1
|
Shrivastav G, Borkotoky S, Dey D, Singh B, Malhotra N, Azad K, Jayaram B, Agarwal M, Banerjee M. Structure and energetics guide dynamic behaviour in a T = 3 icosahedral virus capsid. Biophys Chem 2024; 305:107152. [PMID: 38113782 DOI: 10.1016/j.bpc.2023.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Although virus capsids appear as rigid, symmetric particles in experimentally determined structures; biochemical studies suggest a significant degree of structural flexibility in the particles. We carried out all-atom simulations on the icosahedral capsid of an insect virus, Flock House Virus, which show intriguing differences in the degree of flexibility of quasi-equivalent capsid subunits consistent with previously described biological behaviour. The flexibility of all the β and γ subunits of the protein and RNA fragments is analysed and compared. Both γA subunit and RNA fragment exhibit higher flexibility than the γB and γC subunits. The capsid shell is permeable to the bidirectional movement of water molecules, and the movement is heavily influenced by the geometry of the capsid shell along specific symmetry axes. In comparison to the symmetry axes along I5 and I3, the I2 axis exhibits a slightly higher water content. This enriched water environment along I2 could play a pivotal role in facilitating the structural transitions necessary for RNA release, shedding some light on the intricate and dynamic processes underlying the viral life cycle. Our study suggests that the physical characterization of whole virus capsids is the key to identifying biologically relevant transition states in the virus life cycle and understanding the basis of virus infectivity.
Collapse
Affiliation(s)
- Gourav Shrivastav
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Subhomoi Borkotoky
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Debajit Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhumika Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nidhi Malhotra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kimi Azad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - B Jayaram
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manish Agarwal
- Computer Services Centre, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Chen NC, Wang CH, Yoshimura M, Yeh YQ, Guan HH, Chuankhayan P, Lin CC, Lin PJ, Huang YC, Wakatsuki S, Ho MC, Chen CJ. Structures of honeybee-infecting Lake Sinai virus reveal domain functions and capsid assembly with dynamic motions. Nat Commun 2023; 14:545. [PMID: 36726015 PMCID: PMC9892032 DOI: 10.1038/s41467-023-36235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Understanding the structural diversity of honeybee-infecting viruses is critical to maintain pollinator health and manage the spread of diseases in ecology and agriculture. We determine cryo-EM structures of T = 4 and T = 3 capsids of virus-like particles (VLPs) of Lake Sinai virus (LSV) 2 and delta-N48 LSV1, belonging to tetraviruses, at resolutions of 2.3-2.6 Å in various pH environments. Structural analysis shows that the LSV2 capsid protein (CP) structural features, particularly the protruding domain and C-arm, differ from those of other tetraviruses. The anchor loop on the central β-barrel domain interacts with the neighboring subunit to stabilize homo-trimeric capsomeres during assembly. Delta-N48 LSV1 CP interacts with ssRNA via the rigid helix α1', α1'-α1 loop, β-barrel domain, and C-arm. Cryo-EM reconstructions, combined with X-ray crystallographic and small-angle scattering analyses, indicate that pH affects capsid conformations by regulating reversible dynamic particle motions and sizes of LSV2 VLPs. C-arms exist in all LSV2 and delta-N48 LSV1 VLPs across varied pH conditions, indicating that autoproteolysis cleavage is not required for LSV maturation. The observed linear domino-scaffold structures of various lengths, made up of trapezoid-shape capsomeres, provide a basis for icosahedral T = 4 and T = 3 architecture assemblies. These findings advance understanding of honeybee-infecting viruses that can cause Colony Collapse Disorder.
Collapse
Affiliation(s)
- Nai-Chi Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Masato Yoshimura
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Yi-Qi Yeh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Chien-Chih Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Pei-Ju Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30043, Taiwan, ROC
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University, Stanford, CA, 94305, USA
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Structural Molecular Biology, Menlo Park, CA, 94025, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan, ROC.
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC.
- Department of Physics, National Tsing Hua University, Hsinchu, 30043, Taiwan, ROC.
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
| |
Collapse
|
3
|
Castells-Graells R, Ribeiro JRS, Domitrovic T, Hesketh EL, Scarff CA, Johnson JE, Ranson NA, Lawson DM, Lomonossoff GP. Plant-expressed virus-like particles reveal the intricate maturation process of a eukaryotic virus. Commun Biol 2021; 4:619. [PMID: 34031522 PMCID: PMC8144610 DOI: 10.1038/s42003-021-02134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
Many virus capsids undergo exquisitely choreographed maturation processes in their host cells to produce infectious virions, and these remain poorly understood. As a tool for studying virus maturation, we transiently expressed the capsid protein of the insect virus Nudaurelia capensis omega virus (NωV) in Nicotiana benthamiana and were able to purify both immature procapsids and mature capsids from infiltrated leaves by varying the expression time. Cryo-EM analysis of the plant-produced procapsids and mature capsids to 6.6 Å and 2.7 Å resolution, respectively, reveals that in addition to large scale rigid body motions, internal regions of the subunits are extensively remodelled during maturation, creating the active site required for autocatalytic cleavage and infectivity. The mature particles are biologically active in terms of their ability to lyse membranes and have a structure that is essentially identical to authentic virus. The ability to faithfully recapitulate and visualize a complex maturation process in plants, including the autocatalytic cleavage of the capsid protein, has revealed a ~30 Å translation-rotation of the subunits during maturation as well as conformational rearrangements in the N and C-terminal helical regions of each subunit.
Collapse
Affiliation(s)
- Roger Castells-Graells
- Department of Biological Chemistry, John Innes Centre, Colney, UK
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jonas R S Ribeiro
- Virology Department, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Domitrovic
- Virology Department, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emma L Hesketh
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Charlotte A Scarff
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Colney, UK
| | | |
Collapse
|
4
|
Jana AK, May ER. Atomistic dynamics of a viral infection process: Release of membrane lytic peptides from a non-enveloped virus. SCIENCE ADVANCES 2021; 7:7/16/eabe1761. [PMID: 33853772 PMCID: PMC8046363 DOI: 10.1126/sciadv.abe1761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/23/2021] [Indexed: 05/13/2023]
Abstract
Molecular simulations have played an instrumental role in uncovering the structural dynamics and physical properties of virus capsids. In this work, we move beyond equilibrium physicochemical characterization of a virus system to study a stage of the infection process that is required for viral proliferation. Despite many biochemical and functional studies, the molecular mechanism of host cell entry by non-enveloped viruses remains largely unresolved. Flock House virus (FHV) is a model system for non-enveloped viruses and is the subject of the current study. FHV infects through the acid-dependent endocytic pathway, where low pH triggers externalization of membrane-disrupting (γ) peptides from the capsid interior. Using all-atom equilibrium and enhanced sampling simulations, the mechanism and energetics of γ peptide liberation and the effect of pH on this process are investigated. Our computations agree with experimental findings and reveal nanoscopic details regarding the pH control mechanism, which are not readily accessible in experiments.
Collapse
Affiliation(s)
- Asis K Jana
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
5
|
Johnson JE, Domitrovic T, Matsui T, Castells-Graells R, Lomonossoff G. Dynamics and stability in the maturation of a eukaryotic virus: a paradigm for chemically programmed large-scale macromolecular reorganization. Arch Virol 2021; 166:1547-1563. [PMID: 33683475 DOI: 10.1007/s00705-021-05007-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/02/2021] [Indexed: 12/16/2022]
Abstract
Virus maturation is found in all animal viruses and dsDNA bacteriophages that have been studied. It is a programmed process, cued by cellular environmental factors, that transitions a noninfectious, initial assembly product (provirus) to an infectious particle (virion). Nudaurelia capensis omega virus (NωV) is an ssRNA insect virus with T=4 quasi-symmetry. Over the last 20 years, NωV virus-like particles (VLPs) have been an attractive model for the detailed study of maturation. The novel feature of the system is the progressive transition from procapsid to capsid controlled by pH. Homogeneous populations of maturation intermediates can be readily produced at arbitrary intervals by adjusting the pH between 7.6 and 5.0. These intermediates were investigated using biochemical and biophysical methods to create a stop-frame transition series of this complex process. The studies reviewed here characterized the large-scale subunit reorganization during maturation (the particle changes size from 48 nm to 41 nm) as well as the mechanism of a maturation cleavage, a time-resolved study of cleavage site formation, and specific roles of quasi-equivalent subunits in the release of membrane lytic peptides required for cellular entry.
Collapse
Affiliation(s)
- John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
| | - Tatiana Domitrovic
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, 21941-902, Brazil
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource (SSRL), 2575 Sand Hill Rd, MS69, Menlo Park, CA, 94025, USA
| | - Roger Castells-Graells
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Dr. East, Los Angeles, CA, 90095-1569, USA
| | - George Lomonossoff
- John Innes Centre, The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
6
|
Molecular biology and structure of a novel penaeid shrimp densovirus elucidate convergent parvoviral host capsid evolution. Proc Natl Acad Sci U S A 2020; 117:20211-20222. [PMID: 32747554 DOI: 10.1073/pnas.2008191117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The giant tiger prawn (Penaeus monodon) is a decapod crustacean widely reared for human consumption. Currently, viruses of two distinct lineages of parvoviruses (PVs, family Parvoviridae; subfamily Hamaparvovirinae) infect penaeid shrimp. Here, a PV was isolated and cloned from Vietnamese P. monodon specimens, designated Penaeus monodon metallodensovirus (PmMDV). This is the first member of a third divergent lineage shown to infect penaeid decapods. PmMDV has a transcription strategy unique among invertebrate PVs, using extensive alternative splicing and incorporating transcription elements characteristic of vertebrate-infecting PVs. The PmMDV proteins have no significant sequence similarity with other PVs, except for an SF3 helicase domain in its nonstructural protein. Its capsid structure, determined by cryoelectron microscopy to 3-Å resolution, has a similar surface morphology to Penaeus stylirostris densovirus, despite the lack of significant capsid viral protein (VP) sequence similarity. Unlike other PVs, PmMDV folds its VP without incorporating a βA strand and displayed unique multimer interactions, including the incorporation of a Ca2+ cation, attaching the N termini under the icosahedral fivefold symmetry axis, and forming a basket-like pentamer helix bundle. While the PmMDV VP sequence lacks a canonical phospholipase A2 domain, the structure of an EDTA-treated capsid, determined to 2.8-Å resolution, suggests an alternative membrane-penetrating cation-dependent mechanism in its N-terminal region. PmMDV is an observed example of convergent evolution among invertebrate PVs with respect to host-driven capsid structure and unique as a PV showing a cation-sensitive/dependent basket structure for an alternative endosomal egress.
Collapse
|
7
|
Viruses with different genome types adopt a similar strategy to pack nucleic acids based on positively charged protein domains. Sci Rep 2020; 10:5470. [PMID: 32214181 PMCID: PMC7096446 DOI: 10.1038/s41598-020-62328-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Capsid proteins often present a positively charged arginine-rich sequence at their terminal regions, which has a fundamental role in genome packaging and particle stability for some icosahedral viruses. These sequences show little to no conservation and are structurally dynamic such that they cannot be easily detected by common sequence or structure comparisons. As a result, the occurrence and distribution of positively charged domains across the viral universe are unknown. Based on the net charge calculation of discrete protein segments, we identified proteins containing amino acid stretches with a notably high net charge (Q > + 17), which are enriched in icosahedral viruses with a distinctive bias towards arginine over lysine. We used viral particle structural data to calculate the total electrostatic charge derived from the most positively charged protein segment of capsid proteins and correlated these values with genome charges arising from the phosphates of each nucleotide. We obtained a positive correlation (r = 0.91, p-value <0001) for a group of 17 viral families, corresponding to 40% of all families with icosahedral structures described to date. These data indicated that unrelated viruses with diverse genome types adopt a common underlying mechanism for capsid assembly based on R-arms.
Collapse
|
8
|
Dhindwal S, Feng S, Khayat R. The Arginines in the N-Terminus of the Porcine Circovirus 2 Virus-like Particles Are Responsible for Disrupting the Membranes at Neutral and Acidic pH. J Mol Biol 2019; 431:3261-3274. [PMID: 31173778 PMCID: PMC6697213 DOI: 10.1016/j.jmb.2019.05.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/23/2022]
Abstract
Non-enveloped viruses that are endocytosed employ numerous mechanisms to disrupt endosomal membranes for escape into the cellular cytoplasm. These include the use of amphipathic helices or sheets, hydrophobic loops, myristoylated peptides, and proteins with phospholipase activity. Some mechanisms result in immediate deterioration of the endosome, while others form pores in the membrane causing osmolysis to disrupt the endosome and allow viral escape. We describe an additional mechanism by a non-enveloped virus to disrupt endosomal membranes. Porcine circovirus 2 (PCV2) possesses a 41-amino acid arginine-rich motif (ARM) at the N-terminus of its capsid protein that appears to be in the interior of the virus-like particle (VLP). Using in vitro membrane disruption assays, we demonstrate that PCV2 VLP, unassembled capsid, and ARM peptide possess the ability to disrupt endosomal-like membranes, whereas VLP lacking the ARM sequence does not possess this capability. Membrane disruption by VLP is insensitive to pH, but unassembled capsid protein and ARM peptide exhibit diminished activity at low pH. Our liposome disruption assays, circular dichroism, and intrinsic tryptophan fluorescence assays allow us to propose a model for PCV2-endosomal membrane interaction wherein the ARM peptide externalizes from the capsid, its C-terminus (amino acids 28-40) anchors into the membrane, and the arginine-rich N-terminus (amino acids 1-27) drives membrane disruption. To our knowledge, this is the first example of a non-enveloped virus using the arginines of an ARM to disrupt membranes. Also, this is the first example of such study for the Circoviridae family of viruses.
Collapse
Affiliation(s)
- Sonali Dhindwal
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Shanshan Feng
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Reza Khayat
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA.
| |
Collapse
|
9
|
Merkl JP, Safi M, Schmidtke C, Aldeek F, Ostermann J, Domitrovic T, Gärtner S, Johnson JE, Weller H, Mattoussi H. Small protein sequences can induce cellular uptake of complex nanohybrids. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2477-2482. [PMID: 31921526 PMCID: PMC6941447 DOI: 10.3762/bjnano.10.238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/02/2019] [Indexed: 05/20/2023]
Abstract
In this letter, we report on the ability of functional fusion proteins presenting a lytic gamma peptide, to promote interactions with HeLa cells and delivery of large hybrid nanostructures.
Collapse
Affiliation(s)
- Jan-Philip Merkl
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
- Institute of Physical Chemistry; University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Malak Safi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
- Laboratoire Physique des Solides, UMR 8502, Université de Paris Sud bât 510, 91405 Orsay Cedex, France
| | - Christian Schmidtke
- Institute of Physical Chemistry; University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Fadi Aldeek
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
- Altria Center for Research and Technology, 601 E Jackson Street, Richmond, VA, 23219, United States
| | - Johannes Ostermann
- Institute of Physical Chemistry; University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Center for Applied Nanotechnology (CAN) GmbH, Grindelallee 117, 20146 Hamburg, Germany
| | - Tatiana Domitrovic
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, 310. Lab I014, 21941-902, Rio de Janeiro, Brazil
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, MB31, La Jolla, California 92037, United States
| | - Sebastian Gärtner
- Institute of Physical Chemistry; University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Universitätsklinikum Hamburg Eppendorf, 20246, Martinistraße 52, 20251 Hamburg, Germany
| | - John E Johnson
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, MB31, La Jolla, California 92037, United States
| | - Horst Weller
- Institute of Physical Chemistry; University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Applied Nanotechnology (CAN) GmbH, Grindelallee 117, 20146 Hamburg, Germany
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
10
|
Breach: Host Membrane Penetration and Entry by Nonenveloped Viruses. Trends Microbiol 2017; 26:525-537. [PMID: 29079499 DOI: 10.1016/j.tim.2017.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 11/22/2022]
Abstract
Disruption of host membranes by nonenveloped viruses, which allows the nucleocapsid or genome to enter the cytosol, is a mechanistically diverse process. Although the membrane-penetrating agents are usually small, hydrophobic or amphipathic peptides deployed from the capsid interior during entry, their manner of membrane interaction varies substantially. In this review, we discuss recent data about the molecular pathways for externalization of viral peptides amidst conformational alterations in the capsid, as well as mechanisms of membrane penetration, which is influenced by structural features of the peptides themselves as well as physicochemical properties of membranes, and other host factors. The membrane-penetrating components of nonenveloped viruses constitute an interesting class of cell-penetrating peptides, and may have potential therapeutic value for gene transfer.
Collapse
|
11
|
Affiliation(s)
- Kimi Azad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - John E. Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
12
|
Safi M, Domitrovic T, Kapur A, Zhan N, Aldeek F, Johnson JE, Mattoussi H. Intracellular Delivery of Luminescent Quantum Dots Mediated by a Virus-Derived Lytic Peptide. Bioconjug Chem 2016; 28:64-74. [DOI: 10.1021/acs.bioconjchem.6b00609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Malak Safi
- Florida State University, Department of Chemistry
and Biochemistry, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| | - Tatiana Domitrovic
- The Scripps Research Institute, Department of
Integrative Structural and Computational Biology, MB31, La Jolla, California 92037, United States
| | | | - Naiqian Zhan
- Florida State University, Department of Chemistry
and Biochemistry, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| | - Fadi Aldeek
- Florida State University, Department of Chemistry
and Biochemistry, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| | - John E. Johnson
- The Scripps Research Institute, Department of
Integrative Structural and Computational Biology, MB31, La Jolla, California 92037, United States
| | - Hedi Mattoussi
- Florida State University, Department of Chemistry
and Biochemistry, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
13
|
Penkler DL, Jiwaji M, Domitrovic T, Short JR, Johnson JE, Dorrington RA. Binding and entry of a non-enveloped T=4 insect RNA virus is triggered by alkaline pH. Virology 2016; 498:277-287. [PMID: 27614703 DOI: 10.1016/j.virol.2016.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
Tetraviruses are small, non-enveloped, RNA viruses that exclusively infect lepidopteran insects. Their particles comprise 240 copies of a single capsid protein precursor (CP), which undergoes autoproteolytic cleavage during maturation. The molecular mechanisms of capsid assembly and maturation are well understood, but little is known about the viral infectious lifecycle due to a lack of tissue culture cell lines that are susceptible to tetravirus infection. We show here that binding and entry of the alphatetravirus, Helicoverpa armigera stunt virus (HaSV), is triggered by alkaline pH. At pH 9.0, wild-type HaSV virus particles undergo conformational changes that induce membrane-lytic activity and binding to Spodoptera frugiperda Sf9 cells. Binding is followed by entry and infection, with virus replication complexes detected by immunofluorescence microscopy within 2h post-infection and the CP after 12h. HaSV particles produced in S. frugiperda Sf9 cells are infectious. Helicoverpa armigera larval virus biofeed assays showed that pre-treatment with the V-ATPase inhibitor, Bafilomycin A1, resulted in a 50% decrease in larval mortality and stunting, while incubation of virus particles at pH 9.0 prior to infection restored infectivity. Together, these data show that HaSV, and likely other tetraviruses, requires the alkaline environment of the lepidopteran larval midgut for binding and entry into host cells.
Collapse
Affiliation(s)
- David L Penkler
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Meesbah Jiwaji
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Tatiana Domitrovic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - James R Short
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rosemary A Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
14
|
Non-Enveloped Virus Entry: Structural Determinants and Mechanism of Functioning of a Viral Lytic Peptide. J Mol Biol 2016; 428:3540-56. [DOI: 10.1016/j.jmb.2016.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 11/20/2022]
|
15
|
Doerschuk PC, Gong Y, Xu N, Domitrovic T, Johnson JE. Virus particle dynamics derived from CryoEM studies. Curr Opin Virol 2016; 18:57-63. [DOI: 10.1016/j.coviro.2016.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/29/2016] [Indexed: 12/13/2022]
|
16
|
An encapsidated viral protein and its role in RNA packaging by a non-enveloped animal RNA virus. Virology 2015; 476:323-333. [PMID: 25577149 DOI: 10.1016/j.virol.2014.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 11/23/2022]
Abstract
Alphatetraviruses are small (+) ssRNA viruses with non-enveloped, icosahedral, T=4 particles that assemble from 240 copies of a single capsid protein precursor. This study is focused on the mechanisms underlying selection and packaging of genomic vRNAs by Helicoverpa armigera stunt virus. We demonstrate that the viral protein, p17, is packaged at low levels (between 4 and 8 copies per capsid) raising the possibility of icosahedral asymmetry in wild-type particles. p17 promotes packaging of vRNA2 by virus-like particles (VLPs) generated from plasmid-expressed vRNA2. The 5' and 3' UTRs of RNA2 are not required for encapsidation. VLPs produced by recombinant baculoviruses package vRNA2 at detectable levels even in the absence of p17 and apparently excluding baculoviral transcripts. This suggests a role for p17 in vRNA selectivity. This is one of few examples of the packaging of a minor non-structural protein by (+) ssRNA animal viruses.
Collapse
|
17
|
Berman HM, Gabanyi MJ, Groom CR, Johnson JE, Murshudov GN, Nicholls RA, Reddy V, Schwede T, Zimmerman MD, Westbrook J, Minor W. Data to knowledge: how to get meaning from your result. IUCRJ 2015; 2:45-58. [PMID: 25610627 PMCID: PMC4285880 DOI: 10.1107/s2052252514023306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/22/2014] [Indexed: 05/19/2023]
Abstract
Structural and functional studies require the development of sophisticated 'Big Data' technologies and software to increase the knowledge derived and ensure reproducibility of the data. This paper presents summaries of the Structural Biology Knowledge Base, the VIPERdb Virus Structure Database, evaluation of homology modeling by the Protein Model Portal, the ProSMART tool for conformation-independent structure comparison, the LabDB 'super' laboratory information management system and the Cambridge Structural Database. These techniques and technologies represent important tools for the transformation of crystallographic data into knowledge and information, in an effort to address the problem of non-reproducibility of experimental results.
Collapse
Affiliation(s)
- Helen M. Berman
- Center for Integrative Proteomics Research, Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Margaret J. Gabanyi
- Center for Integrative Proteomics Research, Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Colin R. Groom
- Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
| | - John E. Johnson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Garib N. Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| | - Robert A. Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| | - Vijay Reddy
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Torsten Schwede
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
- SIB-Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Matthew D. Zimmerman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - John Westbrook
- Center for Integrative Proteomics Research, Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
18
|
Tang J, Kearney BM, Wang Q, Doerschuk PC, Baker TS, Johnson JE. Dynamic and geometric analyses of Nudaurelia capensis ω virus maturation reveal the energy landscape of particle transitions. J Mol Recognit 2014; 27:230-7. [PMID: 24591180 DOI: 10.1002/jmr.2354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 11/09/2022]
Abstract
Quasi-equivalent viruses that infect animals and bacteria require a maturation process in which particles transition from initially assembled procapsids to infectious virions. Nudaurelia capensis ω virus (NωV) is a T = 4, eukaryotic, single-stranded ribonucleic acid virus that has proved to be an excellent model system for studying the mechanisms of viral maturation. Structures of NωV procapsids (diameter = 480 Å), a maturation intermediate (410 Å), and the mature virion (410 Å) were determined by electron cryo-microscopy and three-dimensional image reconstruction (cryoEM). The cryoEM density for each particle type was analyzed with a recently developed maximum likelihood variance (MLV) method for characterizing microstates occupied in the ensemble of particles used for the reconstructions. The procapsid and the mature capsid had overall low variance (i.e., uniform particle populations) while the maturation intermediate (that had not undergone post-assembly autocatalytic cleavage) had roughly two to four times the variance of the first two particles. Without maturation cleavage, the particles assume a variety of microstates, as the frustrated subunits cannot reach a minimum energy configuration. Geometric analyses of subunit coordinates provided a quantitative description of the particle reorganization during maturation. Superposition of the four quasi-equivalent subunits in the procapsid had an average root mean square deviation (RMSD) of 3 Å while the mature particle had an RMSD of 11 Å, showing that the subunits differentiate from near equivalent environments in the procapsid to strikingly non-equivalent environments during maturation. Autocatalytic cleavage is clearly required for the reorganized mature particle to reach the minimum energy state required for stability and infectivity.
Collapse
Affiliation(s)
- Jinghua Tang
- Department of Chemistry and Biochemistry, and Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0378, USA
| | | | | | | | | | | |
Collapse
|
19
|
Assembly and maturation of a T = 4 quasi-equivalent virus is guided by electrostatic and mechanical forces. Viruses 2014; 6:3348-62. [PMID: 25153346 PMCID: PMC4147699 DOI: 10.3390/v6083348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 11/17/2022] Open
Abstract
Nudaurelia capensis w virus (NωV) is a eukaryotic RNA virus that is well suited for the study of virus maturation. The virus initially assembles at pH 7.6 into a marginally stable 480-Å procapsid formed by 240 copies of a single type of protein subunit. During maturation, which occurs during apoptosis at pH 5.0, electrostatic forces guide subunit trajectories into a robust 410-Å virion that is buttressed by subunit associated molecular switches. We discuss the competing factors in the virus capsid of requiring near-reversible interactions during initial assembly to avoid kinetic traps, while requiring robust stability to survive in the extra-cellular environment. In addition, viruses have a variety of mechanisms to deliver the genome, which must remain off while still inside the infected cell, yet turn on under the proper conditions of infection. We conclude that maturation is the process that provides a solution to these conflicting requirements through a program that is encoded in the procapsid and that leads to stability and infectivity.
Collapse
|
20
|
Domitrovic T, Movahed N, Bothner B, Matsui T, Wang Q, Doerschuk PC, Johnson JE. Virus assembly and maturation: auto-regulation through allosteric molecular switches. J Mol Biol 2013; 425:1488-96. [PMID: 23485419 PMCID: PMC3664304 DOI: 10.1016/j.jmb.2013.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/15/2013] [Accepted: 02/16/2013] [Indexed: 11/24/2022]
Abstract
We generalize the concept of allostery from the traditional non-active-site control of enzymes to virus maturation. Virtually, all animal viruses transition from a procapsid noninfectious state to a mature infectious state. The procapsid contains an encoded chemical program that is executed following an environmental cue. We developed an exceptionally accessible virus system for the study of the activators of maturation and the downstream consequences that result in particle stability and infectivity. Nudaurelia capensis omega virus (NωV) is a T=4 icosahedral virus that undergoes a dramatic maturation in which the 490-Å spherical procapsid condenses to a 400-Å icosahedral-shaped capsid with associated specific auto-proteolysis and stabilization. Employing X-ray crystallography, time-resolved electron cryo-microscopy and hydrogen/deuterium exchange as well as biochemistry, it was possible to define the mechanisms of allosteric communication among the four quasi-equivalent subunits in the icosahedral asymmetric unit. These gene products undergo proteolysis at different rates, dependent on quaternary structure environment, while particle stability is conferred globally following only a few local subunit transitions. We show that there is a close similarity between the concepts of tensegrity (associated with geodesic domes and mechanical engineering) and allostery (associated with biochemical control mechanisms).
Collapse
Affiliation(s)
- Tatiana Domitrovic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang Q, Matsui T, Domitrovic T, Zheng Y, Doerschuk PC, Johnson JE. Dynamics in cryo EM reconstructions visualized with maximum-likelihood derived variance maps. J Struct Biol 2012; 181:195-206. [PMID: 23246781 DOI: 10.1016/j.jsb.2012.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 11/22/2012] [Accepted: 11/27/2012] [Indexed: 11/25/2022]
Abstract
CryoEM data capture the dynamic character associated with biological macromolecular assemblies by preserving the various conformations of the individual specimens at the moment of flash freezing. Regions of high variation in the data set are apparent in the image reconstruction due to the poor density that results from the lack of superposition of these regions. These observations are qualitative and, to date, only preliminary efforts have been made to quantitate the heterogeneity in the ensemble of particles that are individually imaged. We developed and tested a quantitative method for simultaneously computing a reconstruction of the particle and a map of the space-varying heterogeneity of the particle based on an entire data set. The method uses a maximum likelihood algorithm that explicitly takes into account the continuous variability from one instance to another instance of the particle. The result describes the heterogeneity of the particle as a variance to be plotted at every voxel of the reconstructed density. The test, employing time resolved data sets of virus maturation, not only recapitulated local variations obtained with difference map analysis, but revealed a remarkable time dependent reduction in the overall particle dynamics that was unobservable with classical methods of analysis.
Collapse
Affiliation(s)
- Qiu Wang
- Electrical and Computer Engineering, Cornell University, NY 14853, USA
| | | | | | | | | | | |
Collapse
|