1
|
Yang H, Llano A, Cedeño S, von Delft A, Corcuera A, Gillespie GM, Knox A, Leneghan DB, Frater J, Stöhr W, Fidler S, Mothe B, Mak J, Brander C, Ternette N, Dorrell L. Incoming HIV virion-derived Gag Spacer Peptide 2 (p1) is a target of effective CD8 + T cell antiviral responses. Cell Rep 2021; 35:109103. [PMID: 33979627 DOI: 10.1016/j.celrep.2021.109103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/20/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022] Open
Abstract
Persistence of HIV through integration into host DNA in CD4+ T cells presents a major barrier to virus eradication. Viral integration may be curtailed when CD8+ T cells are triggered to kill infected CD4+ T cells through recognition of histocompatibility leukocyte antigen (HLA) class I-bound peptides derived from incoming virions. However, this has been reported only in individuals with "beneficial" HLA alleles that are associated with superior HIV control. Through interrogation of the pre-integration immunopeptidome, we obtain proof of early presentation of a virion-derived HLA-A∗02:01-restricted epitope, FLGKIWPSH (FH9), located in Gag Spacer Peptide 2 (SP2). FH9-specific CD8+ T cell responses are detectable in individuals with primary HIV infection and eliminate HIV-infected CD4+ T cells prior to virus production in vitro. Our data show that non-beneficial HLA class I alleles can elicit an effective antiviral response through early presentation of HIV virion-derived epitopes and also demonstrate the importance of SP2 as an immune target.
Collapse
Affiliation(s)
- Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; Research In Viral Eradication of Reservoirs (RIVER) trial study group.
| | - Anuska Llano
- Irsicaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Samandhy Cedeño
- Irsicaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Annette von Delft
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Angelica Corcuera
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | | | - Andrew Knox
- Immunocore Ltd, Milton, Abingdon OX14 4RY, UK
| | | | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; Research In Viral Eradication of Reservoirs (RIVER) trial study group
| | - Wolfgang Stöhr
- Medical Research Council Clinical Trials Unit, University College London, London WC1V 6LJ, UK; Research In Viral Eradication of Reservoirs (RIVER) trial study group
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, National Institute for Health Research Imperial Biomedical Research Centre, London W2 1NY, UK; Research In Viral Eradication of Reservoirs (RIVER) trial study group
| | - Beatriz Mothe
- Irsicaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), 08500 Vic, Spain; Fundació Lluita contra la Sida, Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Johnson Mak
- Institute for Glycomics, Griffith University Gold Coast, Southport QLD 4215, Australia
| | - Christian Brander
- Irsicaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), 08500 Vic, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Nicola Ternette
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; Immunocore Ltd, Milton, Abingdon OX14 4RY, UK; Research In Viral Eradication of Reservoirs (RIVER) trial study group.
| |
Collapse
|
2
|
Olusola BA, Olaleye DO, Odaibo GN. Non-synonymous Substitutions in HIV-1 GAG Are Frequent in Epitopes Outside the Functionally Conserved Regions and Associated With Subtype Differences. Front Microbiol 2021; 11:615721. [PMID: 33505382 PMCID: PMC7829476 DOI: 10.3389/fmicb.2020.615721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
In 2019, 38 million people lived with HIV-1 infection resulting in 690,000 deaths. Over 50% of this infection and its associated deaths occurred in Sub-Saharan Africa. The West African region is a known hotspot of the HIV-1 epidemic. There is a need to develop an HIV-1 vaccine if the HIV epidemic would be effectively controlled. Few protective cytotoxic T Lymphocytes (CTL) epitopes within the HIV-1 GAG (HIV_gagconsv) have been previously identified to be functionally conserved among the HIV-1 M group. These epitopes are currently the focus of universal HIV-1 T cell-based vaccine studies. However, these epitopes' phenotypic and genetic properties have not been observed in natural settings for HIV-1 strains circulating in the West African region. This information is critical as the usefulness of universal HIV-1 vaccines in the West African region depends on these epitopes' occurrence in strains circulating in the area. This study describes non-synonymous substitutions within and without HIV_gagconsv genes isolated from 10 infected Nigerians at the early stages of HIV-1 infection. Furthermore, we analyzed these substitutions longitudinally in five infected individuals from the early stages of infection till after seroconversion. We identified three non-synonymous substitutions within HIV_gagconsv genes isolated from early HIV infected individuals. Fourteen and nineteen mutations outside the HIV_gagconsv were observed before and after seroconversion, respectively, while we found four mutations within the HIV_gagconsv. These substitutions include previously mapped CTL epitope immune escape mutants. CTL immune pressure likely leaves different footprints on HIV-1 GAG epitopes within and outside the HIV_gagconsv. This information is crucial for universal HIV-1 vaccine designs for use in the West African region.
Collapse
Affiliation(s)
| | | | - Georgina N. Odaibo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Behrens NE, Wertheimer A, Love MB, Klotz SA, Ahmad N. Evaluation of HIV-specific T-cell responses in HIV-infected older patients with controlled viremia on long-term antiretroviral therapy. PLoS One 2020; 15:e0236320. [PMID: 32941433 PMCID: PMC7498024 DOI: 10.1371/journal.pone.0236320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 01/10/2023] Open
Abstract
HIV-infected older individuals may have a diminished immune response because of exhaustion/immune aging of T-cells. Therefore, we have investigated HIV-specific CD4 and CD8 T-cell responses in 100 HIV-infected patients (HIV+) who have aged on long-term antiretroviral therapy (ART) and achieved controlled viremia (mostly undetectable viral load; 92 patients with <20 to <40 HIV RNA copies/mL and 8 <60 to <100) and improved CD4 T-cell counts. We show that the median frequencies of HIV-specific CD4+ and CD8+ IFN-γ T-cells were higher in HIV+ than uninfected individuals (HIV-), including increasing levels of IFN-γproduced by CD4+ T-cells and decreasing levels by CD8+ T-cells with increasing CD4 T-cell counts in HIV+. No correlation was found between T-cell responses and varying levels of undetectable viremia. HIV-specific TNF-α made by CD8+ T-cells was higher in HIV+ than HIV-, including decreasing levels with increasing CD4 T-cell counts in HIV+. Furthermore, the CD8+ T-cell mediators, CD107a and Granzyme-B, were higher in HIV+ than HIV-, and decreased with increasing CD4 T-cell counts in HIV+. Remarkably, HIV-specific CD8 T-cells produced decreasing levels of IFN-γwith increasing age of HIV+, including decreased levels of CD107a and Granzyme-B in older HIV+. However, HIV-specific CD8+ T-cells produced increasing levels of TNF-α with increasing age of the HIV+, suggesting continued inflammation. In conclusion, HIV+ with controlled viremia on long-term ART and with higher CD4 T-cell counts showed reduced HIV-specific CD8 T-cell responses as compared to those with lower CD4 T-cell counts, and older HIV+ exhibited decreasing levels of CD8 T-cell responses with increasing age.
Collapse
Affiliation(s)
- Nicole E. Behrens
- Department of Immunobiology, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
| | - Anne Wertheimer
- Department of Immunobiology, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
- Department of Medicine, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
- College of Medicine, and Bio5 Institute, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
| | - Maria B. Love
- Department of Immunobiology, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
| | - Stephen A. Klotz
- Department of Medicine, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
| | - Nafees Ahmad
- Department of Immunobiology, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
- * E-mail:
| |
Collapse
|
4
|
Balamurugan A, Ng HL, Yang OO. Cross-Reactivity against Multiple HIV-1 Epitopes Is Characteristic of HIV-1-Specific Cytotoxic T Lymphocyte Clones. J Virol 2018; 92:e00617-18. [PMID: 29899094 PMCID: PMC6069174 DOI: 10.1128/jvi.00617-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/05/2018] [Indexed: 11/20/2022] Open
Abstract
Although a high level of promiscuity for heterologous epitopes is believed to exist for cellular immunity, limited data explore this issue for human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T lymphocyte (CTL) responses. Here, we found an unexpected degree of heterologous cross-reactivity against HIV-1 epitopes, in addition to the targeted index epitope. Most CTL clones screened cross-reacted against other known HIV-1 epitopes of the same major histocompatibility complex type I (MHC-I) restriction, up to 40% of tested nonindex epitopes in some cases. The observed cross-reactivity was universally lower avidity than recognition of the index epitope when examined for several A*02- and B*57-restricted CTL clones, demonstrating that the high concentrations of exogenous epitope typically used for screening of CTL responses are prone to detect such cross-reactivity spuriously. In agreement with this, we found that these cross-reactive responses do not appear to mediate CTL activity against HIV-1-infected cells. Overall, our data indicate that low-level cross-reactivity is remarkably common for HIV-1-specific CTLs. The role of this phenomenon is unclear, but low-avidity interactions have been shown to foster homeostatic proliferation of memory T cells.IMPORTANCE This study raises two issues related to HIV-1-specific CTL responses. These are key immune responses that retard disease progression in infected persons that are highly relevant to immunotherapies and vaccines for HIV-1. First, we make the novel observation that these responses are promiscuous and that CTLs targeting one epitope may cross-recognize other, completely distinct epitopes in the virus. While these are low-avidity interactions that do not appear to contribute directly to the antiviral activity of CTLs, this raises interesting biologic implications regarding the purpose of the phenomenon, such as providing a stimulus for these responses to persist long term. Second, the data raise a technical caveat to detection of CTL responses against particular epitopes, suggesting that some methodologies may unintentionally detect cross-reactivity and overestimate responses against an epitope.
Collapse
Affiliation(s)
- Arumugam Balamurugan
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California USA
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Hwee L Ng
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California USA
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Otto O Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California USA
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- AIDS Healthcare Foundation, Los Angeles, California, USA
| |
Collapse
|
5
|
Margolis DM, Garcia JV, Hazuda DJ, Haynes BF. Latency reversal and viral clearance to cure HIV-1. Science 2016; 353:aaf6517. [PMID: 27463679 DOI: 10.1126/science.aaf6517] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Research toward a cure for human immunodeficiency virus type 1 (HIV-1) infection has joined prevention and treatment efforts in the global public health agenda. A major approach to HIV eradication envisions antiretroviral suppression, paired with targeted therapies to enforce the expression of viral antigen from quiescent HIV-1 genomes, and immunotherapies to clear latent infection. These strategies are targeted to lead to viral eradication--a cure for AIDS. Paired testing of latency reversal and clearance strategies has begun, but additional obstacles to HIV eradication may emerge. Nevertheless, there is reason for optimism that advances in long-acting antiretroviral therapy and HIV prevention strategies will contribute to efforts in HIV cure research and that the implementation of these efforts will synergize to markedly blunt the effect of the HIV pandemic on society.
Collapse
Affiliation(s)
- David M Margolis
- University of North Carolina HIV Cure Center, Department of Medicine, and Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA. Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - J Victor Garcia
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Daria J Hazuda
- Merck Research Laboratories, White Horse Junction, PA, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Department of Medicine, and Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
6
|
Brockman MA, Jones RB, Brumme ZL. Challenges and Opportunities for T-Cell-Mediated Strategies to Eliminate HIV Reservoirs. Front Immunol 2015; 6:506. [PMID: 26483795 PMCID: PMC4591506 DOI: 10.3389/fimmu.2015.00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
HIV's ability to establish latent reservoirs of reactivation-competent virus is the major barrier to cure. "Shock and kill" methods consisting of latency-reversing agents (LRAs) followed by elimination of reactivating cells through cytopathic effects are under active development. However, the clinical efficacy of LRAs remains to be established. Moreover, recent studies indicate that reservoirs may not be reduced efficiently by either viral cytopathic or CD8(+) T-cell-mediated mechanisms. In this perspective, we highlight challenges to T-cell-mediated elimination of HIV reservoirs, including characteristics of responding T cells, aspects of the cellular reservoirs, and properties of the latent virus itself. We also discuss potential strategies to overcome these challenges by targeting the antiviral activity of T cells toward appropriate viral antigens following latency.
Collapse
Affiliation(s)
- Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| | - R Brad Jones
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University , Washington, DC , USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| |
Collapse
|
7
|
The Breadth of Expandable Memory CD8+ T Cells Inversely Correlates with Residual Viral Loads in HIV Elite Controllers. J Virol 2015; 89:10735-47. [PMID: 26269189 DOI: 10.1128/jvi.01527-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/27/2015] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Previous studies have shown that elite controllers with minimal effector T cell responses harbor a low-frequency, readily expandable, highly functional, and broadly directed memory population. Here, we interrogated the in vivo relevance of this cell population by investigating whether the breadth of expandable memory responses is associated with the magnitude of residual viremia in individuals achieving durable suppression of HIV infection. HIV-specific memory CD8(+) T cells were expanded by using autologous epitopic and variant peptides. Viral load was measured by an ultrasensitive single-copy PCR assay. Following expansion, controllers showed a greater increase in the overall breadth of Gag responses than did untreated progressors (P = 0.01) as well as treated progressors (P = 0.0003). Nef- and Env-specific memory cells expanded poorly for all groups, and their expanded breadths were indistinguishable among groups (P = 0.9 for Nef as determined by a Kruskal-Wallis test; P = 0.6 for Env as determined by a Kruskal-Wallis test). More importantly, we show that the breadth of expandable, previously undetectable Gag-specific responses was inversely correlated with residual viral load (r = -0.6; P = 0.009). Together, these data reveal a direct link between the abundance of Gag-specific expandable memory responses and prolonged maintenance of low-level viremia. Our studies highlight a CD8(+) T cell feature that would be desirable in a vaccine-induced T cell response. IMPORTANCE Many studies have shown that the rare ability of some individuals to control HIV infection in the absence of antiretroviral therapy appears to be heavily dependent upon special HIV-specific killer T lymphocytes that are able to inhibit viral replication. The identification of key features of these immune cells has the potential to inform rational HIV vaccine design. This study shows that a special subset of killer lymphocytes, known as central memory CD8(+) T lymphocytes, is at least partially involved in the durable control of HIV replication. HIV controllers maintain a large proportion of Gag-specific expandable memory CD8(+) T cells involved in ongoing viral suppression. These data suggest that induction of this cell subset by future HIV vaccines may be important for narrowing possible routes of rapid escape from vaccine-induced CD8(+) T cell responses.
Collapse
|
8
|
|