChun Sino Biotechnology CO. LTD, Changchun, Jilin, China
| | - Di Bao
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Han Zhao
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Kai Wang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Gui-Xue Hu
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Feng-Shan Gao
- College of Life and Health, Dalian University, Dalian, China
- The Dalian Animal Virus Antigen Epitope Screening and Protein Engineering Drug Developing Key Laboratory, Dalian, China
| |
Collapse
|
2
|
Huang J, Zhang Y, Cheng A, Wang M, Liu M, Zhu D, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Ou X, Mao S, Gao Q, Sun D, Tian B, Yin Z, Jia R. Duck Circovirus genotype 2 ORF3 protein induces apoptosis through the mitochondrial pathway. Poult Sci 2023; 102:102533. [PMID: 36848756 PMCID: PMC9984893 DOI: 10.1016/j.psj.2023.102533] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Duck circovirus genotype 2 (DuCV2) belongs to the genus Circovirus, family Circoviridae. It can generally cause lymphocyte atrophy and necrosis in ducks, which leads to immunosuppression. The function of the DuCV2 open reading frame 3 (ORF3) protein in viral pathogenesis in host cells remains unclear. Therefore, a series of studies based on ORF3 of the isolate DuCV GH01 strain (belonging to DuCV2) were carried out in duck embryo fibroblasts (DEFs) in this study. The results showed that the ORF3 protein could induce nuclear shrinkage and fragmentation in DEFs. Chromosomal DNA breakage was observed by TUNEL assay. The expression levels of caspase-related genes showed that ORF3 primarily promoted caspase 3 and caspase 9 expression. Furthermore, the protein expression levels of cleaved caspase 3 and cleaved caspase 9 in DEFs were enhanced by ORF3. Thus, ORF3 may activate the mitochondrial apoptosis pathway. When the 20 amino acid residues at the C-terminus of ORF3 (ORF3ΔC20) were deleted, the apoptosis rates were decreased. Moreover, compared to ORF3, ORF3ΔC20 downregulated the mRNA levels of cytochrome c (Cyt c), poly ADP-ribose polymerase (PARP) and apoptosis protease activating factor 1 (Apaf-1), which are the key molecules in the mitochondrial apoptotic pathway. Further study showed that ORF3ΔC20 could reduce the mitochondrial membrane potential (MMP). This study suggested that the DuCV2 ORF3 protein may primarily activate apoptosis through the mitochondrial pathway in DEFs, and this function is ORF3 C20 dependent.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Yanting Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
3
|
Guo J, Hou L, Zhou J, Wang D, Cui Y, Feng X, Liu J. Porcine Circovirus Type 2 Vaccines: Commercial Application and Research Advances. Viruses 2022; 14:2005. [PMID: 36146809 PMCID: PMC9504358 DOI: 10.3390/v14092005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) infection can lead to porcine circovirus-associated disease (PCVAD), causing great economic losses to the global swine industry. Conventional vaccination programs are a major measure in the prevention and control of this disease. Currently, there are 5 commercially available PCV2 vaccines in the international market and 10 kinds commercially available PCV2 vaccines in the Chinese market that confer good efficacy against this virus by alleviating clinicopathological manifestations and enhancing growth performance in pigs. In addition, diverse experimental PCV2 vaccines with protective efficiency have been developed, including attenuated chimeric, nucleic acid, subunit, multivalent, and viral-vectored vaccines. These experimental vaccines have been shown to be relatively effective in improving the efficiency of pig production and simplifying prevention procedures. Adjuvants can be used to promote vaccines with higher protective immunity. Herein, we review the application of multiple commercial vaccines over the years and research advances in experimental vaccines, which provide the possibility for the development of superior vaccines to successfully prevent and control PCV2 infection in the future.
Collapse
Affiliation(s)
- Jinshuo Guo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Lei Hou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Jianwei Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Dedong Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Yongqiu Cui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Xufei Feng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Jue Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
4
|
Chen J, Wang H, Pei H, Wang J, Wu H, Zhong J, Zhu W, Chen D, Wu S, Tong J, Zhang Y, Zhang J. The Prevalence, Coinfection, and Evolutionary and Molecular Characteristics of Prevalent Goose Circovirus in Guangdong, China. Avian Dis 2021; 65:559-571. [DOI: 10.1637/aviandiseases-d-21-00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/21/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Jidang Chen
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| | - He Wang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| | - Hao Pei
- Department of Anesthesia, National Children's Medical Center, Children‘s Hospital of Fudan University, Shanghai, China, 201102
| | - Jiehuang Wang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| | - Huiji Wu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| | - Jiacheng Zhong
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| | - Wanjun Zhu
- Wanmuzhou Biotechnology Limited, Foshan, Guangdong, China, 528225
| | - Decheng Chen
- Wanmuzhou Biotechnology Limited, Foshan, Guangdong, China, 528225
| | - Shiliang Wu
- Wanmuzhou Biotechnology Limited, Foshan, Guangdong, China, 528225
| | - Jiaxin Tong
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| | - Yishan Zhang
- Wanmuzhou Biotechnology Limited, Foshan, Guangdong, China, 528225
| | - Jipei Zhang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| |
Collapse
|
5
|
Zhang Y, Zhang X, Cheng A, Wang M, Yin Z, Huang J, Jia R. Apoptosis Triggered by ORF3 Proteins of the Circoviridae Family. Front Cell Infect Microbiol 2021; 10:609071. [PMID: 33604306 PMCID: PMC7884757 DOI: 10.3389/fcimb.2020.609071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Apoptosis, a form of the programmed cell death, is an indispensable defense mechanism regulating cellular homeostasis and is triggered by multiple stimuli. Because of the regulation of apoptosis in cellular homeostasis, viral proteins with apoptotic activity are particular foci of on antitumor therapy. One representative viral protein is the open reading frame 3 (ORF3) protein, also named as apoptin in the Circoviridae chicken anemia virus (CAV), and has the ability to induce tumor-specific apoptosis. Proteins encoded by ORF3 in other circovirus species, such as porcine circovirus (PCV) and duck circovirus (DuCV), have also been reported to induce apoptosis, with subtle differences in apoptotic activity based on cell types. This article is aimed at reviewing the latest research advancements in understanding ORF3 protein-mediated apoptosis mechanisms of Circoviridae from three perspectives: subcellular localization, interactions with host proteins, and participation in multiple apoptotic signaling pathways, providing a scientific basis for circovirus pathogenesis and a reference on its potential anticancer function.
Collapse
Affiliation(s)
- Yanting Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingcui Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Feng C, Liang Y, Teodoro JG. The Role of Apoptin in Chicken Anemia Virus Replication. Pathogens 2020; 9:pathogens9040294. [PMID: 32316372 PMCID: PMC7238243 DOI: 10.3390/pathogens9040294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
Apoptin is the Vp3 protein of chicken anemia virus (CAV), which infects the thymocytes and erythroblasts in young chickens, causing chicken infectious anemia and immunosuppression. Apoptin is highly studied for its ability to selectively induce apoptosis in human tumor cells and, thus, is a protein of interest in anti-tumor therapy. CAV apoptin is known to localize to different subcellular compartments in transformed and non-transformed cells, depending on the DNA damage response, and the phosphorylation of several identified threonine residues. In addition, apoptin interacts with molecular machinery such as the anaphase promoting complex/cyclosome (APC/C) to inhibit the cell cycle and induce arrest in G2/M phase. While these functions of apoptin contribute to the tumor-selective effect of the protein, they also provide an important fundamental framework to apoptin’s role in viral infection, pathogenesis, and propagation. Here, we reviewed how the regulation, localization, and functions of apoptin contribute to the viral life cycle and postulated its importance in efficient replication of CAV. A model of the molecular biology of infection is critical to informing our understanding of CAV and other related animal viruses that threaten the agricultural industry.
Collapse
Affiliation(s)
- Cynthia Feng
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Yingke Liang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jose G. Teodoro
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Goodman Cancer Research Centre, Montreal, QC H3G 1A1, Canada
- Correspondence:
| |
Collapse
|
7
|
Porcine Circovirus 2 Uses a Multitude of Weak Binding Sites To Interact with Heparan Sulfate, and the Interactions Do Not Follow the Symmetry of the Capsid. J Virol 2019; 93:JVI.02222-18. [PMID: 30602608 DOI: 10.1128/jvi.02222-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022] Open
Abstract
Porcine circovirus 2 (PCV2) is the smallest pathogenic virus capable of autonomous replication within its host. Infections result in immunosuppression and subsequent death of the host and are initiated via the attachment of the PCV2 icosahedral capsid to heparan sulfate (HS) and chondroitin sulfate B (CSB) glycosaminoglycans on the cell surface. However, the underlying mechanism of structural recognition remains to be explored. Using heparin, a routinely used analog of heparan sulfate, we demonstrate that increasing lengths of heparin exhibit a greater affinity toward PCV2. Our competition assays indicate that dextran sulfate (8 kDa) has a higher affinity for PCV2 than heparin (12 kDa), chondroitin sulfate B (41 kDa), hyaluronic acid (1.6 MDa), and dextran (6 kDa). This suggests that polymers high in sulfate content are capable of competing with the PCV2-heparan sulfate interaction and, thus, have the potential to inhibit PCV2 infection. Finally, we visualized the interaction between heparin and the PCV2 capsid using cryo-electron microscopy single-particle analysis, symmetry expansion, and focused classification. The image reconstructions provide the first example of an asymmetric distribution of heparin on the surface of an icosahedral virus capsid. We demonstrate that each of the 60 capsid subunits that generate the T=1 capsid can bind heparin via one of five binding sites. However, not all of the binding sites were occupied by heparin, and only one-third to two-thirds of the binding sites were occupied. The binding sites are defined by arginine, lysine, and polar amino acids. Mutating the arginine, lysine, and polar amino acids to alanine diminished the binding capacity of PCV2 to heparin.IMPORTANCE It has been demonstrated that porcine circovirus 2 (PCV2) attaches to cells via heparan sulfate (HS) and chondroitin sulfate B (CSB) glycosaminoglycans; however, the underlying structural mechanism describing the HS/CSB recognition by PCV2 remains to be explored. We used cryo-electron microscopy with single-particle analysis, symmetry expansion, and focused classification to visualize the interaction between the PCV2 capsid and heparin, an analog of heparan sulfate, to better than 3.6-Å resolution. We observed that the interaction between PCV2 and heparin does not adhere to the icosahedral symmetry of the capsid. To the best of our knowledge, this is the first example where the interaction between heparin and an icosahedral capsid does not follow the symmetry elements of the capsid. Our findings also suggest that anionic polymers, such as dextran sulfate, may act to inhibit PCV2 infection.
Collapse
|
8
|
Cao L, Sun W, Lu H, Tian M, Xie C, Zhao G, Han J, Wang W, Zheng M, Du R, Jin N, Qian A. Genetic variation analysis of PCV1 strains isolated from Guangxi Province of China in 2015. BMC Vet Res 2018; 14:43. [PMID: 29415728 PMCID: PMC5803923 DOI: 10.1186/s12917-018-1345-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/14/2018] [Indexed: 12/11/2022] Open
Abstract
Background Porcine circovirus type 1 (PCV1) was discovered in 1974 as a contaminant of a porcine kidney (PK-15) cell line and was generally accepted to be nonpathogenic. But recently it was shown to cause lesions in experimentally infected pig fetuses. Serological evidence and genetic studies suggested that PCV1 was widespread in domestic pigs. Thus, the molecular epidemiology and genetic variation of PCV1 are still necessary to understand. Results Here 247 tissue samples were collected from piglets in Guangxi Province, China and performed whole-genome sequencing of the PCV1 genome. Thirteen PCV1 strains were sequenced from the samples. Similarity analysis showed that there were 97.8% to 99.6% nucleotide similarity to each other and 97.1% to 99.8% nucleotide similarity to the 40 reference strains. Besides, based on sequence analysis, we found one putative recombinant virus named GXdx84 strain contained the open-reading frame 1 (ORF1) of PCV1 and the ORF2 of PCV2d-2, which was consistent with the results of phylogenetic analysis that compared PCV1 and PCV2 strains. Variation analysis of the amino acids of the capsid protein revealed that the GXyl224 strain, which encoded 235 amino acids, had two amino acids more than other strains. This is the first study to report that a cap gene mutation resulted in lengthening of in the gene sequence. Conclusions These data contribute to the understanding of PCV1 evolution and molecular epidemiology that will facilitate programs for its control and prevention.
Collapse
Affiliation(s)
- Liang Cao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, 130122, People's Republic of China
| | - Wenchao Sun
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, 130122, People's Republic of China
| | - Huijun Lu
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, 130122, People's Republic of China
| | - Mingyao Tian
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, 130122, People's Republic of China
| | - Changzhan Xie
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, 130122, People's Republic of China
| | - Guanyu Zhao
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, 130122, People's Republic of China.,College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Jicheng Han
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, 130122, People's Republic of China
| | - Wei Wang
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, 130122, People's Republic of China
| | - Min Zheng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, People's Republic of China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Ningyi Jin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, 130122, People's Republic of China.
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| |
Collapse
|
9
|
Wang X, Li W, Xu X, Wang W, He K, Fan H. Phylogenetic analysis of two goat-origin PCV2 isolates in China. Gene 2018; 651:57-61. [PMID: 29408624 DOI: 10.1016/j.gene.2018.01.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/31/2022]
Abstract
Complete genome characterization of non-porcine origin Porcine circovirus type 2 (PCV2) was first described in 2014 in China. In the present study, we first identified PCV2 nucleotides in goat samples and the prevalence of PCV2 in goat was 6.15%. However, only two new strains, Goat2014-4 and Goat2014-5, could be completely sequenced. The genome of the strain Goat2014-4, which collected from the goat infected with PPRV, contains 1766 nt; strain Goat2014-5, which originated from a healthy goat, is comprised of 1767 nt. The results showed that they shared the highest nucleotide identity with BDH and the lowest similarity with DK1980PMWSfree strain and they belonged only to genotype PCV2d. Meanwhile, they shared higher homology with porcine-origin PCV2 strains than others. Moreover, a detailed analysis of the capsid amino acid sequences revealed that there were distinct differences for goat2014-4 (708 bp) and goat2014-5 (705 bp); strain Goat2014-4 showed an elongation of two amino acids, and strains Goat2014-5 showed an elongation of one amino acid compared with other reference strains. This is the first report of the genetic analysis of goat-origin PCV2 isolates. It also provides an additional supported evidence for cross-species transmission of PCV2.
Collapse
Affiliation(s)
- Xiaomin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Xianglan Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
10
|
Wu ZC, Zhang RH, Li YM, Shao DH, Chen H, Jiang SJ, Ma ZY, Wang X. C-terminal 20 residues of ORF3 protein of duck circovirus genotype 2 regulates the nuclear localization and inhibits apoptotic activity of ORF3 protein. Vet Microbiol 2017; 214:21-27. [PMID: 29408028 DOI: 10.1016/j.vetmic.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
Duck circovirus (DuCV) is divided into genotypes 1 and 2. The DuCV ORF3 protein is a newly identified viral protein with apoptotic activity. In this study, the differences in the gene sequences, subcellular localization, and apoptotic activities of the ORF3 proteins of DuCV genotypes 1 and 2 were analyzed. A T-to-A point mutation at nucleotide 236 (T236A) in the ORF3 gene sequence of DuCV genotype 1 was observed, which generates a premature stop codon (TAG) and resulted in a truncated ORF3 protein. The ORF3 protein of DuCV genotype 2 is 20 amino acids longer at its C-terminus than the truncated ORF3 protein of genotype 1. A variant monopartite-type nuclear localization signal (RRLRTCNCRACRTLK) was identified within the C-terminal region of the ORF3 protein of DuCV genotype 2, which is essential for the nuclear localization of the protein. The 20 C-terminal residues of the DuCV genotype 2 ORF3 protein also inhibits the apoptotic activity of the protein. Our findings provide insight into the biological and functional characteristics of the DuCV ORF3 protein.
Collapse
Affiliation(s)
- Zhuan-Chang Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue road, Shanghai, 200241, PR China
| | - Rui-Hua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Yu-Ming Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue road, Shanghai, 200241, PR China
| | - Dong-Hua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue road, Shanghai, 200241, PR China
| | - Hua Chen
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi City, Shandong, 276005, PR China
| | - Shi-Jin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Zhi-Yong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue road, Shanghai, 200241, PR China.
| | - Xin Wang
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi City, Shandong, 276005, PR China.
| |
Collapse
|
11
|
Multi-platform analysis reveals a complex transcriptome architecture of a circovirus. Virus Res 2017; 237:37-46. [PMID: 28549855 DOI: 10.1016/j.virusres.2017.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022]
Abstract
In this study, we used Pacific Biosciences RS II long-read and Illumina HiScanSQ short-read sequencing technologies for the characterization of porcine circovirus type 1 (PCV-1) transcripts. Our aim was to identify novel RNA molecules and transcript isoforms, as well as to determine the exact 5'- and 3'-end sequences of previously described transcripts with single base-pair accuracy. We discovered a novel 3'-UTR length isoform of the Cap transcript, and a non-spliced Cap transcript variant. Additionally, our analysis has revealed a 3'-UTR isoform of Rep and two 5'-UTR isoforms of Rep' transcripts, and a novel splice variant of the longer Rep' transcript. We also explored two novel long transcripts, one with a previously identified splice site, and a formerly undetected mRNA of ORF3. Altogether, our methods have identified nine novel RNA molecules, doubling the size of PCV-1 transcriptome that had been known before. Additionally, our investigations revealed an intricate pattern of transcript overlapping, which might produce transcriptional interference between the transcriptional machineries of adjacent genes, and thereby may potentially play a role in the regulation of gene expression in circoviruses.
Collapse
|
12
|
Porcine Circovirus Type 2 (PCV2) Vaccines in the Context of Current Molecular Epidemiology. Viruses 2017; 9:v9050099. [PMID: 28481275 PMCID: PMC5454412 DOI: 10.3390/v9050099] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/30/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is an economically important swine pathogen and, although small, it has the highest evolution rate among DNA viruses. Since the discovery of PCV2 in the late 1990s, this minimalistic virus with a 1.7 kb single-stranded DNA genome and two indispensable genes has become one of the most important porcine pathogens, and presently is subjected to the highest volume of prophylactic intervention in the form of vaccines in global swine production. PCV2 can currently be divided into five different genotypes, PCV2a through PCV2e. It is well documented that PCV2 continues to evolve, which is reflected by changes in the prevalence of genotypes. During 2006, commercial vaccines for PCV2 were introduced on a large scale in a pig population mainly infected with PCV2b. Since 2012, the PCV2d genotype has essentially replaced the previously predominant PCV2b genotype in North America and similar trends are also documented in other geographic regions such as China and South Korea. This is the second major PCV2 genotype shift since the discovery of the virus. The potential increase in virulence of the emergent PCV2 genotype and the efficacy of the current vaccines derived from PCV2a genotype against the PCV2d genotype viruses has received considerable attention. This review attempts to synthesize the understanding of PCV2 biology, experimental studies on the antigenic variability, and molecular epidemiological analysis of the evolution of PCV2 genotypes.
Collapse
|
13
|
Genetic Adaptation of Porcine Circovirus Type 1 to Cultured Porcine Kidney Cells Revealed by Single-Molecule Long-Read Sequencing Technology. GENOME ANNOUNCEMENTS 2017; 5:5/5/e01539-16. [PMID: 28153895 PMCID: PMC5289681 DOI: 10.1128/genomea.01539-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Porcine circovirus type 1 (PCV1) is a nonpathogenic circovirus, and a contaminant of the porcine kidney (PK-15) cell line. We present the complete and annotated genome sequence of strain Szeged of PCV1, determined by Pacific Biosciences RSII long-read sequencing platform.
Collapse
|
14
|
Hong JS, Kim NH, Choi CY, Lee JS, Na D, Chun T, Lee YS. Changes in cellular microRNA expression induced by porcine circovirus type 2-encoded proteins. Vet Res 2015; 46:39. [PMID: 25885539 PMCID: PMC4391141 DOI: 10.1186/s13567-015-0172-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome, which leads to serious economic losses in the pig industry worldwide. While the molecular basis of PCV2 replication and pathogenicity remains elusive, it is increasingly apparent that the microRNA (miRNA) pathway plays a key role in controlling virus-host interactions, in addition to a wide range of cellular processes. Here, we employed Solexa deep sequencing technology to determine which cellular miRNAs were differentially regulated after expression of each of three PCV2-encoded open reading frames (ORFs) in porcine kidney epithelial (PK15) cells. We identified 51 ORF1-regulated miRNAs, 74 ORF2-regulated miRNAs, and 32 ORF3-regulated miRNAs that differed in abundance compared to the control. Gene ontology analysis of the putative targets of these miRNAs identified transcriptional regulation as the most significantly enriched biological process, while KEGG pathway analysis revealed significant enrichment for several pathways including MAPK signaling, which is activated during PCV2 infection. Among the potential target genes of ORF-regulated miRNAs, two genes encoding proteins that are known to interact with PCV2-encoded proteins, zinc finger protein 265 (ZNF265) and regulator of G protein signaling 16 (RGS16), were selected for further analysis. We provide evidence that ZNF265 and RGS16 are direct targets of miR-139-5p and let-7e, respectively, which are both down-regulated by ORF2. Our data will initiate further studies to elucidate the roles of ORF-regulated cellular miRNAs in PCV2-host interactions.
Collapse
Affiliation(s)
- Jae-Sang Hong
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| | - Nam-Hoon Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| | - Chang-Yong Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| | - Jun-Seong Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea. .,Present address: Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W1R7, Canada.
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul, 156-756, Korea.
| | - Taehoon Chun
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| |
Collapse
|
15
|
Wen LB, Wang FZ, He KW, Li B, Wang XM, Guo RL, Xie JP. Transcriptional analysis of porcine circovirus-like virus P1. BMC Vet Res 2014; 10:287. [PMID: 25440084 PMCID: PMC4258304 DOI: 10.1186/s12917-014-0287-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Recently identified porcine circovirus-like virus P1 has the smallest DNA viral genome. In this study, we identified the viral genes and their corresponding mRNA transcripts. Results The RNAs of P1, synthesized in porcine kidney cells, were examined with northern blotting and PCR analyses. Eight virus-specific RNAs were detected. Four mRNAs (open reading frames (ORFs) 1, 2, 4, and 5) are encoded by the viral (−) strand and four (ORFs 3, 6, 7, and 8) are encoded by the viral (+) strand. All proteins encoded by the ORFs of the P1 virus are less than 50 amino acids in length, except that encoded by ORF1 (113 amino acids). Conclusions We show a very complex viral transcription pattern in P1-infected cells.
Collapse
Affiliation(s)
- Li-bin Wen
- Jiangsu Academy of Agricultural Sciences · Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture · National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Nanjing, 210014, China.
| | - Feng-zhi Wang
- Jiangsu Academy of Agricultural Sciences · Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture · National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Nanjing, 210014, China.
| | - Kong-wang He
- Jiangsu Academy of Agricultural Sciences · Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture · National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Nanjing, 210014, China.
| | - Bin Li
- Jiangsu Academy of Agricultural Sciences · Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture · National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Nanjing, 210014, China.
| | - Xiao-min Wang
- Jiangsu Academy of Agricultural Sciences · Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture · National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Nanjing, 210014, China.
| | - Rong-li Guo
- Jiangsu Academy of Agricultural Sciences · Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture · National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Nanjing, 210014, China.
| | - Jian-ping Xie
- Jiangsu Academy of Agricultural Sciences · Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture · National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Nanjing, 210014, China.
| |
Collapse
|
16
|
Hough KP, Rogers AM, Zelic M, Paris M, Heilman DW. Transformed cell-specific induction of apoptosis by porcine circovirus type 1 viral protein 3. J Gen Virol 2014; 96:351-359. [PMID: 25381055 DOI: 10.1099/vir.0.070284-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Several members of the family Circoviridae have been shown to encode proteins with apoptotic activity. For example, both porcine circovirus type 2 (PCV2) and chicken anemia virus (CAV) encode a third viral protein (VP3) that has been shown to be cytotoxic. Interestingly, in the case of the CAV protein (designated apoptin), apoptosis is specific to transformed cell types. Similarities in genome structure and organization suggest that PCV type 1 (PCV1) may also contain a third ORF, which codes for a protein with homologous activity. To investigate this, ORF prediction followed by gene expression analyses were conducted on a gene found to be homologous to CAV and PCV2 VP3. Our data presented herein elucidate a putative ORF3 that codes for a viral protein with functional similarity to that of apoptin and PCV2 VP3. Unlike its homologues, sequence analysis revealed a highly hydrophobic, extended C-terminal domain in PCV1 VP3, which harbours a strong nuclear export signal. Subcellular localization analysis demonstrated divergent PCV1 VP3 localization patterns compared with that of CAV VP3. Interestingly, cytotoxicity studies revealed evidence that apoptosis may be selective to transformed cell types, similar to apoptin; however, PCV1 VP3 induced a dramatic G1 cell cycle arrest as opposed to the G2/M arrest observed with apoptin. These results indicate that nuclear localization of PCV1 VP3 is necessary neither for induction of apoptosis nor for transformed cell selectivity, and suggest a mechanism of action distinct from that of apoptin.
Collapse
Affiliation(s)
- Kenneth P Hough
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Andrew M Rogers
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Matija Zelic
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Meaghan Paris
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Destin W Heilman
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| |
Collapse
|
17
|
Walia R, Dardari R, Chaiyakul M, Czub M. Porcine circovirus-2 capsid protein induces cell death in PK15 cells. Virology 2014; 468-470:126-132. [PMID: 25169152 DOI: 10.1016/j.virol.2014.07.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/06/2014] [Accepted: 07/28/2014] [Indexed: 01/31/2023]
Abstract
Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis.
Collapse
Affiliation(s)
- Rupali Walia
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Rkia Dardari
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada.
| | - Mark Chaiyakul
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Markus Czub
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
18
|
Gao Z, Dong Q, Jiang Y, Opriessnig T, Wang J, Quan Y, Yang Z. ORF4-protein deficient PCV2 mutants enhance virus-induced apoptosis and show differential expression of mRNAs in vitro. Virus Res 2014; 183:56-62. [PMID: 24503223 DOI: 10.1016/j.virusres.2014.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 12/26/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the essential infectious agent of PCV associated disease (PCVAD). During previous in vitro studies, 11 RNAs and four viral proteins have been detected in PCV2-infected cells. Open reading frame (ORF) 4 is 180bp in length and has been identified at the transcription and the translation level. It overlaps completely with ORF3, which has a role in virus-induced apoptosis. In this study, start codon mutations (M1-PCV2) or in-frame termination mutations (M2-PCV2) were utilized to construct two ORF4-protein deficient viruses aiming to investigate its role in viral infection. The abilities of M1-PCV2 and M2-PCV2 to replicate, transcribe, express viral proteins, and to cause cellular apoptosis were evaluated. Viral DNA replication curves supported that the ORF4 protein is not essential for viral replication, but inhibits viral replication in the early stage of infection. Comparison of the expression level of ORF3 mRNA among wild-type and ORF4-deficient viruses in infected PK-15 cell demonstrated enhanced ORF3 transcription of both ORF4 mutants suggesting that the ORF4 protein may play an important role by restricting ORF3 transcription thereby preventing virus-induced apoptosis. This is further confirmed by the significantly higher caspase 3 and 8 activities in M1-PCV2 and M2-PCV2 compared to wild-type PCV2. Furthermore, the role of ORF4 in cell apoptosis and a possible interaction with the ORF1 associated Rep protein could perhaps explain the rapid viral growth in the early stage of infection and the higher expression level of ORF1 mRNA in ORF4 protein deficient PCV2 mutants.
Collapse
Affiliation(s)
- Zhangzhao Gao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qinfang Dong
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghou Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jingxiu Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanping Quan
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongqi Yang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
19
|
Wang C, Pang VF, Lee F, Liao PC, Huang YL, Lin YL, Lai SS, Jeng CR. Development and evaluation of a loop-mediated isothermal amplification method for rapid detection and differentiation of two genotypes of porcine circovirus type 2. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 47:363-70. [PMID: 23845855 DOI: 10.1016/j.jmii.2013.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 04/19/2013] [Accepted: 05/08/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Porcine circovirus type 2 (PCV2) is one of the major swine viral diseases and has caused significant economic loss to pig producers. PCV2 has been divided into two major genotypes: PCV2a, PCV2b. A loop-mediated isothermal amplification (LAMP) method was developed for the detection and differentiation of PCV2a and PCV2b in clinical samples. METHODS LAMP-specific primer sets were designed based on six PCV2a and six PCV2b reference isolates. To determine the analytical specificity of LAMP, DNA samples extracted from 36 porcine virus isolates were tested by LAMP, including eight PCV2a, 11 PCV2b, four PCV type 1, two porcine parvovirus, three pseudorabies virus, and eight porcine reproductive and respiratory virus. To evaluate the analytical sensitivity of the assay, 10-fold serial dilutions of PCV2a and PCV2b recombinant plasmids were performed to prepare the dilutions at concentration from 10(6) to 1 copy(ies)/μL, and each dilution was tested by both LAMP and nested polymerase chain reaction (nested PCR). A total of 168 clinical samples were analyzed by both LAMP and nested PCR, and the relative sensitivity and specificity of LAMP compared to nested PCR were calculated. RESULTS Using different primer sets of LAMP, LAMP could be completed within 50 minutes. This method was found to be highly analytically specific for PCV2a and PCV2b; only the target gene was detected without cross-reaction. The analytical sensitivity of LAMP for PCV2a and PCV2b were 10 copies/μL, demonstrating analytical sensitivity comparable to that obtained using nested PCR. In addition, the sensitivity and specificity of LAMP relative to those of nested PCR were 97.7% and 100.0%, respectively. The percentage of observed agreement was 98.2%, and the κ statistic was 0.949. CONCLUSION LAMP is a rapid, specific, and sensitive diagnostic method for the detection and differentiation of PCV2a and PCV2b in clinical samples.
Collapse
Affiliation(s)
- Chun Wang
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, No. 376, Chung-Cheng Road, Tamsui, New Taipei City 251, Taiwan; Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Fan Lee
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, No. 376, Chung-Cheng Road, Tamsui, New Taipei City 251, Taiwan
| | - Pei-Chih Liao
- Animal Disease Control Centre of Yunlin County, No. 517, Sec. 2, Yunlin Road, Douliou City, Yunlin County 640, Taiwan
| | - Yu-Liang Huang
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, No. 376, Chung-Cheng Road, Tamsui, New Taipei City 251, Taiwan
| | - Yeou-Liang Lin
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, No. 376, Chung-Cheng Road, Tamsui, New Taipei City 251, Taiwan
| | - Shiow-Suey Lai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.
| |
Collapse
|
20
|
Hua T, Wang X, Bai J, Zhang L, Liu J, Jiang P. Attenuation of porcine circovirus type-2b by replacement with the Rep gene of porcine circovirus type-1. Virus Res 2013; 173:270-9. [PMID: 23454919 DOI: 10.1016/j.virusres.2013.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Porcine circovirus type-2 (PCV2) is the primary causative agent of porcine circovirus-associated diseases and has 4 main ORFs, ORF1 (Rep gene), ORF2 (Cap gene), ORF3 within ORF1, and ORF4, which is overlapped with ORF3, and 1 origin (Ori) of replication located between ORF1 and ORF2. The chimeric PCV1-2, containing the PCV2 capsid, PCV1 rep, and Ori genes, is attenuated in pigs. In order to verify the role of the Rep gene or Ori in the virulence of PCV2, 3 chimeric viruses [PCV2b-Ori1 (PCV1 Ori gene cloned into the backbone of PCV2b), PCV2b-rep1 (PCV1 Rep gene cloned into the backbone of PCV2b), and PCV2b-rep1-Ori1 (PCV1 Rep and Ori genes cloned into the backbone of PCV2b)] and 2 wild-type recombinant PCV2b and PCV1 were constructed and identified. The experimental results in piglets showed that clinical symptoms, viremia, viral load, lesions in lymphoid and lung tissues, and IL-10 and TNF-α expression levels in PBMCs in the PCV2b-rep1-Ori1 and PCV2b-rep1 groups were significantly decreased, compared to PCV2-infected piglets. Meanwhile, histological lesions of lymphoid and lung tissues, viral loads in lymphoid tissues, viremia, and TNF-α expression in PBMCs were not significantly different between groups PCV2b-Ori1 and PCV2b, suggesting that the Rep gene (ORF1) likely contributes to viral pathogenicity in vivo.
Collapse
Affiliation(s)
- Tao Hua
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
21
|
Mankertz A. Molecular interactions of porcine circoviruses type 1 and type 2 with its host. Virus Res 2012; 164:54-60. [DOI: 10.1016/j.virusres.2011.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 01/19/2023]
|
22
|
Population dynamics and ORF3 gene evolution of porcine circovirus type 2 circulating in Korea. Arch Virol 2012; 157:799-810. [DOI: 10.1007/s00705-012-1234-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022]
|
23
|
Cheung AK. Porcine circovirus: transcription and DNA replication. Virus Res 2011; 164:46-53. [PMID: 22036834 DOI: 10.1016/j.virusres.2011.10.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/14/2011] [Accepted: 10/15/2011] [Indexed: 12/18/2022]
Abstract
This review summarizes the molecular studies pertaining to porcine circovirus (PCV) transcription and DNA replication. The genome of PCV is circular, single-stranded DNA and contains 1759-1768 nucleotides. Both the genome-strand (packaged in the virus particle) and the complementary-strand (synthesized in the new host) encode viral proteins. Among a multitude of RNAs synthesized by alternate splicing, only rep and rep' are essential for virus DNA replication via the rolling-circle replication (RCR) mechanism. In contrast to other RCR biological systems which utilize only one multi-functional protein, Rep, to replicate their respective genomes, PCV requires two proteins, Rep and Rep'. During DNA synthesis, the PCV origin of DNA replication (Ori), which contains a pair of inverted repeats (palindrome), exists in a destabilized four-stranded configuration (the melting-pot model) and permits both the palindromic-strand and the complementary-strand to serve as templates simultaneously for initiation and termination. Inherent in the "melting-pot" model is the template-strand-switching mechanism. This mechanism is the basis for the "correction or conversion" of any mutated nucleotide sequences engineered into either arm of the palindrome and the incorporation of "illegitimate recombination" (addition or deletion of nucleotides) events that are commonly observed at the Ori of other RCR biological systems during DNA replication.
Collapse
Affiliation(s)
- Andrew K Cheung
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA.
| |
Collapse
|
24
|
Antibody recognition of porcine circovirus type 2 capsid protein epitopes after vaccination, infection, and disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:749-57. [PMID: 21430122 DOI: 10.1128/cvi.00418-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Open reading frame 2 (ORF2) of porcine circovirus type 2 (PCV2) codes for the 233-amino-acid capsid protein (CP). Baculovirus-based vaccines that express only ORF2 are protective against clinical disease following experimental challenge or natural infection. The goal of this study was to identify regions in CP preferentially recognized by sera from experimentally infected and vaccinated pigs and to compare these responses to those of pigs diagnosed with porcine circovirus-associated disease (PCVAD), including porcine multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS). The approach was to react porcine sera with CP polypeptide fragments followed by finer mapping studies using overlapping oligopeptides that covered amino acids 141 to 200. The results showed that vaccinated pigs preferentially recognized only the largest polypeptide fragment, CP(43-233). A subset of experimentally infected pigs and pigs with PDNS showed strong reactivity against a CP oligopeptide, 169-STIDYFQPNNKR-180. Alanine scanning identified Y-173, F-174, Q-175, and K-179 as important for antibody recognition. The results from this study support the notion of PCV2 modulation of immunity, including antibody responses that may represent a precursor for disease. The recognition of CP(169-180) and other polypeptides provides opportunities to devise diagnostic tests for monitoring the immunological effectiveness of vaccination.
Collapse
|
25
|
Immunopathological characterization of porcine circovirus type 2 infection-associated follicular changes in inguinal lymph nodes using high-throughput tissue microarray. Vet Microbiol 2010; 149:72-84. [PMID: 21126833 DOI: 10.1016/j.vetmic.2010.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/11/2010] [Accepted: 10/22/2010] [Indexed: 11/23/2022]
Abstract
The immunopathogenesis of porcine circovirus type 2 (PCV2) infection in conventional pigs is complicated by various environmental factors and individual variation and is difficult to be completely reproduced experimentally. In the present field-based study, a tissue microarray (TMA) consisting of a series of lymphoid follicles having different PCV2-loads was constructed using formalin-fixed and paraffin-embedded superficial inguinal lymph nodes (LNs) from 102 pigs. Using the TMA, a wide range of parameters, including co-infected viral pathogens, immune cell subsets, and cell apoptosis/proliferation activity by immunohistochemical (IHC) staining or in situ hybridization (ISH) were measured, characterized, and compared. The signal location and area extent of each parameter were interpreted by pathologists, semi-quantified by automated image analysis software, and analyzed statistically. The results herein demonstrated a significant negative correlation between PCV2 and CD79a (p<0.001) and a significant positive correlation between PCV2 and lysozyme (p<0.001) or TUNEL (p<0.001) using Pearson correlation analysis. The amount of porcine respiratory and reproductive syndrome virus (PRRSV) and porcine parvovirus antigens did not correlate with the tissue loads of PCV2 nucleic acid. Multiple regression analysis further predicted that PCV2 contributed major effects on CD79a, lysozyme, and TUNEL but PRRSV showed relatively less effects on these parameters. In addition, the total signal intensity of Ki67 (index of cell proliferation activity) did not change significantly among cases with different PCV2 loads; however, as the loading of PCV2 nucleic acid increased, the main contribution of Ki67 signal gradually shifted from B cells in the germinal center to T cells and macrophages in the interfollicular regions. In the present study, the use of TMA to establish a mathematical model with a wider range of statistical analysis can bring us a step forward to understand the immunopathogenesis of PCV2 infection-associated follicular changes in LNs.
Collapse
|