1
|
Zhao BR, Wang XX, Liu PP, Wang XW. Complement-related proteins in crustacean immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104577. [PMID: 36265592 DOI: 10.1016/j.dci.2022.104577] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
As an important part of innate immune system, complement system is widely involved in defense response and immune regulation, and plays an important biological role. The complement system has been deeply studied. More than 30 complement-related molecules and three major complement-activation pathways have been identified in vertebrates. Crustacean animals do not have complement system. There are only some complement-related proteins in crustaceans which are important for host defense. In this review, we summarize the current knowledge about complement-related proteins in crustaceans, and their functions in crustacean immunity. We also make a comparation of the crustacean pro-phenoloxidase activating system and the mammalian complement system. This review provides a better understanding of the evolution and function of complement-related proteins in crustaceans.
Collapse
Affiliation(s)
- Bao-Rui Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ping-Ping Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Tran NT, Liang H, Zhang M, Bakky MAH, Zhang Y, Li S. Role of Cellular Receptors in the Innate Immune System of Crustaceans in Response to White Spot Syndrome Virus. Viruses 2022; 14:v14040743. [PMID: 35458473 PMCID: PMC9028835 DOI: 10.3390/v14040743] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
Innate immunity is the only defense system for resistance against infections in crustaceans. In crustaceans, white spot diseases caused by white spot syndrome virus (WSSV) are a serious viral disease with high accumulative mortality after infection. Attachment and entry into cells have been known to be two initial and important steps in viral infection. However, systematic information about the mechanisms related to WSSV infection in crustaceans is still limited. Previous studies have reported that cellular receptors are important in the innate immune system and are responsible for the recognition of foreign microorganisms and in the stimulation of the immune responses during infections. In this review, we summarize the current understanding of the functions of cellular receptors, including Toll, C-type lectin, scavenger receptor, β-integrin, polymeric immunoglobulin receptor, laminin receptor, globular C1q receptor, lipopolysaccharide-and β-1,3-glucan-binding protein, chitin-binding protein, Ras-associated binding, and Down syndrome cell adhesion molecule in the innate immune defense of crustaceans, especially shrimp and crabs, in response to WSSV infection. The results of this study provide information on the interaction between viruses and hosts during infections, which is important in the development of preventative strategies and antiviral targets in cultured aquatic animals.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Md. Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Correspondence: ; Tel.: +86-754-86502485; Fax: +86-754-86503473
| |
Collapse
|
3
|
Yang H, Ji T, Xiong H, Zhang Y, Wei W, Liu Q. Transcriptome profiles of red swamp crayfish Procambarus clarkii hematopoietic tissue in response to WSSV challenge. FISH & SHELLFISH IMMUNOLOGY 2022; 122:146-152. [PMID: 35124203 DOI: 10.1016/j.fsi.2022.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The crayfish Procambarus clarkii could achieve a high cumulative mortality after WSSV infections. To better understand the immune response to WSSV in hematopoietic tissue, the present study investigated the immunological response of P. clarkii and analyzed the expression of some hematopoietic cytokines. After assembly, there was an average of 47,712,411 clean reads were obtained in control and treatment groups. A total of 35,945 unigenes were discovered with N50 length of 1554 bp. Under functional classification, enrichment, and pathway analysis using different database, there were about 257 differentially expressed genes (DEGs) identified, of which 139 were up-regulated and 118 were down-regulated. The GO function analysis of these DEGs were mostly participated in activation of immune response, complement activation, complement binding, negative regulation of humoral immune response and secretory granule membrane. Under KEGG analysis, these DEGs were involved in ECM-receptor interaction, HIF-1 signaling pathway, Glycolysis/Gluconeogenesis, Thyroid hormone signaling pathway and Glucagon signaling pathway. The real-time quantitative PCR (RT-qPCR) analysis of 9 selected genes confirmed the reliability of RNA-Seq results. The present research provide for the first time the transcriptomic profile of P. clarkii hematopoietic tissue in response to WSSV infection and reveals the astakines may play important roles in antiviral immune response. The results of the present study will further enrich the theoretical basis of the crayfish immune system and provide new ideas for disease prevention and control.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Tongwei Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Haoran Xiong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, China.
| |
Collapse
|
4
|
Advances in the study of tegument protein VP26 in white spot syndrome virus. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Ning J, Liu Y, Gao F, Liu H, Cui Z. Characterization and functional analysis of a novel gC1qR in the swimming crab Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:970-978. [PMID: 30395995 DOI: 10.1016/j.fsi.2018.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
The receptor for the globular head of complement component C1q, gC1qR, is a multifunctional and multiligand binding protein with a crucial role in host defense. In the present study, a full-length cDNA sequence of a gC1qR homolog (PtgC1qR) in Portunus trituberculatus was identified. PtgC1qR was a 268-amino-acid polypeptide with a conserved MAM33 domain and a mitochondrial targeting sequence in the first 56 amino acids. The transcripts of PtgC1qR were detected in all examined tissues with the highest level detected in the hepatopancreas. Compared with other early embryonic stages, PtgC1qR was highly expressed in the fertilized eggs and embryos at the cleavage stage, which suggest PtgC1qR may be a maternal gene. The transcripts of PtgC1qR in hemocytes exhibited time-dependent response expression pattern after challenged with bacteria (Vibrio alginolyticus, Micrococcus luteus) and fungi (Pichia pastoris). Moreover, the recombinant PtgC1qR (rPtgC1qR) exhibited strong antibacterial activity and microbial-binding activity, suggesting its crucial role in immune defense and recognition. Further phenoloxidase (PO) assay showed that rPtgC1qR could suppress the crab PO activity in vitro in a dose-dependent manner, and it could result in nearly 100% inhibition of PO activity under the concentration of 11.65 μM. Knockdown of PtgC1qR could significantly enhance the expression of serine protease related genes (PtSP1-3 and PtSPH), proPO-associated genes (PtproPO and PtPPAF) and C3-like genes (Ptα2M1 and PtTEP). However, the phagocytosis related genes (PtMyosin, PtRab5 and PtArp) and Ptα2M2 were significantly down-regulated in the PtgC1qR silenced crabs. These findings together demonstrate that PtgC1qR might function in crab immune response via its antibacterial activity, immune recognition or regulating the proPO system, complement pathway and phagocytosis.
Collapse
Affiliation(s)
- Junhao Ning
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Fengtao Gao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hourong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoxia Cui
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
6
|
Zhang J, Liu Y, Li Y, Su N, Zhou Y, Xiang J, Sun Y. Biological function of a gC1qR homolog (EcgC1qR) of Exopalaemon carinicauda in defending bacteria challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 82:378-385. [PMID: 30144564 DOI: 10.1016/j.fsi.2018.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
The gC1qR is a ubiquitously expressed cell protein that interacts with the globular heads of C1q (gC1q) and many other ligands. In this study, one gC1qR homolog gene was obtained from Exopalaemon carinicauda and named EcgC1qR. The complete nucleotide sequence of EcgC1qR contained a 774 bp open reading frame (ORF) encoding EcgC1qR precursor of 257 amino acids. The deduced amino acid sequence of EcgC1qR revealed a 55-amino-acid-long mitochondrial targeting sequence at the N-terminal and a mitochondrial acidic matrix protein of 33 kDa (MAM33) domain. The genomic organization of EcgC1qR gene showed that EcgC1qR gene contained five exons and four introns. EcgC1qR could express in all of the detected tissues and its expression was much higher in hepatopancreas and hemocytes. The expression of EcgC1qR in the hepatopancreas of prawns challenged with Vibrio parahaemolyticus and Aeromonas hydrophila changed in a time-dependent manner. The expression of EcgC1qR in prawns challenged with V. parahaemolyticus was up-regulated at 6 h (p < 0.05), and significantly up-regulated at 12 h and 24 h (p < 0.01), and then returned to the control levels at 48 h post-challenge (p > 0.05). At the same time, the expression in Aeromonas-challenged group was significantly up-regulated at 6, 12 and 24 h. The recombinant EcgC1qR could inhibit the growth of two tested bacteria. In addition, we successfully deleted EcgC1qR gene through CRISPR/Cas9 technology and it was the first time to obtain the mutant of gC1qR homolog gene in crustacean. It's a great progress to study the biological function of gC1qR in crustacean in future.
Collapse
Affiliation(s)
- Jiquan Zhang
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yujie Liu
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Yanyan Li
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Naike Su
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Yaru Zhou
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jianhai Xiang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yuying Sun
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
7
|
Zhong S, Mao Y, Wang J, Liu M, Zhang M, Su Y. Transcriptome analysis of Kuruma shrimp (Marsupenaeus japonicus) hepatopancreas in response to white spot syndrome virus (WSSV) under experimental infection. FISH & SHELLFISH IMMUNOLOGY 2017; 70:710-719. [PMID: 28943297 DOI: 10.1016/j.fsi.2017.09.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 09/05/2017] [Accepted: 09/19/2017] [Indexed: 05/07/2023]
Abstract
Kuruma shrimp (Marsupenaeus japonicus) is one of the most valuable crustacean species in capture fisheries and mariculture in the Indo-West Pacific. White spot syndrome virus (WSSV) is a highly virulent pathogen which has seriously threatened Kuruma shrimp aquaculture sector. However, little information is available in relation to underlying mechanisms of host-virus interaction in Kuruma shrimp. In this study, we performed a transcriptome analysis from the hepatopancreas of Kuruma shrimp challenged by WSSV, using Illumina-based RNA-Seq. A total of 39,084,942 pair end (PE) reads, including 19,566,190 reads from WSSV-infected group and 19,518,752 reads from non-infected (control) group, were obtained and assembled into 33,215 unigenes with an average length of 503.7 bp and N50 of 601 bp. Approximately 17,000 unigenes were predicted and classified based on homology search, gene ontology, clusters of orthologous groups of proteins, and biological pathway mapping. Differentially expressed genes (DEGs), including 2150 up-regulated and 1931 down-regulated, were found. Among those, 805 DEGs were identified and categorized into 14 groups based on their possible functions. Many genes associated with JAK-STAT signaling pathways, Integrin-mediated signal transduction, Ras signaling pathways, apoptosis and phagocytosis were positively modified after WSSV challenge. The proteolytic cascades including Complement-like activation and Hemolymph coagulations likely participated in antiviral immune response. The transcriptome data from hepatopancreas of Kuruma shrimp under WSSV challenge provided comprehensive information for identifying novel immune related genes in this valuable crustacean species despite the absence of the genome database of crustaceans.
Collapse
Affiliation(s)
- Shengping Zhong
- Key Laboratory of Marine Biotechnology, Guangxi Institute of Oceanology, Beihai, 536000, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, 361005, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, 361005, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, 361005, China
| | - Min Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, 361005, China
| | - Man Zhang
- College of Animal Science and Technology, Guangxi University, 530005, China
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, 361005, China.
| |
Collapse
|
8
|
Methatham T, Boonchuen P, Jaree P, Tassanakajon A, Somboonwiwat K. Antiviral action of the antimicrobial peptide ALFPm3 from Penaeus monodon against white spot syndrome virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 69:23-32. [PMID: 27919648 DOI: 10.1016/j.dci.2016.11.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
The anti-lipopolysaccharide factor isoform 3 (ALFPm3), the antimicrobial peptide from Penaeus monodon, possesses antibacterial and antiviral activities. Although the mechanism of action of ALFPm3 against bacteria has been revealed but its antiviral mechanism is still unclear. To further study how the ALFPm3 exhibits antiviral activity against the enveloped virus, white spot syndrome virus (WSSV), the ALFPm3-interacting proteins from WSSV were sought and identified five ALFPm3-interacting proteins, WSSV186, WSSV189, WSSV395, WSSV458, and WSSV471. Only the interaction between ALFPm3 and WSSV189, however, has been confirmed to be involved in anti-WSSV activity of ALFPm3. Herein, the interactions between ALFPm3 and rWSSV186, rWSSV395, rWSSV458, or rWSSV471 were further analyzed and confirmed by in vitro pull-down assay. Western blot analysis and immunoelectron microscopy showed that the uncharacterized proteins, WSSV186 and WSSV471, were nucleocapsid and envelope proteins, respectively. The decrease of shrimp survival after injection the shrimp with mixtures of each rWSSV protein, rALFPm3 and WSSV as compared to those injected with rALFPm3-neutralizing WSSV was clearly observed indicating that all rWSSV proteins could interfere with the neutralization effect of rALFPm3 on WSSV similar to that reported previously for WSSV189. Morphological change on WSSV after incubation with rALFPm3 was observed by TEM. The lysed WSSV virions were clearly observed where both viral envelope and nucleocapsid were dismantled. The results lead to the conclusion that the ALFPm3 displays direct effect on the viral structural proteins resulting in destabilization and breaking up of WSSV virions.
Collapse
Affiliation(s)
- Thanachai Methatham
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Pakpoom Boonchuen
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Phattarunda Jaree
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Jaree P, Senapin S, Hirono I, Lo CF, Tassanakajon A, Somboonwiwat K. WSV399, a viral tegument protein, interacts with the shrimp protein PmVRP15 to facilitate viral trafficking and assembly. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:177-185. [PMID: 26828390 DOI: 10.1016/j.dci.2016.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Viral responsive protein 15 (PmVRP15) has been identified as a highly up-regulated gene in the hemocyte of white spot syndrome virus (WSSV)-infected shrimp Penaeus monodon. However, the function of PmVRP15 in host-viral interaction was still unclear. To elucidate PmVRP15 function, the interacting partner of PmVRP15 from WSSV was screened by yeast two-hybrid assay and then confirmed by co-immunoprecipitation (Co-IP). Only WSV399 protein was identified as a PmVRP15 binding protein; however, the function of WSV399 has not been characterized. Localization of WSV399 on the WSSV virion was revealed by immunoblotting analysis (in vitro) and immunoelectron microscopy (in vivo). The results showed that WSV399 is a structural protein of the WSSV virion and is particularly located on the tegument. Gene silencing of wsv399 in WSSV-infected shrimp reduced the percentage of cumulative mortality by 74%, although the expression level of a viral replication marker gene, vp28, was not changed suggesting that WSV399 might not involved in viral replication but viral assembly. Because it has already been known that tegument proteins function in capsid transport during viral trafficking and assembly, interaction between PmVRP15 on hemocyte nuclear membrane and the WSV399 viral tegument protein suggests that PmVRP15 might be required for trafficking and assembly of WSSV during infection.
Collapse
Affiliation(s)
- Phattarunda Jaree
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok 10300, Thailand
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand; National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok 10300, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok 10300, Thailand.
| |
Collapse
|
10
|
Pednekar L, Valentino A, Ji Y, Tumma N, Valentino C, Kadoor A, Hosszu KK, Ramadass M, Kew RR, Kishore U, Peerschke EIB, Ghebrehiwet B. Identification of the gC1qR sites for the HIV-1 viral envelope protein gp41 and the HCV core protein: Implications in viral-specific pathogenesis and therapy. Mol Immunol 2016; 74:18-26. [PMID: 27111569 DOI: 10.1016/j.molimm.2016.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/27/2022]
Abstract
A substantial body of evidence accumulated over the past 20 years supports the concept that gC1qR is a major pathogen-associated pattern recognition receptor (PRR). This conclusion is based on the fact that, a wide range of bacterial and viral ligands are able to exploit gC1qR to either suppress the host's immune response and thus enhance their survival, or to gain access into cells to initiate disease. Of the extensive array of viral ligands that have affinity for gC1qR, the HIV-1 envelope glycoprotein gp41, and the core protein of hepatitis C virus (HCV) are of major interest as they are known to contribute to the high morbidity and mortality caused by these pathogens. While the HCV core protein binds gC1qR and suppresses T cell proliferation resulting in a significantly diminished immune response, the gp41 employs gC1qR to induce the surface expression of the NK cell ligand, NKp44L, on uninfected CD4(+) T cells, thereby rendering them susceptible to autologous destruction by NKp44 receptor expressing NK cells. Because of the potential for the design of peptide-based or antibody-based therapeutic options, the present studies were undertaken to define the gC1qR interaction sites for these pathogen-associated molecular ligands. Employing a solid phase microplate-binding assay, we examined the binding of each viral ligand to wild type gC1qR and 11 gC1qR deletion mutants. The results obtained from these studies have identified two major HCV core protein sites on a domain of gC1qR comprising of residues 144-148 and 196-202. Domain 196-202 in turn, is located in the last half of the larger gC1qR segment encoded by exons IV-VI (residues 159-282), which was proposed previously to contain the site for HCV core protein. The major gC1qR site for gp41 on the other hand, was found to be in a highly conserved region encoded by exon IV and comprises of residues 174-180. Interestingly, gC1qR residues 174-180 also constitute the cell surface-binding site for soluble gC1qR (sgC1qR), which can bind to the cell surface in an autocrine/paracrine manner via surface expressed fibrinogen or other membrane molecules. The identification of the sites for these viral ligands should therefore provide additional targets for the design of peptide-based or antigen-based therapeutic strategies.
Collapse
Affiliation(s)
- Lina Pednekar
- Center for Infection, Immunity and Disease Mechanisms, Biosciences, Brunel University, Uxbridge, UB8 3PH London, UK; The Departments of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Alisa Valentino
- The Departments of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Yan Ji
- The Departments of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Nithin Tumma
- The Departments of Pathology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Christopher Valentino
- The Departments of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Adarsh Kadoor
- Center for Infection, Immunity and Disease Mechanisms, Biosciences, Brunel University, Uxbridge, UB8 3PH London, UK; The Departments of Medicine, Stony Brook University, Stony Brook, NY 11794, United States; The Departments of Pathology, Stony Brook University, Stony Brook, NY 11794, United States; The Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center (MSKCC), United States; The Department of Pathology, Weill-Cornell Medical College, NY, NY 10065, United States
| | - Kinga K Hosszu
- The Departments of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Mahalakshmi Ramadass
- The Departments of Pathology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Richard R Kew
- The Departments of Pathology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Uday Kishore
- Center for Infection, Immunity and Disease Mechanisms, Biosciences, Brunel University, Uxbridge, UB8 3PH London, UK
| | - Ellinor I B Peerschke
- The Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center (MSKCC), United States; The Department of Pathology, Weill-Cornell Medical College, NY, NY 10065, United States
| | - Berhane Ghebrehiwet
- The Departments of Medicine, Stony Brook University, Stony Brook, NY 11794, United States; The Departments of Pathology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
11
|
Chen LH, Lin SW, Liu KF, Chang CI, Hseu JR, Tsai JM. Comparative proteomic analysis of Litopenaeus vannamei gills after vaccination with two WSSV structural proteins. FISH & SHELLFISH IMMUNOLOGY 2016; 49:306-314. [PMID: 26766180 DOI: 10.1016/j.fsi.2015.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
White spot syndrome virus (WSSV) is one of the most devastating viral pathogens of cultured shrimp worldwide. Recently published papers show the ability of WSSV structural protein VP28 to vaccinate shrimp and raise protection against the virus. This study attempted to identify the joining proteins of the aforementioned shrimp quasi-immune response by proteomic analysis. The other envelope protein, VP36B, was used as the non-protective subunit vaccine control. Shrimp were intramuscularly injected with rVPs or PBS on day 1 and day 4 and then on day 7 their gill tissues were sampled. The two-dimensional electrophoresis (2-DE) patterns of gill proteins between vaccinated and PBS groups were compared and 20 differentially expressed proteins identified by mass spectrometry, some of which were validated in gill and hemocyte tissues using real-time quantitative RT-PCR. Many of identified proteins and their expression levels also linked with the shrimp response during WSSV infection. The list of up-regulated protein spots found exclusively in rVP28-vaccinated shrimp include calreticulin and heat shock protein 70 with chaperone properties, ubiquitin, and others. The two serine proteases, chymotrypsin and trypsin, were significantly increased in shrimp of both vaccinated groups compared to PBS controls. The information presented here should be useful for gaining insight into invertebrate immunity.
Collapse
Affiliation(s)
- Li-Hao Chen
- Department of Marine Biotechnology, National Kaohsiung Marine University, Kaohsiung, 81157, Taiwan, ROC
| | - Shi-Wei Lin
- Department of Marine Biotechnology, National Kaohsiung Marine University, Kaohsiung, 81157, Taiwan, ROC
| | - Kuan-Fu Liu
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Council of Agriculture, Pingtung, 92845, Taiwan, ROC
| | - Chin-I Chang
- Aquaculture Division, Fisheries Research Institute, Council of Agriculture, Keelung, 20246, Taiwan, ROC
| | - Jinn-Rong Hseu
- Mariculture Research Center, Fisheries Research Institute, Council of Agriculture, Tainan, 72453, Taiwan, ROC
| | - Jyh-Ming Tsai
- Department of Marine Biotechnology, National Kaohsiung Marine University, Kaohsiung, 81157, Taiwan, ROC.
| |
Collapse
|
12
|
Verbruggen B, Bickley LK, van Aerle R, Bateman KS, Stentiford GD, Santos EM, Tyler CR. Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments. Viruses 2016; 8:E23. [PMID: 26797629 PMCID: PMC4728583 DOI: 10.3390/v8010023] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
Abstract
Since its emergence in the 1990s, White Spot Disease (WSD) has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome Virus (WSSV), a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live animals and in commodity products. Currently there are no effective treatments for this disease. Understanding the molecular basis of disease processes has contributed significantly to the treatment of many human and animal pathogens, and with a similar aim considerable efforts have been directed towards understanding host-pathogen molecular interactions for WSD. Work on the molecular mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and annotated genomes for host species. Nevertheless, some of the key host-pathogen interactions have been established: between viral envelope proteins and host cell receptors at initiation of infection, involvement of various immune system pathways in response to WSSV, and the roles of various host and virus miRNAs in mitigation or progression of disease. Despite these advances, many fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its host, and critique strategies for WSD treatment.
Collapse
Affiliation(s)
- Bas Verbruggen
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon EX4, UK.
| | - Lisa K Bickley
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon EX4, UK.
| | - Ronny van Aerle
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK.
| | - Kelly S Bateman
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK.
| | - Grant D Stentiford
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK.
| | - Eduarda M Santos
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon EX4, UK.
| | - Charles R Tyler
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon EX4, UK.
| |
Collapse
|
13
|
Apitanyasai K, Amparyup P, Charoensapsri W, Senapin S, Tassanakajon A. Role of Penaeus monodon hemocyte homeostasis associated protein (PmHHAP) in regulation of caspase-mediated apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:234-243. [PMID: 26111999 DOI: 10.1016/j.dci.2015.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
The viral responsive protein, PmHHAP, plays an important role in the control of hemocyte homeostasis in shrimps during viral infection. In this study, we further investigate the role of PmHHAP in the regulation of hemocyte apoptosis. RNA interference (RNAi) mediated gene silencing was used to suppress the PmHHAP expression and the change in hemocyte apoptosis was determined in the knockdown shrimp. Within circulating hemocytes, PmHHAP knockdown increased the number of annexin V-positive apoptotic cells and the combined caspase-3/-7 activity and induced the characteristic apoptotic DNA ladder. Furthermore, PmHHAP down-regulation was accompanied by significantly altered expression of apoptosis-related proteins including the effector caspases, PmCaspase and PmCasp. Yeast two-hybrid and co-immunoprecipitation assays showed that PmHHAP binds to the p20 domain of PmCasp. Moreover, the recombinant PmHHAP protein was able to reduce the caspase activity in the actinomycin D-treated hemocyte cells and rPmCasp-treated hemocyte cells. Taken together, our data indicate that PmHHAP regulates hemocyte homeostasis by inhibits apoptotic cell death through caspase activation.
Collapse
Affiliation(s)
- Kantamas Apitanyasai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Piti Amparyup
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand.
| |
Collapse
|
14
|
Shekhar MS, Ponniah AG. Recent insights into host-pathogen interaction in white spot syndrome virus infected penaeid shrimp. JOURNAL OF FISH DISEASES 2015; 38:599-612. [PMID: 24953507 DOI: 10.1111/jfd.12279] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
Viral disease outbreaks are a major concern impeding the development of the shrimp aquaculture industry. The viral disease due to white spot syndrome virus (WSSV) observed in early 1990s still continues unabated affecting the shrimp farms and cause huge economic loss to the shrimp aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand viral pathogenesis and shrimp response to WSSV at the molecular level. Identification and molecular characterization of WSSV proteins and receptors may facilitate in designing and development of novel therapeutics and antiviral drugs that may inhibit viral replication. Investigations into host-pathogen interactions might give new insights to viral infectivity, tissue tropism and defence mechanism elicited in response to WSSV infection. However, due to the limited information on WSSV gene function and host immune response, the signalling pathways which are associated in shrimp pathogen interaction have also not been elucidated completely. In the present review, the focus is on those shrimp proteins and receptors that are potentially involved in virus infection or in the defence mechanism against WSSV. In addition, the major signalling pathways involved in the innate immune response and the role of apoptosis in host-pathogen interaction is discussed.
Collapse
Affiliation(s)
- M S Shekhar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, Chennai, India
| | - A G Ponniah
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, Chennai, India
| |
Collapse
|
15
|
Ye T, Huang X, Wang XW, Shi YR, Hui KM, Ren Q. Characterization of a gC1qR from the giant freshwater prawn, Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2015; 43:200-208. [PMID: 25555810 DOI: 10.1016/j.fsi.2014.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
gC1qR, as a multicompartmental and a multifunctional protein, plays an important role in innate immunity. In this study, a gC1qR homolog (MrgC1qR) in the giant freshwater prawn, Macrobrachium rosenbergii was identified. MrgC1qR, a 258-amino-acid polypeptide, shares high identities with gC1qR from other species. MrgC1qR gene was expressed in different tissues and was highest expressed in the hepatopancreas. In addition, the MrgC1qR transcript was significantly enhanced after 6 h of white spot syndrome virus (WSSV) infection or post 2 h, 24 h of Vibrio anguillarum challenge compared to appropriate controls. Moreover, recombinant MrgC1qR (rMrgC1qR) had bacterial binding activity, the result also revealed that rMrgC1qR could bind pathogen-associated molecular patterns (PAMPs) such as LPS or PGN, suggesting that MrgC1qRmight function as a pathogen-recognition receptor (PRR). Furthermore, glutathione S-transferase (GST) pull-down assays showed that rMrgC1qR with GST-tag could bind to rMrFicolin1 or rMrFicolin2 with His-tag. Altogether, these results may demonstrate a role for MrgC1qR in innate immunity in the giant freshwater prawns.
Collapse
Affiliation(s)
- Ting Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Xian-Wei Wang
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Ru Shi
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Kai-Min Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| |
Collapse
|
16
|
Xu D, Liu W, Alvarez A, Huang T. Cellular immune responses against viral pathogens in shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:287-297. [PMID: 25111591 DOI: 10.1016/j.dci.2014.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
Shrimp is one of the most important commercial marine species worldwide; however, viral diseases threaten the healthy development of shrimp aquaculture. In order to develop efficient control strategies against viral diseases, researchers have begun focusing increasing attention to the molecular mechanism of shrimp innate immunity. Although knowledge of shrimp humoral immunity has grown significantly in recent years, very little information is available about the cell-mediated immune responses. Several cellular processes such as phagocytosis, apoptosis, and RNA interference critical in cellular immune response play a significant role in endogenous antiviral activity in shrimp. In this review, we summarize the emerging research and highlight key mediators of cellular immune response to viral pathogens.
Collapse
Affiliation(s)
- Dandan Xu
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Weifeng Liu
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Angel Alvarez
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Tianzhi Huang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, USA..
| |
Collapse
|
17
|
Wang XW, Xu YH, Xu JD, Zhao XF, Wang JX. Collaboration between a Soluble C-Type Lectin and Calreticulin Facilitates White Spot Syndrome Virus Infection in Shrimp. THE JOURNAL OF IMMUNOLOGY 2014; 193:2106-2117. [DOI: 10.4049/jimmunol.1400552] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
White spot syndrome virus (WSSV) mainly infects crustaceans through the digestive tract. Whether C-type lectins (CLs), which are important receptors for many viruses, participate in WSSV infection in the shrimp stomach remains unknown. In this study, we orally infected kuruma shrimp Marsupenaeus japonicus to model the natural transmission of WSSV and identified a CL (designated as M. japonicus stomach virus–associated CL [MjsvCL]) that was significantly induced by virus infection in the stomach. Knockdown of MjsvCL expression by RNA interference suppressed the virus replication, whereas exogenous MjsvCL enhanced it. Further analysis by GST pull-down and coimmunoprecipitation showed that MjsvCL could bind to viral protein 28, the most abundant and functionally relevant envelope protein of WSSV. Furthermore, cell-surface calreticulin was identified as a receptor of MjsvCL, and the interaction between these proteins was a determinant for the viral infection–promoting activity of MjsvCL. The MjsvCL–calreticulin pathway facilitated virus entry likely in a cholesterol-dependent manner. This study provides insights into a mechanism by which soluble CLs capture and present virions to the cell-surface receptor to facilitate viral infection.
Collapse
Affiliation(s)
- Xian-Wei Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yi-Hui Xu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Ji-Dong Xu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
18
|
Hijacking of host calreticulin is required for the white spot syndrome virus replication cycle. J Virol 2014; 88:8116-28. [PMID: 24807724 DOI: 10.1128/jvi.01014-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have previously shown that multifunctional calreticulin (CRT), which resides in the endoplasmic reticulum (ER) and is involved in ER-associated protein processing, responds to infection with white spot syndrome virus (WSSV) by increasing mRNA and protein expression and by forming a complex with gC1qR and thereby delaying apoptosis. Here, we show that CRT can directly interact with WSSV structural proteins, including VP15 and VP28, during an early stage of virus infection. The binding of VP28 with CRT does not promote WSSV entry, and CRT-VP15 interaction was detected in the viral genome in virally infected host cells and thus may have an effect on WSSV replication. Moreover, CRT was detected in the viral envelope of purified WSSV virions. CRT was also found to be of high importance for proper oligomerization of the viral structural proteins VP26 and VP28, and when CRT glycosylation was blocked with tunicamycin, a significant decrease in both viral replication and assembly was detected. Together, these findings suggest that CRT confers several advantages to WSSV, from the initial steps of WSSV infection to the assembly of virions. Therefore, CRT is required as a "vital factor" and is hijacked by WSSV for its replication cycle. Importance: White spot syndrome virus (WSSV) is a double-stranded DNA virus and the cause of a serious disease in a wide range of crustaceans that often leads to high mortality rates. We have previously shown that the protein calreticulin (CRT), which resides in the endoplasmic reticulum (ER) of the cell, is important in the host response to the virus. In this report, we show that the virus uses this host protein to enter the cell and to make the host produce new viral structural proteins. Through its interaction with two viral proteins, the virus "hijacks" host calreticulin and uses it for its own needs. These findings provide new insight into the interaction between a large DNA virus and the host protein CRT and may help in understanding the viral infection process in general.
Collapse
|
19
|
Le Marrec-Croq F, Bocquet-Garcon A, Vizioli J, Vancamp C, Drago F, Franck J, Wisztorski M, Salzet M, Sautiere PE, Lefebvre C. Calreticulin contributes to C1q-dependent recruitment of microglia in the leech Hirudo medicinalis following a CNS injury. Med Sci Monit 2014; 20:644-53. [PMID: 24747831 PMCID: PMC3999160 DOI: 10.12659/msm.890091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The medicinal leech is considered as a complementary and appropriate model to study immune functions in the central nervous system (CNS). In a context in which an injured leech’s CNS can naturally restore normal synaptic connections, the accumulation of microglia (immune cells of the CNS that are exclusively resident in leeches) has been shown to be essential at the lesion to engage the axonal sprouting. HmC1q (Hm for Hirudo medicinalis) possesses chemotactic properties that are important in the microglial cell recruitment by recognizing at least a C1q binding protein (HmC1qBP alias gC1qR). Material/Methods Recombinant forms of C1q were used in affinity purification and in vitro chemotaxis assays. Anti-calreticulin antibodies were used to neutralize C1q-mediated chemotaxis and locate the production of calreticulin in leech CNS. Results A newly characterized leech calreticulin (HmCalR) has been shown to interact with C1q and participate to the HmC1q-dependent microglia accumulation. HmCalR, which has been detected in only some microglial cells, is consequently a second binding protein for HmC1q, allowing the chemoattraction of resident microglia in the nerve repair process. Conclusions These data give new insight into calreticulin/C1q interaction in an immune function of neuroprotection, suggesting another molecular target to use in investigation of microglia reactivity in a model of CNS injury.
Collapse
Affiliation(s)
- Francoise Le Marrec-Croq
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée - EA4550, Université Lille Nord de France, University of Lille 1, Villeneuve d'Ascq, France
| | - Annelise Bocquet-Garcon
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée - EA4550, Université Lille Nord de France, University of Lille 1, Villeneuve d'Ascq, France
| | - Jacopo Vizioli
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée - EA4550, Université Lille Nord de France, University of Lille 1, Villeneuve d'Ascq, France
| | - Christelle Vancamp
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée - EA4550, Université Lille Nord de France, University of Lille 1, Villeneuve d'Ascq, France
| | - Francesco Drago
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée - EA4550, Université Lille Nord de France, University of Lille 1, Villeneuve d'Ascq, France
| | - Julien Franck
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée - EA4550, Université Lille Nord de France, University of Lille 1, Villeneuve d'Ascq, France
| | - Maxence Wisztorski
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée - EA4550, Université Lille Nord de France, University of Lille 1, Villeneuve d'Ascq, France
| | - Michel Salzet
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée - EA4550, Université Lille Nord de France, University of Lille 1, Villeneuve d'Ascq, France
| | - Pierre-Eric Sautiere
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée - EA4550, Université Lille Nord de France, University of Lille 1, Villeneuve d'Ascq, France
| | - Christophe Lefebvre
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée - EA4550, Université Lille Nord de France, University of Lille 1, Villeneuve d'Ascq, France
| |
Collapse
|
20
|
Duan Y, Liu P, Li J, Wang Y, Li J, Chen P. Molecular responses of calreticulin gene to Vibrio anguillarum and WSSV challenge in the ridgetail white prawn Exopalaemon carinicauda. FISH & SHELLFISH IMMUNOLOGY 2014; 36:164-171. [PMID: 24188748 DOI: 10.1016/j.fsi.2013.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 06/02/2023]
Abstract
Calreticulin (CRT), as a highly conserved endoplasmic reticulum luminal resident protein, plays important roles in Ca(2+) homeostasis, molecular chaperoning and response to viral infection. In this study, a full-length cDNA of CRT (designated EcCRT) was cloned from hemocytes of the ridgetail white prawn Exopalaemon carinicauda by using rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EcCRT was 1725 bp, which contains a 5'-untranslated region (UTR) of 57 bp, 3'-UTR of 453 bp with a poly (A) tail, an open reading frame (ORF) of 1215 bp, encoding a 404 amino-acid polypeptide with the predicted molecular weight of 46.51 kDa and estimated isoelectric point of 4.32. The deduced amino acid sequence of EcCRT shared high identity (82%-85%) with that of other crustaceans. Phylogenetic analysis showed that EcCRT of E. carinicauda was clustered together with CRT of other shrimps, indicating that EcCRT should be a member of the CRT family. Quantitative real-time RT-qPCR analysis indicated that EcCRT was expressed in hemocytes, gill, hepatopancreas, muscle, ovary, intestine, stomach and eyestalk, with the highest expression level in hemocytes. After Vibrio anguillarum and WSSV challenge, the expression level of EcCRT transcripts both in the hemocytes and hepatopancreas of E. carinicauda were up-regulated in the first 6 h, respectively. The results suggested that EcCRT might be associated with the immune defenses to V. anguillarum and WSSV in E. carinicauda.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China.
| | - Jitao Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Ping Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| |
Collapse
|
21
|
Söderhäll I. Recent advances in crayfish hematopoietic stem cell culture: a model for studies of hemocyte differentiation and immunity. Cytotechnology 2013; 65:691-5. [PMID: 23686548 DOI: 10.1007/s10616-013-9578-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/29/2013] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is the process by which blood cells (hemocytes) mature and subsequently enter the circulation and we have developed a new technique to culture the hematopoietic progenitor cells in vitro. The reason for the successful culture was the isolation of a plasma protein that turned out to be a novel cytokine, astakine 1 (Ast1) containing a domain present in several vertebrates, so-called prokineticins. Now we have detected several astakines from other invertebrate species. Depending on our discovery of the cytokine Ast1 we have an opportunity to study in detail the differentiation of cells in the hematopoietic tissue of a crustacean, a tissue of evolutionary interest for studies of the connection between the vascular system and the nervous system. We have been able to isolate the entire hematopoietic tissue and for the first time detected a link between this tissue and the brain. We have further localized a proliferation center in the tissue and characterized its different parts. We have also used this system to isolate a new hematopoietic factor CHF that is important in the crossroad between apoptosis and hemocyte differentiation. Our technique for culture of crayfish hematopoietic stem cells provides a simple tool for studying the mechanism of hematopoiesis, but also enables detailed studies of immune defense reactions. Further, the culture system has been used for studies of viral defense and the system is suitable for gene silencing which allows functional characterization of different molecules involved in host defense as well as in hemocyte differentiation.
Collapse
Affiliation(s)
- Irene Söderhäll
- Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden,
| |
Collapse
|
22
|
Sritunyalucksana K, Utairungsee T, Sirikharin R, Srisala J. Reprint of: Virus-binding proteins and their roles in shrimp innate immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1018-1024. [PMID: 23416697 DOI: 10.1016/j.fsi.2013.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/01/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
Disease outbreaks caused by viral pathogens constitute a major limitation to development of the shrimp aquaculture industry. Many research have been conducted to better understand how host shrimp respond to viral infections with the aim of using the gained knowledge to develop better strategies for disease management and control. One approach has been to study the interactions between host and viral proteins, and particularly host virus-binding proteins that might play an important role in the viral infection process. Within the past five years, increasing numbers of virus-binding proteins (VBPs) have been reported in shrimp. Characterization of these molecules has emphasized on their potential therapeutic applications by demonstrating their activities in inhibition of viral replication via in vivo neutralization assay. However, signaling to induce innate antiviral immune responses as a consequence of binding between viral proteins and VBPs remain to be fully elucidated.
Collapse
Affiliation(s)
- Kallaya Sritunyalucksana
- Shrimp-Virus Interaction Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand.
| | | | | | | |
Collapse
|
23
|
Watthanasurorot A, Jiravanichpaisal P, Söderhäll K, Söderhäll I. A calreticulin/gC1qR complex prevents cells from dying: a conserved mechanism from arthropods to humans. J Mol Cell Biol 2013; 5:120-31. [PMID: 23378602 DOI: 10.1093/jmcb/mjt005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The crossroad between cell death and proliferation is a general target for viral infections because viruses need to obstruct apoptosis to use cells for their own replication. Inducing immunogenic cell death in proliferating cells is also an important aim of anticancer chemotherapy. The C1q-binding proteins calreticulin (CRT) and gC1qR are highly conserved ubiquitous proteins, which are putative targets for viral manipulation and are associated with cancer. Here we show that these proteins form a complex in the cytoplasm as a response to viral infection resulting in apoptosis prevention. The formation of a cytosolic CRT/gC1qR complex prevents cell death by reducing gC1qR translocation into the mitochondria, and we provide evidence that this mechanism is conserved from arthropods to human cancer cells. Furthermore, we show that it is possible to prevent this complex from being formed in cancer cells. When the peptides of the complex proteins are overexpressed in these cells, the cells undergo apoptosis. This finding shows a causal link between virus and cancer and may be used to develop new tools in anticancer or antiviral therapy.
Collapse
Affiliation(s)
- Apiruck Watthanasurorot
- Department of Comparative Physiology, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
24
|
Yang L, Liu X, Liu W, Li X, Qiu L, Huang J, Jiang S. Characterization of complement 1q binding protein of tiger shrimp, Penaeus monodon, and its C1q binding activity. FISH & SHELLFISH IMMUNOLOGY 2013; 34:82-90. [PMID: 23085472 DOI: 10.1016/j.fsi.2012.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 09/10/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
The receptor for the globular heads of C1q, C1qBP/gC1qR/p33, is a multicompartmental, multifunctional cellular protein with an important role in infection and in inflammation. In the present study, we identified and characterized the complement component 1q subcomponent binding protein (C1qBP) from the tiger shrimp Penaeus monodon (designated as PmC1qBP). The open reading frame of PmC1qBP encodes 262 amino acid residues with a conserved MAM33 domain, an arginine-glycine-aspartate cell adhesion motif, and a mitochondrial targeting sequence in the first 53 amino acids. PmC1qBP shares 32%-81% similarity with known C1qBPs and clusters with lobster gC1qR under phylogenetic analysis. The temporal PmC1qBP mRNA expression in the hepatopancreas was significantly enhanced at 9 h after Vibrio vulnificus challenge. The native PmC1qBP was expressed in the gills, hepatopancreas, ovaries, and intestines as a precursor (38 kDa) and the active peptide (35 kDa). The recombinant PmC1qBP protein was expressed in Escherichia coli BL21, and was purified using nickel-nitrilotriacetic acid agarose. A complement 1q binding assay indicated that the rC1qBP protein competitively binds to C1q in mouse serum. The data reveal that PmC1qBP is not only involved in shrimp immune responses to pathogenic infections, but also cross-binding to the mouse C1q.
Collapse
Affiliation(s)
- Lishi Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | | | | | | | | | | | | |
Collapse
|
25
|
Sritunyalucksana K, Utairungsee T, Sirikharin R, Srisala J. Virus-binding proteins and their roles in shrimp innate immunity. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1269-1275. [PMID: 23023111 DOI: 10.1016/j.fsi.2012.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/01/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
Disease outbreaks caused by viral pathogens constitute a major limitation to development of the shrimp aquaculture industry. Many research have been conducted to better understand how host shrimp respond to viral infections with the aim of using the gained knowledge to develop better strategies for disease management and control. One approach has been to study the interactions between host and viral proteins, and particularly host virus-binding proteins that might play an important role in the viral infection process. Within the past five years, increasing numbers of virus-binding proteins (VBPs) have been reported in shrimp. Characterization of these molecules has emphasized on their potential therapeutic applications by demonstrating their activities in inhibition of viral replication via in vivo neutralization assay. However, signaling to induce innate antiviral immune responses as a consequence of binding between viral proteins and VBPs remain to be fully elucidated.
Collapse
Affiliation(s)
- Kallaya Sritunyalucksana
- Shrimp-Virus Interaction Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand.
| | | | | | | |
Collapse
|
26
|
Primary culture of hemocytes from Eriocheir sinensis and their immune effects to the novel crustacean pathogen Spiroplasma eriocheiris. Mol Biol Rep 2012; 39:9747-54. [DOI: 10.1007/s11033-012-1840-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/11/2012] [Indexed: 11/27/2022]
|
27
|
Mankertz A. Molecular interactions of porcine circoviruses type 1 and type 2 with its host. Virus Res 2012; 164:54-60. [DOI: 10.1016/j.virusres.2011.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 01/19/2023]
|
28
|
Li XC, Du ZQ, Lan JF, Zhang XW, Mu Y, Zhao XF, Wang JX. A novel pathogen-binding gC1qR homolog, FcgC1qR, in the Chinese white shrimp, Fenneropenaeus chinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:400-407. [PMID: 21893092 DOI: 10.1016/j.dci.2011.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/14/2011] [Accepted: 08/15/2011] [Indexed: 05/31/2023]
Abstract
In vertebrates, the globular "head" of complement component C1q receptor (gC1qR) is a versatile, multiligand binding protein. However, research on its function in invertebrates is limited. In the present study, a full-length cDNA sequence of a novel gC1qR homolog, FcgC1qR, from the Chinese white shrimp Fenneropenaeus chinensis was cloned. Semi-quantitative polymerase chain reaction (PCR) detected FcgC1qR in all examined tissues, with the highest level detected in the intestine. Western blot assay further revealed that the FcgC1qR protein was distributed in all tested tissues except the cell-free hemolymph of normal Chinese white shrimp. In the expression pattern study, quantitative real-time PCR demonstrated that the transcripts of FcgC1qR were up-regulated when challenged with bacteria (Vibrio anguillarum or Staphylococcus aureus) and white spot syndrome virus. Subsequently, FcgC1qR was over-expressed in Escherichia coli, and the polyclonal antibody was prepared with the purified recombinant protein. Microorganism binding was examined using Western blot assay, and revealed that FcgC1qR could bind to Bacillus cereus, Bacillus thuringiensis, S. aureus, V. anguillarum, Vibrioharveyi, and Candida albicans. FcgC1qR was also proven able to bind to S. aureus in a concentration-dependent manner, and this binding activity was partly inhibited by the polyclonal antibody. These results suggest that FcgC1qR may be involved in defending against bacterial infections in the Chinese white shrimp.
Collapse
Affiliation(s)
- Xin-Cang Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Liu HP, Chen RY, Zhang QX, Peng H, Wang KJ. Differential gene expression profile from haematopoietic tissue stem cells of red claw crayfish, Cherax quadricarinatus, in response to WSSV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:716-724. [PMID: 21396955 DOI: 10.1016/j.dci.2011.02.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 02/26/2011] [Accepted: 02/28/2011] [Indexed: 05/30/2023]
Abstract
White spot syndrome virus (WSSV) is one of the most important viral pathogens in crustaceans. During WSSV infection, multiple cell signaling cascades are activated, leading to the generation of antiviral molecules and initiation of programmed cell death of the virus infected cells. To gain novel insight into cell signaling mechanisms employed in WSSV infection, we have used suppression subtractive hybridization (SSH) to elucidate the cellular response to WSSV challenge at the gene level in red claw crayfish haematopoietic tissue (Hpt) stem cell cultures. Red claw crayfish Hpt cells were infected with WSSV for 1h (L1 library) and 12h (L12 library), respectively, after which the cell RNA was prepared for SSH using uninfected cells as drivers. By screening the L1 and L12 forward libraries, we have isolated the differentially expressed genes of crayfish Hpt cells upon WSSV infection. Among these genes, the level of many key molecules showed clearly up-regulated expression, including the genes involved in immune responses, cytoskeletal system, signal transduction molecules, stress, metabolism and homestasis related genes, and unknown genes in both L1 and L12 libraries. Importantly, of the 2123 clones screened, 176 novel genes were found the first time to be up-regulated in WSSV infection in crustaceans. To further confirm the up-regulation of differentially expressed genes, the semi-quantitative RT-PCR were performed to test twenty randomly selected genes, in which eight of the selected genes exhibited clear up-regulation upon WSSV infection in red claw crayfish Hpt cells, including DNA helicase B-like, multiprotein bridging factor 1, apoptosis-linked gene 2 and an unknown gene-L1635 from L1 library; coatomer gamma subunit, gabarap protein gene, tripartite motif-containing 32 and an unknown gene-L12-254 from L2 library, respectively. Taken together, as well as in immune and stress responses are regulated during WSSV infection of crayfish Hpt cells, our results also light the significance of cytoskeletal system, signal transduction and other unknown genes in the regulation of antiviral signals during WSSV infection.
Collapse
Affiliation(s)
- Hai-peng Liu
- State Key Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, Fujian, PR China.
| | | | | | | | | |
Collapse
|
30
|
Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus. PLoS Pathog 2011; 7:e1002062. [PMID: 21695245 PMCID: PMC3111544 DOI: 10.1371/journal.ppat.1002062] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/25/2011] [Indexed: 01/11/2023] Open
Abstract
The Down syndrome cell adhesion molecule, also known as Dscam, is a member of the immunoglobulin super family. Dscam plays an essential function in neuronal wiring and appears to be involved in innate immune reactions in insects. The deduced amino acid sequence of Dscam in the crustacean Pacifastacus leniusculus (PlDscam), encodes 9(Ig)-4(FNIII)-(Ig)-2(FNIII)-TM and it has variable regions in the N-terminal half of Ig2 and Ig3 and the complete Ig7 and in the transmembrane domain. The cytoplasmic tail can generate multiple isoforms. PlDscam can generate more than 22,000 different unique isoforms. Bacteria and LPS injection enhanced the expression of PlDscam, but no response in expression occurred after a white spot syndrome virus (WSSV) infection or injection with peptidoglycans. Furthermore, PlDscam silencing did not have any effect on the replication of the WSSV. Bacterial specific isoforms of PlDscam were shown to have a specific binding property to each tested bacteria, E. coli or S. aureus. The bacteria specific isoforms of PlDscam were shown to be associated with bacterial clearance and phagocytosis in crayfish. Invertebrate animals lack an adaptive immune system and have no antibodies. Vertebrate antibodies belong to the immunoglobulin super family of proteins, and one other member of this large family is the Down syndrome cell adhesion molecule or Dscam. Of specific interest is that Dscam proteins in invertebrates show a great diversity of isoforms, and its gene structure in Drosophila melanogaster and other insect species allow for more than 30,000 different isoforms. Dscam proteins are important for the interaction between neurons in insects, but recently a role for this hypervariable protein in immune defense has been shown. Here, we show that Dscam proteins with similar highly variable structures are present in a crustacean, the freshwater crayfish Pacifastacus leniusculus. We also found that specific isoforms could be induced in the animal after injection of different bacteria. The Dscam isoforms induced by Escherichia coli were found to cluster together in a phylogenetic analysis. Furthermore we produced recombinant proteins of the different isoforms that were induced by E. coli and Staphylococcus aureus and we could demonstrate that these proteins can bind specifically to their corresponding bacteria. The bacteria specific isoforms of Dscam were also shown to be associated with bacterial clearance and phagocytosis in crayfish. Our study therefore provides new insights into the function of invertebrate Dscams in immunity.
Collapse
|