1
|
Jaggi U, Ghiasi H. Presence of CD80 and Absence of LAT in Modulating Cellular Infiltration and HSV-1 Latency. Viruses 2024; 16:1379. [PMID: 39339855 PMCID: PMC11436179 DOI: 10.3390/v16091379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
CD80 is the best-known costimulatory molecule for effective T cell functions. Many different reports have summarized the role of CD80 in HSV-1 and its functions in maintaining adaptive immunity, which is the main player in causing herpes stromal keratitis (HSK). To determine the effects of absence or overexpression of CD80 in HSV-1 infection, we infected CD80-/- and WT mice with a recombinant HSV-1 expressing murine CD80 (HSV-CD80) in place of the latency associated transcript (LAT). Parental dLAT2903 virus lacking LAT was used as a control. After infection, critical components of infection like virus replication, eye disease, early cellular infiltrates into the corneas and trigeminal ganglia (TG), latency-reactivation in the infected mice were determined. Our findings reveal that the absence of CD80 in the CD80-/- mice infected with both viruses did not affect the viral titers in the mice eyes or eye disease, but it played a significant role in critical components of HSV-induced immunopathology. The WT mice infected with dLAT2903 virus had significantly higher levels of latency compared with the CD80-/- mice infected with dLAT2903 virus, while levels of latency as determined by gB DNA expression were similar between the WT and CD80-/- mice infected with HSV-CD80 virus. In contrast to the differences in the levels of latency between the infected groups, the absence of CD80 expression in the CD80-/- mice or its overexpression by HSV-CD80 virus did not have any effect on the time of reactivation. Furthermore, the absence of CD80 expression contributed to more inflammation in the CD80-/--infected mice. Overall, this study suggests that in the absence of CD80, inflammation increases, latency is reduced, but reactivation is not affected. Altogether, our study suggests that reduced latency correlated with reduced levels of inflammatory molecules and blocking or reducing expression of CD80 could be used to mitigate the immune responses, therefore controlling HSV-induced infection.
Collapse
Affiliation(s)
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC – SSB3, 8700 Beverly Blvd., Los Angeles, CA 90048, USA;
| |
Collapse
|
2
|
Musa M, Enaholo E, Aluyi-Osa G, Atuanya GN, Spadea L, Salati C, Zeppieri M. Herpes simplex keratitis: A brief clinical overview. World J Virol 2024; 13:89934. [PMID: 38616855 PMCID: PMC11008405 DOI: 10.5501/wjv.v13.i1.89934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 03/11/2024] Open
Abstract
The aim of our minireview is to provide a brief overview of the diagnosis, clinical aspects, treatment options, management, and current literature available regarding herpes simplex keratitis (HSK). This type of corneal viral infection is caused by the herpes simplex virus (HSV), which can affect several tissues, including the cornea. One significant aspect of HSK is its potential to cause recurrent episodes of inflammation and damage to the cornea. After the initial infection, the HSV can establish a latent infection in the trigeminal ganglion, a nerve cluster near the eye. The virus may remain dormant for extended periods. Periodic reactivation of the virus can occur, leading to recurrent episodes of HSK. Factors triggering reactivation include stress, illness, immunosuppression, or trauma. Recurrent episodes can manifest in different clinical patterns, ranging from mild epithelial involvement to more severe stromal or endothelial disease. The severity and frequency of recurrences vary among individuals. Severe cases of HSK, especially those involving the stroma and leading to scarring, can result in vision impairment or even blindness in extreme cases. The cornea's clarity is crucial for good vision, and scarring can compromise this, potentially leading to visual impairment. The management of HSK involves not only treating acute episodes but also implementing long-term strategies to prevent recurrences and attempt repairs of corneal nerve endings via neurotization. Antiviral medications, such as oral Acyclovir or topical Ganciclovir, may be prescribed for prophylaxis. The immune response to the virus can contribute to corneal damage. Inflammation, caused by the body's attempt to control the infection, may inadvertently harm the corneal tissues. Clinicians should be informed about triggers and advised on measures to minimize the risk of reactivation. In summary, the recurrent nature of HSK underscores the importance of both acute and long-term management strategies to preserve corneal health and maintain optimal visual function.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor 434101, Nigeria
| | - Gladness Aluyi-Osa
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | | | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
3
|
Jaggi U, Matundan HH, Oh JJ, Ghiasi H. Absence of CD80 reduces HSV-1 replication in the eye and delays reactivation but not latency levels. J Virol 2024; 98:e0201023. [PMID: 38376148 PMCID: PMC10949485 DOI: 10.1128/jvi.02010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Herpes simplex virus-1 (HSV-1) infections are among the most frequent serious viral eye infections in the U.S. and are a major cause of viral-induced blindness. HSV-1 infection is known to induce T cell activation, proliferation, and differentiation that play crucial roles in the development of virus-induced inflammatory lesions, leading to eye disease and causing chronic corneal damage. CD80 is a co-stimulatory molecule and plays a leading role in T cell differentiation. Previous efforts to limit lesion severity by controlling inflammation at the cellular level led us to ask whether mice knocked out for CD80 would show attenuated virus replication following reactivation. By evaluating the effects of CD80 activity on primary and latent infection, we found that in the absence of CD80, virus replication in the eyes and virus reactivation in latent trigeminal ganglia were both significantly reduced. However, latency in latently infected CD80-/- mice did not differ significantly from that in wild-type (WT) control mice. Reduced virus replication in the eyes of CD80-/- mice correlated with significantly expanded CD11c gene expression as compared to WT mice. Taken together, our results indicate that suppression of CD80 could offer significant beneficial therapeutic effects in the treatment of Herpes Stromal Keratitis (HSK).IMPORTANCEOf the many problems associated with recurrent ocular infection, reducing virus reactivation should be a major goal of controlling ocular herpes simplex virus-1 (HSV-1) infection. In this study, we have shown that the absence of CD80 reduces HSV-1 reactivation, which marks the establishment of a previously undescribed mechanism underlying viral immune evasion that could be exploited to better manage HSV infection.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Jay J. Oh
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| |
Collapse
|
4
|
Wu Y, Tan S, He Q, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Deletion of Double Copies of the US1 Gene Reduces the Infectivity of Recombinant Duck Plague Virus In Vitro and In Vivo. Microbiol Spectr 2022; 10:e0114022. [PMID: 36377937 PMCID: PMC9784771 DOI: 10.1128/spectrum.01140-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Duck plague caused by duck plague virus (DPV) is one of the main diseases that seriously endangers the production of waterfowl. DPV possesses a large genome consisting of 78 open reading frames (ORFs), and understanding the function and mechanism of each encoded protein in viral replication and pathogenesis is the key to controlling duck plague outbreaks. US1 is one of the two genes located in the repeat regions of the DPV genome, but the function of its encoded protein in DPV replication and pathogenesis remains unclear. Previous studies found that the US1 gene or its homologs exist in almost all alphaherpesviruses, but the loci, functions, and pathogenesis of their encoded proteins vary among different viruses. Here, we aimed to define the roles of US1 genes in DPV infection and pathogenesis by generating a double US1 gene deletion mutant and its revertant without any mini-F cassette retention. In vitro and in vivo studies found that deletion of both copies of the US1 gene significantly impaired the replication, gene expression, and virulence of DPV, which could represent a potential candidate vaccine strain for the prevention of duck plague. IMPORTANCE Duck plague virus contains nearly 80 genes, but the functions and mechanisms of most of the genes have not yet been elucidated, including those of the newly identified immediate early gene US1. Here, we found that US1 deletion reduces viral gene expression, replication, and virus production both in vitro and in vivo. This insight defines a fundamental role of the US1 gene in DPV infection and indicates its involvement in DPV transcription. These results provide clues for the study of the pathogenesis of the US1 gene and the development of attenuated vaccines targeting this gene.
Collapse
Affiliation(s)
- Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Silun Tan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Qing He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
5
|
Matundan HH, Jaggi U, Ghiasi H. Herpes Simplex Virus 1 Glycoproteins Differentially Regulate the Activity of Costimulatory Molecules and T Cells. mSphere 2022; 7:e0038222. [PMID: 36094100 PMCID: PMC9599263 DOI: 10.1128/msphere.00382-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Over the past 70 years, multiple approaches to develop a prophylactic or therapeutic vaccine to control herpes simplex virus (HSV) infection have failed to protect against primary infection, reactivation, or reinfection. In contrast to many RNA viruses, neither primary HSV infection nor repeated clinical recurrence elicits immune responses capable of completely preventing virus reactivation; yet the 12 known HSV-1 glycoproteins are the major inducers and targets of humoral and cell-mediated immune responses following infection. While costimulatory molecules and CD4/CD8 T cells both contribute significantly to HSV-1-induced immune responses, the specific effects of individual HSV-1 glycoproteins on CD4, CD8, CD80, and CD86 activities are not known. To determine how nine major HSV-1 glycoproteins affect T cells and costimulatory molecule function, we tested the independent effects of gB, gC, gD, gE, gG, gH, gI, gK, and gL on CD4, CD8, CD80, and CD86 promoter activities in vitro. gD, gK, and gL had a suppressive effect on CD4, CD8, CD80, and CD86 promoter activities, while gG and gH specifically suppressed CD4 promoter activity. In contrast, gB, gC, gE, and gI stimulated CD4, CD8, CD80, and CD86 promoter activities. Luminex analysis of splenocytes and bone-marrow-derived dendritic cells (BMDCs) transfected with each glycoprotein showed differing cytokine/chemokine milieus with higher responses in splenocytes than in BMDCs. Our results with the tested major HSV-1 glycoproteins suggest that costimulatory molecules and T cell responses to the nine glycoproteins can be divided into (i) stimulators (i.e., gB, gC, gE, and gI), and (ii) nonstimulators (i.e., gD, gK, and gL). Thus, consistent with our previous studies, a cocktail of select HSV-1 viral genes may induce a wider spectrum of immune responses, and thus protection, than individual genes. IMPORTANCE Currently no effective vaccine is available against herpes simplex virus (HSV) infection. Thus, there is a critical need to develop a safe and effective vaccine to prevent and control HSV infection. The development of such approaches will require an advanced understanding of viral genes. This study provides new evidence supporting an approach to maximize vaccine efficacy by using a combination of HSV genes to control HSV infection.
Collapse
Affiliation(s)
- Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC – SSB3, Los Angeles, California, USA
| | - Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC – SSB3, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC – SSB3, Los Angeles, California, USA
| |
Collapse
|
6
|
Zhang J, Xu X, Duan S, Gao Y, Ma D, Yue R, Zeng F, Li X, Meng Z, Li X, Niu Z, Jiang G, Yu L, Liao Y, Li D, Wang L, Zhao H, Zhang Y, Li Q. Characterization of the Immunologic Phenotype of Dendritic Cells Infected With Herpes Simplex Virus 1. Front Immunol 2022; 13:931740. [PMID: 35865514 PMCID: PMC9294641 DOI: 10.3389/fimmu.2022.931740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Due to viral envelope glycoprotein D binding to cellular membrane HVEM receptor, HSV-1 can infect certain dendritic cells, which becomes an event in the viral strategy to interfere with the host’s immune system. We previously generated the HSV-1 mutant strain M6, which produced an attenuated phenotype in mice and rhesus monkeys. The attenuated M6 strain was used to investigate how HSV-1 infection of dendritic cells interferes with both innate and adaptive immunity. Our study showed that dendritic cells membrane HVEM receptors could mediate infection of the wild-type strain and attenuated M6 strain and that dendritic cells infected by both viruses in local tissues of animals exhibited changes in transcriptional profiles associated with innate immune and inflammatory responses. The infection of pDCs and cDCs by the two strains promoted cell differentiation to the CD103+ phenotype, but varied transcriptional profiles were observed, implying a strategy that the HSV-1 wild-type strain interferes with antiviral immunity, probably due to viral modification of the immunological phenotype of dendritic cells during processing and presentation of antigen to T cells, leading to a series of deviations in immune responses, ultimately generating the deficient immune phenotype observed in infected individuals in the clinical.
Collapse
Affiliation(s)
- Jingjing Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Xingli Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Yang Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Danjing Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Rong Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Fengyuan Zeng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Xueqi Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Ziyan Meng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Xinghang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Zhenye Niu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Guorun Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Li Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Dandan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Heng Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
- *Correspondence: Qihan Li, ; Ying Zhang,
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
- *Correspondence: Qihan Li, ; Ying Zhang,
| |
Collapse
|
7
|
He Q, Wu Y, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. ICP22/IE63 Mediated Transcriptional Regulation and Immune Evasion: Two Important Survival Strategies for Alphaherpesviruses. Front Immunol 2021; 12:743466. [PMID: 34925320 PMCID: PMC8674840 DOI: 10.3389/fimmu.2021.743466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
In the process of infecting the host, alphaherpesviruses have derived a series of adaptation and survival strategies, such as latent infection, autophagy and immune evasion, to survive in the host environment. Infected cell protein 22 (ICP22) or its homologue immediate early protein 63 (IE63) is a posttranslationally modified multifunctional viral regulatory protein encoded by all alphaherpesviruses. In addition to playing an important role in the efficient use of host cell RNA polymerase II, it also plays an important role in the defense process of the virus overcoming the host immune system. These two effects of ICP22/IE63 are important survival strategies for alphaherpesviruses. In this review, we summarize the complex mechanism by which the ICP22 protein regulates the transcription of alphaherpesviruses and their host genes and the mechanism by which ICP22/IE63 participates in immune escape. Reviewing these mechanisms will also help us understand the pathogenesis of alphaherpesvirus infections and provide new strategies to combat these viral infections.
Collapse
Affiliation(s)
- Qing He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Hennig T, Djakovic L, Dölken L, Whisnant AW. A Review of the Multipronged Attack of Herpes Simplex Virus 1 on the Host Transcriptional Machinery. Viruses 2021; 13:1836. [PMID: 34578417 PMCID: PMC8473234 DOI: 10.3390/v13091836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/31/2022] Open
Abstract
During lytic infection, herpes simplex virus (HSV) 1 induces a rapid shutoff of host RNA synthesis while redirecting transcriptional machinery to viral genes. In addition to being a major human pathogen, there is burgeoning clinical interest in HSV as a vector in gene delivery and oncolytic therapies, necessitating research into transcriptional control. This review summarizes the array of impacts that HSV has on RNA Polymerase (Pol) II, which transcribes all mRNA in infected cells. We discuss alterations in Pol II holoenzymes, post-translational modifications, and how viral proteins regulate specific activities such as promoter-proximal pausing, splicing, histone repositioning, and termination with respect to host genes. Recent technological innovations that have reshaped our understanding of previous observations are summarized in detail, along with specific research directions and technical considerations for future studies.
Collapse
Affiliation(s)
- Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
- Helmholtz Center for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Adam W. Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
| |
Collapse
|