1
|
Asandem DA, Segbefia SP, Kusi KA, Bonney JHK. Hepatitis B Virus Infection: A Mini Review. Viruses 2024; 16:724. [PMID: 38793606 PMCID: PMC11125943 DOI: 10.3390/v16050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatitis B and C viruses (HBV and HCV) are the leading causes of end-stage liver disease worldwide. Although there is a potent vaccine against HBV, many new infections are recorded annually, especially in poorly resourced places which have lax vaccination policies. Again, as HBV has no cure and chronic infection is lifelong, vaccines cannot help those already infected. Studies to thoroughly understand the HBV biology and pathogenesis are limited, leaving much yet to be understood about the genomic features and their role in establishing and maintaining infection. The current knowledge of the impact on disease progression and response to treatment, especially in hyperendemic regions, is inadequate. This calls for in-depth studies on viral biology, mainly for the purposes of coming up with better management strategies for infected people and more effective preventative measures for others. This information could also point us in the direction of a cure. Here, we discuss the progress made in understanding the genomic basis of viral activities leading to the complex interplay of the virus and the host, which determines the outcome of HBV infection as well as the impact of coinfections.
Collapse
Affiliation(s)
- Diana Asema Asandem
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra P.O. Box LG 52, Ghana;
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Selorm Philip Segbefia
- Department of Immunology, Noguchi Memorial Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana; (S.P.S.); (K.A.K.)
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana; (S.P.S.); (K.A.K.)
| | - Joseph Humphrey Kofi Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| |
Collapse
|
2
|
Khalfi P, Denis Z, McKellar J, Merolla G, Chavey C, Ursic-Bedoya J, Soppa L, Szirovicza L, Hetzel U, Dufourt J, Leyrat C, Goldmann N, Goto K, Verrier E, Baumert TF, Glebe D, Courgnaud V, Gregoire D, Hepojoki J, Majzoub K. Comparative analysis of human, rodent and snake deltavirus replication. PLoS Pathog 2024; 20:e1012060. [PMID: 38442126 PMCID: PMC10942263 DOI: 10.1371/journal.ppat.1012060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/15/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
The recent discovery of Hepatitis D (HDV)-like viruses across a wide range of taxa led to the establishment of the Kolmioviridae family. Recent studies suggest that kolmiovirids can be satellites of viruses other than Hepatitis B virus (HBV), challenging the strict HBV/HDV-association dogma. Studying whether kolmiovirids are able to replicate in any animal cell they enter is essential to assess their zoonotic potential. Here, we compared replication of three kolmiovirids: HDV, rodent (RDeV) and snake (SDeV) deltavirus in vitro and in vivo. We show that SDeV has the narrowest and RDeV the broadest host cell range. High resolution imaging of cells persistently replicating these viruses revealed nuclear viral hubs with a peculiar RNA-protein organization. Finally, in vivo hydrodynamic delivery of viral replicons showed that both HDV and RDeV, but not SDeV, efficiently replicate in mouse liver, forming massive nuclear viral hubs. Our comparative analysis lays the foundation for the discovery of specific host factors controlling Kolmioviridae host-shifting.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Zoé Denis
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Joe McKellar
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Giovanni Merolla
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Carine Chavey
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - José Ursic-Bedoya
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Department of hepato-gastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi University Hospital, Montpellier, France
| | - Lena Soppa
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Leonora Szirovicza
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - Cedric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Kaku Goto
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Eloi Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Valérie Courgnaud
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Damien Gregoire
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jussi Hepojoki
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
3
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
4
|
Chiou WC, Lu HF, Chen JC, Lai YH, Chang MF, Huang YL, Tien N, Huang C. Identification of a novel interaction site between the large hepatitis delta antigen and clathrin that regulates the assembly of genotype III hepatitis delta virus. Virol J 2022; 19:163. [PMID: 36253859 PMCID: PMC9578201 DOI: 10.1186/s12985-022-01866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatitis delta virus (HDV), a satellite virus of hepatitis B virus (HBV), is a small, defective RNA virus strongly associated with the most severe form of hepatitis and progressive chronic liver disease and cirrhosis. Chronic hepatitis D, resulting from HBV/HDV coinfection, is considered to be the most severe form of viral hepatitis and affects 12-20 million people worldwide. Involved in the endocytosis and exocytosis of cellular and viral proteins, clathrin contributes to the pathogenesis and morphogenesis of HDV. Previously, we demonstrated that HDV-I and -II large hepatitis delta antigens (HDAg-L) possess a putative clathrin box that interacts with clathrin heavy chain (CHC) and supports HDV assembly. METHODS Virus assembly and vesicular trafficking of HDV virus-like particles (VLPs) were evaluated in Huh7 cells expressing HDV-I, -II and -III HDAg-L and hepatitis B surface antigen (HBsAg). To elucidate the interaction motif between HDAg-L and CHC, site-directed mutagenesis was performed to introduce mutations into HDAg-L and CHC and analyzed using coimmunoprecipitation or pull-down assays. RESULTS Comparable to HDV-I virus-like particles (VLPs), HDV-III VLPs were produced at a similar level and secreted into the medium via clathrin-mediated post-Golgi vesicular trafficking. Mutation at F27 or E33 of CHC abolished the binding of CHC to the C-terminus of HDV-III HDAg-L. Mutation at W207 of HDV-III HDAg-L inhibited its association with CHC and interfered with HDV-III VLP formation. We elucidated mechanism of the binding of HDV-III HDAg-L to CHC and confirmed the pivotal role of clathrin binding in the assembly of genotype III HDV. CONCLUSIONS A novel W box which was identified at the C terminus of HDV-III HDAg-L is known to differ from the conventional clathrin box but also interacts with CHC. The novel W box of HDAg-L constitutes a new molecular target for anti-HDV-III therapeutics.
Collapse
Affiliation(s)
- Wei-Chung Chiou
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei, 11221, Taiwan
| | - Hsu-Feng Lu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 41354, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, 11114, Taiwan
| | - Ming-Fu Chang
- Institute of Biochemistry and Molecular Biology, School of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Yuan-Li Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 41354, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei, 11221, Taiwan.
| |
Collapse
|
5
|
Gerber A, Le Gal F, Dziri S, Alloui C, Roulot D, Dény P, Sureau C, Brichler S, Gordien E. Comprehensive Analysis of Hepatitis Delta Virus Assembly Determinants According to Genotypes: Lessons From a Study of 526 Hepatitis Delta Virus Clinical Strains. Front Microbiol 2021; 12:751531. [PMID: 34867871 PMCID: PMC8636853 DOI: 10.3389/fmicb.2021.751531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Human hepatitis Delta virus (HDV) infection is associated to the most severe viral hepatic disease, including severe acute liver decompensation and progression to cirrhosis, and hepatocellular carcinoma. HDV is a satellite of hepatitis B virus (HBV) that requires the HBV envelope proteins for assembly of HDV virions. HDV and HBV exhibit a large genetic diversity that extends, respectively to eight (HDV-1 to -8) and to ten (HBV/A to/J) genotypes. Molecular determinants of HDV virion assembly consist of a C-terminal Proline-rich domain in the large Hepatitis Delta Antigen (HDAg) protein, also known as the Delta packaging domain (DPD) and of a Tryptophan-rich domain, the HDV matrix domain (HMD) in the C-terminal region of the HBV envelope proteins. In this study, we performed a systematic genotyping of HBV and HDV in a cohort 1,590 HDV-RNA-positive serum samples collected between 2001 to 2014, from patients originated from diverse parts of the world, thus reflecting a large genetic diversity. Among these samples, 526 HBV (HBV/A, B, C, D, E, and G) and HDV (HDV-1, 2, 3, and 5 to -8) genotype couples could be obtained. We provide results of a comprehensive analysis of the amino-acid sequence conservation within the HMD and structural and functional features of the DPD that may account for the yet optimal interactions between HDV and its helper HBV.
Collapse
Affiliation(s)
- Athenaïs Gerber
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France
| | - Frédéric Le Gal
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Samira Dziri
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France
| | - Chakib Alloui
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Dominique Roulot
- Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Unité d'Hépatologie, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France
| | - Paul Dény
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Inserm, U1052 - UMR CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, Paris, France
| | - Ségolène Brichler
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Emmanuel Gordien
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| |
Collapse
|
6
|
Lucifora J, Delphin M. Current knowledge on Hepatitis Delta Virus replication. Antiviral Res 2020; 179:104812. [PMID: 32360949 DOI: 10.1016/j.antiviral.2020.104812] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Hepatitis B Virus (HBV) that infects liver parenchymal cells is responsible for severe liver diseases and co-infection with Hepatitis Delta Virus (HDV) leads to the most aggressive form of viral hepatitis. Even tough being different for their viral genome (relaxed circular partially double stranded DNA for HBV and circular RNA for HDV), HBV and HDV are both maintained as episomes in the nucleus of infected cells and use the cellular machinery for the transcription of their viral RNAs. We propose here an update on the current knowledge on HDV replication cycle that may eventually help to identify new antiviral targets.
Collapse
Affiliation(s)
- Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France.
| | - Marion Delphin
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| |
Collapse
|
7
|
The roles of grouper clathrin light chains in regulating the infection of a novel marine DNA virus, Singapore grouper iridovirus. Sci Rep 2019; 9:15647. [PMID: 31666545 PMCID: PMC6821850 DOI: 10.1038/s41598-019-51725-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Clathrins, composed of clathrin heavy chains (CHCs) and clathrin light chains (CLCs), are usually hijacked by viruses for infection. However, the role of CLCs, especially in regulating fish virus infection, remains poorly understood. Here, two isoforms of CLCs were cloned from the red-spotted grouper (Epinephelus akaara) (EaCLCa and EaCLCb). Both EaCLC transcripts were expressed in all examined tissues, and the expression of EaCLCa was much higher than that of EaCLCb. Over-expressing EaCLCa-W119R mutant significantly reduced Singapore grouper iridovirus (SGIV) infectivity. However, no effect of EaCLCb-W122R on SGIV infection was observed. The detailed steps were further studied, mainly including virus attachment, entry and the following transport to early endosomes. EaCLCa-W119R mutant notably inhibited internalization of SGIV particles with no effect on SGIV attachment. Furthermore, EaCLCa-W119R mutant obviously impaired the delivery of SGIV to early endosomes after virus internalization. In addition, the EaCLCa-W119R mutant markedly reduced the colocalization of SGIV and actin. However, EaCLCb is not required for such events during SGIV infection. Taken together, these results demonstrate for the first time that EaCLCa and EaCLCb exerted different impacts on iridovirus infection, providing a better understanding of the mechanisms of SGIV infection and opportunities for the design of new antiviral strategies.
Collapse
|
8
|
Robinson M, Schor S, Barouch-Bentov R, Einav S. Viral journeys on the intracellular highways. Cell Mol Life Sci 2018; 75:3693-3714. [PMID: 30043139 PMCID: PMC6151136 DOI: 10.1007/s00018-018-2882-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022]
Abstract
Viruses are obligate intracellular pathogens that are dependent on cellular machineries for their replication. Recent technological breakthroughs have facilitated reliable identification of host factors required for viral infections and better characterization of the virus-host interplay. While these studies have revealed cellular machineries that are uniquely required by individual viruses, accumulating data also indicate the presence of broadly required mechanisms. Among these overlapping cellular functions are components of intracellular membrane trafficking pathways. Here, we review recent discoveries focused on how viruses exploit intracellular membrane trafficking pathways to promote various stages of their life cycle, with an emphasis on cellular factors that are usurped by a broad range of viruses. We describe broadly required components of the endocytic and secretory pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Identification of such overlapping host functions offers new opportunities to develop broad-spectrum host-targeted antiviral strategies.
Collapse
Affiliation(s)
- Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stanford Schor
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Rina Barouch-Bentov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Tat-enhanced delivery of the C terminus of HDAg-L inhibits assembly and secretion of hepatitis D virus. Antiviral Res 2017; 150:69-78. [PMID: 29247673 DOI: 10.1016/j.antiviral.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
Abstract
Hepatitis D virus (HDV) contains a single-stranded circular RNA genome that encodes two forms of hepatitis delta antigen (HDAg), the small delta antigen (HDAg-S) and the large delta antigen (HDAg-L). The two proteins have an identical amino acid sequence, except that HDAg-L has a 19-amino-acid extension at the C terminus. The domain spanning amino acid residues 198-210 of the HDAg-L (HDAg-L(198-210)) contains a nuclear export signal (NES), which is important for the nuclear export of HDV ribonucleoprotein to the cytoplasm. In this study, we established a cell permeable TAT-HA-HDAg-L(198-210) fusion protein using an E. coli protein expression system, to determine its function during HDV infection. The cytotoxicity of the TAT-HA-HDAg-L(198-210) fusion protein was investigated using an MTT assay, while a GST pull-down assay revealed that the TAT-HA-HDAg-L(198-210) fusion protein interfered with the interaction between HDAg-L and clathrin heavy chain (CHC). In addition, the cellular distribution of HDAg-L, in the presence of HBsAg, was observed by immunofluorescence staining and the TAT-HA-HDAg-L(198-210) fusion protein was found to impede the nuclear export of HDAg-L. Furthermore, assembly of HDV virus-like particles (VLPs) was decreased by the expression of the TAT-HDAg-L(198-210) fusion protein. The TAT-HA-HDAg-L(198-210) fusion protein also inhibited virus particle assembly and HDV secretion in a mouse model. These results suggest that the TAT-HA-HDAg-L(198-210) fusion protein inhibits the nuclear export of HDAg-L and competes with the C terminus of HDAg-L for interaction with CHC, and may have potential as a therapeutic agent for HDV infection.
Collapse
|
10
|
Inhibition of endocytic pathways impacts cytomegalovirus maturation. Sci Rep 2017; 7:46069. [PMID: 28406138 PMCID: PMC5390266 DOI: 10.1038/srep46069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/08/2017] [Indexed: 12/18/2022] Open
Abstract
Endocytic processes are critical for cellular entry of several viruses; however, the role of endocytosis in cellular trafficking of viruses beyond virus entry is only partially understood. Here, we utilized two laboratory strains (AD169 and Towne) of human cytomegalovirus (HCMV), which are known to use cell membrane fusion rather than endocytosis to enter fibroblasts, in order to study a post-entry role of endocytosis in HCMV life cycle. Upon pharmacological inhibition of dynamin-2 or clathrin terminal domain (TD) ligand association, these strains entered the cells successfully based on the expression of immediate early viral protein. However, both the inhibitors significantly reduced the growth rates and final virus yields of viruses without inhibiting the expression of early to late viral proteins. Clathrin accumulated in the cytoplasmic virus assembly compartment (vAC) of infected cells co-localizing with virus tegument protein pp150 and the formation of vAC was compromised upon endocytic inhibition. Transmission electron micrographs (TEM) of infected cells treated with endocytosis inhibitors showed intact nuclear stages of nucleocapsid assembly but the cytoplasmic virus maturation was greatly compromised. Thus, the data presented here implicate endocytic pathways in HCMV maturation and egress.
Collapse
|
11
|
Muenzner J, Traub LM, Kelly BT, Graham SC. Cellular and viral peptides bind multiple sites on the N-terminal domain of clathrin. Traffic 2016; 18:44-57. [PMID: 27813245 PMCID: PMC5182127 DOI: 10.1111/tra.12457] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022]
Abstract
Short peptide motifs in unstructured regions of clathrin‐adaptor proteins recruit clathrin to membranes to facilitate post‐Golgi membrane transport. Three consensus clathrin‐binding peptide sequences have been identified and structural studies show that each binds distinct sites on the clathrin heavy chain N‐terminal domain (NTD). A fourth binding site for adaptors on NTD has been functionally identified but not structurally characterised. We have solved high resolution structures of NTD bound to peptide motifs from the cellular clathrin adaptors β2 adaptin and amphiphysin plus a putative viral clathrin adaptor, hepatitis D virus large antigen (HDAg‐L). Surprisingly, with each peptide we observe simultaneous peptide binding at multiple sites on NTD and viral peptides binding to the same sites as cellular peptides. Peptides containing clathrin‐box motifs (CBMs) with the consensus sequence LΦxΦ[DE] bind at the ‘arrestin box’ on NTD, between β‐propeller blades 4 and 5, which had previously been thought to bind a distinct consensus sequence. Further, we structurally define the fourth peptide binding site on NTD, which we term the Royle box. In vitro binding assays show that clathrin is more readily captured by cellular CBMs than by HDAg‐L, and site‐directed mutagenesis confirms that multiple binding sites on NTD contribute to efficient capture by CBM peptides.
Collapse
Affiliation(s)
- Julia Muenzner
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Linton M Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Bernard T Kelly
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
12
|
Huang HC, Lee CP, Liu HK, Chang MF, Lai YH, Lee YC, Huang C. Cellular Nuclear Export Factors TAP and Aly Are Required for HDAg-L-mediated Assembly of Hepatitis Delta Virus. J Biol Chem 2016; 291:26226-26238. [PMID: 27807029 DOI: 10.1074/jbc.m116.754853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/01/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus (HBV). HDV genome encodes two forms of hepatitis delta antigen (HDAg), small HDAg (HDAg-S), which is required for viral replication, and large HDAg (HDAg-L), which is essential for viral assembly. HDAg-L is identical to HDAg-S except that it bears a 19-amino acid extension at the C terminus. Both HDAgs contain a nuclear localization signal (NLS), but only HDAg-L contains a CRM1-independent nuclear export signal at its C terminus. The nuclear export activity of HDAg-L is important for HDV particle formation. However, the mechanisms of HDAg-L-mediated nuclear export of HDV ribonucleoprotein are not clear. In this study, the host cellular RNA export complex TAP-Aly was found to form a complex with HDAg-L, but not with an export-defective HDAg-L mutant, in which Pro205 was replaced by Ala. HDAg-L was found to colocalize with TAP and Aly in the nucleus. The C-terminal domain of HDAg-L was shown to directly interact with the N terminus of TAP, whereas an HDAg-L mutant lacking the NLS failed to interact with full-length TAP. In addition, small hairpin RNA-mediated down-regulation of TAP or Aly reduced nuclear export of HDAg-L and assembly of HDV virions. Furthermore, a peptide, TAT-HDAg-L(198-210), containing the 10-amino acid TAT peptide and HDAg-L(198-210), inhibited the interaction between HDAg-L and TAP and blocked HDV virion assembly and secretion. These data demonstrate that formation and release of HDV particles are mediated by TAP and Aly.
Collapse
Affiliation(s)
- Hsiu-Chen Huang
- From the Department of Applied Science, National Hsinchu University of Education, Hsinchu 30014
| | - Chung-Pei Lee
- the School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 11219
| | - Hui-Kang Liu
- the National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221.,the Ph.D Program for Clinical Drug Discovery from Botanical Herbs, Taipei Medical University, Taipei 11031
| | - Ming-Fu Chang
- the Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 10051
| | - Yu-Heng Lai
- the Department of Chemistry, Chinese Culture University, Taipei 11114
| | - Yu-Ching Lee
- the Center of Translational Medicine, Taipei Medical University, Taipei 11031.,the Ph.D. Program for Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, and
| | - Cheng Huang
- the National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, .,the Department of Earth and Life Sciences, University of Taipei, Taipei 10048, Taiwan
| |
Collapse
|
13
|
Alfaiate D, Dény P, Durantel D. Hepatitis delta virus: From biological and medical aspects to current and investigational therapeutic options. Antiviral Res 2015; 122:112-29. [DOI: 10.1016/j.antiviral.2015.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
|
14
|
Abstract
UNLABELLED Although it is well established that hepatitis C virus (HCV) entry into hepatocytes depends on clathrin-mediated endocytosis, the possible roles of clathrin in other steps of the viral cycle remain unexplored. Thus, we studied whether cell culture-derived HCV (HCVcc) exocytosis was altered after clathrin interference. Knockdown of clathrin or the clathrin adaptor AP-1 in HCVcc-infected human hepatoma cell cultures impaired viral secretion without altering intracellular HCVcc levels or apolipoprotein B (apoB) and apoE exocytosis. Similar reductions in HCVcc secretion were observed after treatment with specific clathrin and dynamin inhibitors. Furthermore, detergent-free immunoprecipitation assays, neutralization experiments, and immunofluorescence analyses suggested that whereas apoE associated with infectious intracellular HCV precursors in endoplasmic reticulum (ER)-related structures, AP-1 participated in HCVcc egress in a post-ER compartment. Finally, we observed that clathrin and AP-1 knockdown altered the endosomal distribution of HCV core, reducing and increasing its colocalization with early endosome and lysosome markers, respectively. Our data support a model in which nascent HCV particles associate with apoE in the ER and exit cells following a clathrin-dependent transendosomal secretory route. IMPORTANCE HCV entry into hepatocytes depends on clathrin-mediated endocytosis. Here we demonstrate for the first time that clathrin also participates in HCV exit from infected cells. Our data uncover important features of HCV egress, which may lead to the development of new therapeutic interventions. Interestingly, we show that secretion of the very-low-density lipoprotein (VLDL) components apoB and apoE is not impaired after clathrin interference. This is a significant finding, since, to date, it has been proposed that HCV and VLDL follow similar exocytic routes. Given that lipid metabolism recently emerged as a potential target for therapies against HCV infection, our data may help in the design of new strategies to interfere specifically with HCV exocytosis without perturbing cellular lipid homeostasis, with the aim of achieving more efficient, selective, and safe antivirals.
Collapse
|
15
|
Humphries AC, Way M. The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nat Rev Microbiol 2013; 11:551-60. [PMID: 24020073 DOI: 10.1038/nrmicro3072] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of clathrin in pathogen entry has received much attention and has highlighted the adaptability of clathrin during internalization. Recent studies have now uncovered additional roles for clathrin and have put the spotlight on its role in pathogen spread. Here, we discuss the manipulation of clathrin by pathogens, with specific attention to the processes that occur at the plasma membrane. In the majority of cases, both clathrin and the actin cytoskeleton are hijacked, so we also examine the interplay between these two systems and their role during pathogen internalization, egress and spread.
Collapse
Affiliation(s)
- Ashley C Humphries
- Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | | |
Collapse
|
16
|
Mendes M, Pérez-Hernandez D, Vázquez J, Coelho AV, Cunha C. Proteomic changes in HEK-293 cells induced by hepatitis delta virus replication. J Proteomics 2013; 89:24-38. [PMID: 23770296 DOI: 10.1016/j.jprot.2013.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/21/2013] [Accepted: 06/04/2013] [Indexed: 02/07/2023]
Abstract
UNLABELLED Hepatitis delta virus (HDV) infection greatly increases the risk of hepatocellular carcinoma in hepatitis B virus chronically infected patients. HDV is highly dependent on host factors for accomplishment of the replication cycle. However, these factors are largely unknown and the mechanisms involved in the pathogenicity of the virus still remain elusive. Here, we made use of the HEK-293 cell line, which was engineered in order to mimic HDV replication. Five different proteomes were analyzed and compared using a MS-based quantitative proteomics approach by (18)O/(16)O stable isotope labeling. About 3000 proteins were quantified and 89 found to be differentially expressed as a consequence HDV RNA replication. The down-regulation of p53 , HSPE, and ELAV as well as the up-regulation of Transportin 1 , EIF3D, and Cofilin 1 were validated by Western blot. A systems biology approach was additionally used to analyze altered pathways and networks. The G2/M DNA damage checkpoint and pyruvate metabolism were among the most affected pathways, and Cancer was the most likely disease associated to HDV replication. Western blot analysis allowed identifying 14-3-3 σ interactor as down-regulated protein acting in the G2/M cell cycle control checkpoint. This evidence supports deregulation of G2/M checkpoint as a possible mechanism involved in the promotion of HDV associated hepatocellular carcinoma. BIOLOGICAL SIGNIFICANCE This manuscript provides a description of changes observed in the cellular proteome that arise as result of expression of the hepatitis delta virus (HDV) antigen as well as virus genome replication. Using a systems biology approach cancer was found to be the most probable disease associated with HDV replication. Additionally, results show that HDV alters the regulation of G2/M cell cycle control checkpoint. Taken together, our data provide new insights into probable mechanisms associated with the increased incidence of hepatocellular carcinoma observed in HDV infected patients.
Collapse
Affiliation(s)
- Marta Mendes
- Unidade de Microbiologia Médica, Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
17
|
Huang C, Jiang JY, Chang SC, Tsay YG, Chen MR, Chang MF. Nuclear export signal-interacting protein forms complexes with lamin A/C-Nups to mediate the CRM1-independent nuclear export of large hepatitis delta antigen. J Virol 2013; 87:1596-604. [PMID: 23175358 PMCID: PMC3554191 DOI: 10.1128/jvi.02357-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/09/2012] [Indexed: 12/18/2022] Open
Abstract
Nuclear export is an important process that not only regulates the functions of cellular factors but also facilitates the assembly of viral nucleoprotein complexes. Chromosome region maintenance 1 (CRM1) that mediates the transport of proteins bearing the classical leucine-rich nuclear export signal (NES) is the best-characterized nuclear export receptor. Recently, several CRM1-independent nuclear export pathways were also identified. The nuclear export of the large form of hepatitis delta antigen (HDAg-L), a nucleocapsid protein of hepatitis delta virus (HDV), which contains a CRM1-independent proline-rich NES, is mediated by the host NES-interacting protein (NESI). The mechanism of the NESI protein in mediating nuclear export is still unknown. In this study, NESI was characterized as a highly glycosylated membrane protein. It interacted and colocalized well in the nuclear envelope with lamin A/C and nucleoporins. Importantly, HDAg-L could be coimmunoprecipitated with lamin A/C and nucleoporins. In addition, binding of the cargo HDAg-L to the C terminus of NESI was detected for the wild-type protein but not for the nuclear export-defective HDAg-L carrying a P205A mutation [HDAg-L(P205A)]. Knockdown of lamin A/C effectively reduced the nuclear export of HDAg-L and the assembly of HDV. These data indicate that by forming complexes with lamin A/C and nucleoporins, NESI facilitates the CRM1-independent nuclear export of HDAg-L.
Collapse
Affiliation(s)
- Cheng Huang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine
- National Research Institute of Chinese Medicine
| | - Jia-Yin Jiang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine
- National Research Institute of Chinese Medicine
| | - Shin C. Chang
- Institute of Microbiology, National Taiwan University College of Medicine
| | - Yeou-Guang Tsay
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University School of Life Sciences, Taipei, Taiwan
| | - Mei-Ru Chen
- Institute of Microbiology, National Taiwan University College of Medicine
| | - Ming-Fu Chang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine
| |
Collapse
|
18
|
Huang CR, Wang RYL, Hsu SC, Lo SJ. Lysine-71 in the large delta antigen of hepatitis delta virus clade 3 modulates its localization and secretion. Virus Res 2012; 170:75-84. [PMID: 23022530 DOI: 10.1016/j.virusres.2012.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/30/2012] [Accepted: 08/30/2012] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV) is an RNA virus and eight clades of HDV have been identified. HDV clade 3 (HDV-3) is isolated only in the northern area of South America. The outcome of HDV-3 infection is associated with severe fulminant hepatitis. Variations in the large delta antigen (LDAg) between HDV clade 1 (HDV-1) and HDV-3 have been proposed to contribute to differences in viral secretion efficiency, but which changes might be relevant remains unclear. The control of subcellular localization of LDAg has been reported to be associated with post-translational modifications, such as phosphorylation and isoprenylation. We have observed evidence for acetylation on the LDAg of HDV-3 (LDAg-3) and LDAg of HDV-1 (LDAg-1). Green fluorescent protein-fused LDAg-3 (GFP-LD3) was used to investigate the cellular distribution and secretion of the protein. Sequence alignment of LDAg amino acids suggested that lysine-71 of LDAg-3 could be an acetylation site. Expression of a mutant form of LDAg-3 with an arginine-substitution at lysine-71 (GFP-LD3K71R) showed a distribution of the protein predominantly in the cytoplasm instead of the nucleus. Western blot analyses of secreted empty viral particles (EVPs) revealed a higher amount of secreted GFP-LD3K71R compared to GFP-LD3. Furthermore, the ectopic expression of p300, a histone acetyltransferase, led to a reduction of GFP-LD3 in EVPs. By contrast, expression of three histone deacetylases (HDAC-4, -5, and -6) facilitated the secretion of GFP-LD3. Combined, our observations support the hypothesis that the acetylation status of LDAg-3 plays a role in regulating LDAg-3's localization inside the nucleus or cytoplasm, and its secretion.
Collapse
Affiliation(s)
- Chi-Ruei Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | | | | | | |
Collapse
|
19
|
Ivanovic T, Boulant S, Ehrlich M, Demidenko AA, Arnold MM, Kirchhausen T, Nibert ML. Recruitment of cellular clathrin to viral factories and disruption of clathrin-dependent trafficking. Traffic 2011; 12:1179-95. [PMID: 21736684 DOI: 10.1111/j.1600-0854.2011.01233.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The viral factories of mammalian reovirus (MRV) are cytoplasmic structures that serve as sites of viral genome replication and particle assembly. A 721-aa MRV non-structural protein, µNS, forms the factory matrix and recruits other viral proteins to these structures. In this report, we show that µNS contains a conserved C-proximal sequence (711-LIDFS-715) that is similar to known clathrin-box motifs and is required for recruitment of clathrin to viral factories. Clathrin recruitment by µNS occurs independently of infecting MRV particles or other MRV proteins. Ala substitution for a single Leu residue (mutation L711A) within the putative clathrin-binding motif of µNS inhibits clathrin recruitment, but does not prevent formation or expansion of viral factories. Notably, clathrin-dependent cellular functions, including both endocytosis and secretion, are disrupted in cells infected with MRV expressing wild-type, but not L711A, µNS. These results identify µNS as a novel adaptor-like protein that recruits cellular clathrin to viral factories, disrupting normal functions of clathrin in cellular membrane trafficking. To our knowledge, this is the only viral or bacterial protein yet shown to interfere with clathrin functions in this manner. The results additionally establish a new approach for studies of clathrin functions, based on µNS-mediated sequestration.
Collapse
Affiliation(s)
- Tijana Ivanovic
- Department of Microbiology & Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Hepatitis delta virus (HDV) is a small, defective RNA virus that can infect only individuals who have hepatitis B virus (HBV); worldwide more than 15 million people are co-infected. There are eight reported genotypes of HDV with unexplained variations in their geographical distribution and pathogenicity. The hepatitis D virion is composed of a coat of HBV envelope proteins surrounding the nucleocapsid, which consists of a single-stranded, circular RNA genome complexed with delta antigen, the viral protein. HDV is clinically important because although it suppresses HBV replication, it causes severe liver disease with rapid progression to cirrhosis and hepatic decompensation. The range of clinical presentation is wide, varying from mild disease to fulminant liver failure. The prevalence of HDV is declining in some endemic areas but increasing in northern and central Europe because of immigration. Treatment of HDV is with pegylated interferon alfa; however, response rates are poor. Increased understanding of the molecular virology of HDV will identify novel therapeutic targets for this most severe form of chronic viral hepatitis.
Collapse
Affiliation(s)
- Sarah A Hughes
- Institute of Liver Studies, King's College Hospital, London, UK
| | | | | |
Collapse
|
21
|
Abstract
Hepatitis D virus (HDV) infection involves a distinct subgroup of individuals simultaneously infected with the hepatitis B virus (HBV) and characterized by an often severe chronic liver disease. HDV is a defective RNA agent needing the presence of HBV for its life cycle. HDV is present worldwide, but the distribution pattern is not uniform. Different strains are classified into eight genotypes represented in specific regions and associated with peculiar disease outcome. Two major specific patterns of infection can occur, i.e. co-infection with HDV and HBV or HDV superinfection of a chronic HBV carrier. Co-infection often leads to eradication of both agents, whereas superinfection mostly evolves to HDV chronicity. HDV-associated chronic liver disease (chronic hepatitis D) is characterized by necro-inflammation and relentless deposition of fibrosis, which may, over decades, result in the development of cirrhosis. HDV has a single-stranded, circular RNA genome. The virion is composed of an envelope, provided by the helper HBV and surrounding the RNA genome and the HDV antigen (HDAg). Replication occurs in the hepatocyte nucleus using cellular polymerases and via a rolling circle process, during which the RNA genome is copied into a full-length, complementary RNA. HDV infection can be diagnosed by the presence of antibodies directed against HDAg (anti-HD) and HDV RNA in serum. Treatment involves the administration of pegylated interferon-α and is effective in only about 20% of patients. Liver transplantation is indicated in case of liver failure.
Collapse
Affiliation(s)
- Stéphanie Pascarella
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|