1
|
Balakrishna Pillai A, JeanPierre AR, Mariappan V, Ranganadin P, S R R. Neutralizing the free radicals could alleviate the disease severity following an infection by positive strand RNA viruses. Cell Stress Chaperones 2022; 27:189-195. [PMID: 35366756 PMCID: PMC8976658 DOI: 10.1007/s12192-022-01269-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Free radical release due to oxidative stress is gaining importance in the field of viral pathogenesis. Recent studies suggest the involvement of oxidative stress and ROS levels in regulating disease virulence during RNA virus infection. Most of the RNA virus infections lead to vascular dysfunction and disease severity. However, the biology of free radicals in maintaining vascular endothelium integrity is not completely understood. In the present review, we discuss some of the common features in positive-strand RNA virus infections such as dengue and SARS-CoV-2 and suggest that anti-oxidant therapy could pave the way to develop therapeutic strategies in combating emerging and re-emerging RNA viruses.
Collapse
Affiliation(s)
- Agieshkumar Balakrishna Pillai
- Central Inter-Disciplinary Research Facility (CIDRF), School of Biological Sciences, MGM Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed To Be University), Puducherry, 607 402, India.
| | - Aashika Raagavi JeanPierre
- Central Inter-Disciplinary Research Facility (CIDRF), School of Biological Sciences, MGM Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed To Be University), Puducherry, 607 402, India
| | - Vignesh Mariappan
- Central Inter-Disciplinary Research Facility (CIDRF), School of Biological Sciences, MGM Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed To Be University), Puducherry, 607 402, India
| | - Pajanivel Ranganadin
- Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed To Be University), Puducherry, 607 402, India
| | - Rao S R
- Research, Innovation & Development, Sri Balaji Vidyapeeth (Deemed To Be University), Puducherry, 607 402, India
| |
Collapse
|
2
|
Blaustein M, Piegari E, Martínez Calejman C, Vila A, Amante A, Manese MV, Zeida A, Abrami L, Veggetti M, Guertin DA, van der Goot FG, Corvi MM, Colman-Lerner A. Akt Is S-Palmitoylated: A New Layer of Regulation for Akt. Front Cell Dev Biol 2021; 9:626404. [PMID: 33659252 PMCID: PMC7917195 DOI: 10.3389/fcell.2021.626404] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The protein kinase Akt/PKB participates in a great variety of processes, including translation, cell proliferation and survival, as well as malignant transformation and viral infection. In the last few years, novel Akt posttranslational modifications have been found. However, how these modification patterns affect Akt subcellular localization, target specificity and, in general, function is not thoroughly understood. Here, we postulate and experimentally demonstrate by acyl-biotin exchange (ABE) assay and 3H-palmitate metabolic labeling that Akt is S-palmitoylated, a modification related to protein sorting throughout subcellular membranes. Mutating cysteine 344 into serine blocked Akt S-palmitoylation and diminished its phosphorylation at two key sites, T308 and T450. Particularly, we show that palmitoylation-deficient Akt increases its recruitment to cytoplasmic structures that colocalize with lysosomes, a process stimulated during autophagy. Finally, we found that cysteine 344 in Akt1 is important for proper its function, since Akt1-C344S was unable to support adipocyte cell differentiation in vitro. These results add an unexpected new layer to the already complex Akt molecular code, improving our understanding of cell decision-making mechanisms such as cell survival, differentiation and death.
Collapse
Affiliation(s)
- Matías Blaustein
- Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Buenos Aires, Argentina.,Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Estefanía Piegari
- Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Buenos Aires, Argentina
| | - Camila Martínez Calejman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Antonella Vila
- Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Buenos Aires, Argentina.,Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Amante
- Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Buenos Aires, Argentina.,Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Manese
- Laboratorio de bioquímica y biología celular de parásitos, Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - CONICET, Chascomús, Argentina
| | - Ari Zeida
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laurence Abrami
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mariela Veggetti
- Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Buenos Aires, Argentina
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States.,Lei Weibo Institute for Rare Diseases, University of Massachusetts Medical School, Worcester, MA, United States
| | - F Gisou van der Goot
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - María Martha Corvi
- Laboratorio de bioquímica y biología celular de parásitos, Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - CONICET, Chascomús, Argentina
| | - Alejandro Colman-Lerner
- Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Buenos Aires, Argentina
| |
Collapse
|
3
|
Mendoza CA, Yamaoka S, Tsuda Y, Matsuno K, Weisend CM, Ebihara H. The NF-κB inhibitor, SC75741, is a novel antiviral against emerging tick-borne bandaviruses. Antiviral Res 2020; 185:104993. [PMID: 33296695 DOI: 10.1016/j.antiviral.2020.104993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV) cause viral hemorrhagic fever-like illnesses in humans due to an aberrant host inflammatory response, which contributes to pathogenesis. Here, we established two separate minigenome (MG) systems based on the M-segment of SFTSV and HRTV. Following characterization of both systems for SFTSV and HRTV, we used them as a platform to screen potential compounds that inhibit viral RNA synthesis. We demonstrated that the NF-κB inhibitor, SC75741, reduces viral RNA synthesis of SFTSV and HRTV using our MG platform and validated these results using infectious SFTSV and HRTV. These results may lead to the use of MG systems as potential screening systems for the identification of antiviral compounds and yield novel insights into host-factors that could play role in bandavirus transcription and replication.
Collapse
Affiliation(s)
- Crystal A Mendoza
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Satoko Yamaoka
- Mayo Clinic, Department of Molecular Medicine, Rochester, MN, 55905, USA
| | - Yoshimi Tsuda
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Keita Matsuno
- Unit of Risk Analysis and Management, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, 001-0020, Japan; International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Carla M Weisend
- Mayo Clinic, Department of Molecular Medicine, Rochester, MN, 55905, USA
| | - Hideki Ebihara
- Mayo Clinic, Department of Molecular Medicine, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Blanco J, Cameirao C, López MC, Muñoz-Barroso I. Phosphatidylinositol-3-kinase-Akt pathway in negative-stranded RNA virus infection: a minireview. Arch Virol 2020; 165:2165-2176. [PMID: 32740830 DOI: 10.1007/s00705-020-04740-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/17/2020] [Indexed: 12/23/2022]
Abstract
The PI3K/Akt signalling pathway is a crucial signalling cascade that regulates transcription, protein translation, cell growth, proliferation, cell survival, and metabolism. During viral infection, viruses exploit a variety of cellular pathways, including the well-known PI3K/Akt signalling pathway. Conversely, cells rely on this pathway to stimulate an antiviral response. The PI3K/Akt pathway is manipulated by a number of viruses, including DNA and RNA viruses and retroviruses. The aim of this review is to provide up-to-date information about the role of the PI3K-Akt pathway in infection with members of five different families of negative-sense ssRNA viruses. This pathway is hijacked for viral entry, regulation of endocytosis, suppression of premature apoptosis, viral protein expression, and replication. Although less common, the PI3K/Akt pathway can be downregulated as an immunomodulatory strategy or as a mechanism for inducing autophagy. Moreover, the cell activates this pathway as an antiviral strategy for interferon and cytokine production, among other strategies. Here, we present new data concerning the role of this pathway in infection with the paramyxovirus Newcastle disease virus (NDV). Our data seem to indicate that NDV uses the PI3K/Akt pathway to delay cell death and increase cell survival as a means of improving its replication. The interference of negative-sense ssRNA viruses with this essential pathway might have implications for the development of antiviral therapies.
Collapse
Affiliation(s)
- Javier Blanco
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain
| | - Cristina Cameirao
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - María Carmen López
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain
| | - Isabel Muñoz-Barroso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.
| |
Collapse
|
5
|
Yao J, Rotenberg D, Whitfield AE. Delivery of maize mosaic virus to planthopper vectors by microinjection increases infection efficiency and facilitates functional genomics experiments in the vector. J Virol Methods 2019; 270:153-162. [DOI: 10.1016/j.jviromet.2019.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022]
|
6
|
Zuo YH, Han QB, Dong GT, Yue RQ, Ren XC, Liu JX, Liu L, Luo P, Zhou H. Panax ginseng Polysaccharide Protected H9c2 Cardiomyocyte From Hypoxia/Reoxygenation Injury Through Regulating Mitochondrial Metabolism and RISK Pathway. Front Physiol 2018; 9:699. [PMID: 29962955 PMCID: PMC6013582 DOI: 10.3389/fphys.2018.00699] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Background and Objective: Ischemic heart disease (IHD) has been the major issue of public health. Panax ginseng (ginseng) has been verified as an effective traditional Chinese medicines and exerted cardioprotective effect. This study aimed to investigate the polysaccharide fraction of ginseng on hypoxia/reoxygenation (H/R) injury in cardiomyocytes and the underlying mechanisms. Methods: Ginseng was extracted by ethanol and fractionated by high-speed counter current chromatography (HSCCC) and column separation. The cardioprotective effect was evaluated in H9c2 cardiomyocytes underwent H/R treatment. The cell viability, apoptosis and mitochondrial respiration were examined. Results: An acid polysaccharides fraction of ginseng (AP1) was identified the most effective fraction in protecting cardiomyocytes from H/R injury. AP1 restored the mitochondrial function by maintaining mitochondrial membrane potential (MMP), blocking the release of cytochrome C, and increasing the ATP generation and oxygen consumption rate (OCR) of cardiomyocytes. Meanwhile, AP1 induced the expression of glucocorticoid receptor (GR) and estrogen receptor (ER) which further activated reperfusion injury salvage kinase (RISK) pathway. Finally, AP1 increased nitric oxide (NO) production and regulated endothelial function by increasing endothelial NO synthase (eNOS) expression and decreasing inducible NOS (iNOS) expression in H/R injury. Conclusion: The results suggested that AP1 exerted a protective effect in myocardial H/R injury mainly through maintaining myocardial mitochondrial function, thereby inhibiting myocardial H/R caused apoptosis and increasing the expressions of GR and ER, which in turn mediated the activation of RISK pathway and eNOS-dependent mechanism to resist the reperfusion injury.
Collapse
Affiliation(s)
- Yi-Han Zuo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Geng-Ting Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Rui-Qi Yue
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xue-Cong Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jian-Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,College of Pharmacy, Hunan University of Medicine, Huaihua, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Pei Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,International Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Kim JT, Liu Y, Kulkarni RP, Lee KK, Dai B, Lovely G, Ouyang Y, Wang P, Yang L, Baltimore D. Dendritic cell-targeted lentiviral vector immunization uses pseudotransduction and DNA-mediated STING and cGAS activation. Sci Immunol 2017; 2:2/13/eaal1329. [PMID: 28733470 DOI: 10.1126/sciimmunol.aal1329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/14/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
Abstract
Dendritic cell (DC) activation and antigen presentation are critical for efficient priming of T cell responses. Here, we study how lentiviral vectors (LVs) deliver antigen and activate DCs to generate T cell immunization in vivo. We report that antigenic proteins delivered in vector particles via pseudotransduction were sufficient to stimulate an antigen-specific immune response. The delivery of the viral genome encoding the antigen increased the magnitude of this response in vivo but was irrelevant in vitro. Activation of DCs by LVs was independent of MyD88, TRIF, and MAVS, ruling out an involvement of Toll-like receptor or RIG-I-like receptor signaling. Cellular DNA packaged in LV preparations induced DC activation by the host STING (stimulator of interferon genes) and cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase) pathway. Envelope-mediated viral fusion also activated DCs in a phosphoinositide 3-kinase-dependent but STING-independent process. Pseudotransduction, transduction, viral fusion, and delivery of cellular DNA collaborate to make the DC-targeted LV preparation an effective immunogen.
Collapse
Affiliation(s)
- Jocelyn T Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Division of Infectious Diseases, Department of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Rajan P Kulkarni
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin K Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bingbing Dai
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Geoffrey Lovely
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yong Ouyang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Lili Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
8
|
Vasireddi M, Hilliard JK. Regulation of PI3K/Akt dependent apoptotic markers during b virus infection of human and macaque fibroblasts. PLoS One 2017; 12:e0178314. [PMID: 28558072 PMCID: PMC5448769 DOI: 10.1371/journal.pone.0178314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
B virus (Macacine herpesvirus 1), a simplex virus endemic in macaques, causes encephalitis, encephalomyelitis, and death in 80% of untreated zoonotically infected humans with delayed or no treatment. Here we report a significant difference in PI3K/Akt-dependent apoptosis between B virus infected human and macaque dermal fibroblasts. Our data show that B virus infection in either human or macaque fibroblasts results in activation of Akt via PI3K and this activation does not require viral de novo protein synthesis. Inhibition of PI3K with LY294002 results in a significant reduction of viral titers in B virus infected macaque and human fibroblasts with only a modest difference in the reduction of virus titers between the two cell types. We, therefore, tested the hypothesis that B virus results in the phosphorylation of Akt (S473), which prevents apoptosis, enhancing virus replication in B virus infected macaque dermal fibroblasts. We observed markers of intrinsic apoptosis when PI3K activation of Akt was inhibited in B virus infected macaque cells, while, these apoptotic markers were absent in B virus infected human fibroblasts under the same conditions. From these data we suggest that PI3K activates Akt in B virus infected macaque and human fibroblasts, but this enhances virus replication in macaque fibroblast cells by blocking apoptosis.
Collapse
Affiliation(s)
- Mugdha Vasireddi
- Viral Immunology Center, Biology Department, Georgia State University, Atlanta, GA, United States of America
| | - Julia K. Hilliard
- Viral Immunology Center, Biology Department, Georgia State University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Wang C, Huang Y, Sheng J, Huang H, Zhou J. Estrogen receptor alpha inhibits RLR-mediated immune response via ubiquitinating TRAF3. Cell Signal 2015; 27:1977-83. [PMID: 26186972 DOI: 10.1016/j.cellsig.2015.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/13/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022]
Abstract
RIG-I-like receptors (RLRs) function as key sentinel receptor for invading viruses. Moderate activation of RLR signaling is critical for efficient viral clearance without harmful immunopathology. Estrogen receptor alpha (ERα) is a member of the nuclear receptor superfamily of ligand-activated transcription factors and is involved in the regulation of innate immune responses. However, the effects of ERα on RLR signaling and the molecular mechanisms are poorly understood. In this study, we identify ERα as a negative regulator of RLR-triggered antiviral immune responses. The expression level of ERα is upregulated following RLR activation in macrophages. In the absence of ligand, VSV infection phosphorylates ERα at serine 167. ERα inhibits VSV-induced IRF3 activation. We further demonstrate that ERα directly interacts with TRAF3 and promotes K48-linked proteasomal degradation of TRAF3. Consistently, ERα inhibits VSV-triggered IFN-β production in macrophages in a ligand independent mechanism. Thus, ERα functions as a negative feedback regulator of RLR-triggered antiviral immune responses. These findings also provide the insights that separate the immune effects of ERα from its ligand-induced hormonal effects.
Collapse
Affiliation(s)
- Changxing Wang
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China; Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yue Huang
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China
| | - Jianzhong Sheng
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China
| | - Hefeng Huang
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China
| | - Jun Zhou
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China; Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Hsu ACY, Starkey MR, Hanish I, Parsons K, Haw TJ, Howland LJ, Barr I, Mahony JB, Foster PS, Knight DA, Wark PA, Hansbro PM. Targeting PI3K-p110α Suppresses Influenza Virus Infection in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2015; 191:1012-23. [PMID: 25751541 DOI: 10.1164/rccm.201501-0188oc] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) and influenza virus infections are major global health issues. Patients with COPD are more susceptible to infection, which exacerbates their condition and increases morbidity and mortality. The mechanisms of increased susceptibility remain poorly understood, and current preventions and treatments have substantial limitations. OBJECTIVES To characterize the mechanisms of increased susceptibility to influenza virus infection in COPD and the potential for therapeutic targeting. METHODS We used a combination of primary bronchial epithelial cells (pBECs) from COPD and healthy control subjects, a mouse model of cigarette smoke-induced experimental COPD, and influenza infection. The role of the phosphoinositide-3-kinase (PI3K) pathway was characterized using molecular methods, and its potential for targeting assessed using inhibitors. MEASUREMENTS AND MAIN RESULTS COPD pBECs were susceptible to increased viral entry and replication. Infected mice with experimental COPD also had more severe infection (increased viral titer and pulmonary inflammation, and compromised lung function). These processes were associated with impaired antiviral immunity, reduced retinoic acid-inducible gene-I, and IFN/cytokine and chemokine responses. Increased PI3K-p110α levels and activity in COPD pBECs and/or mice were responsible for increased infection and reduced antiviral responses. Global PI3K, specific therapeutic p110α inhibitors, or exogenous IFN-β restored protective antiviral responses, suppressed infection, and improved lung function. CONCLUSIONS The increased susceptibility of individuals with COPD to influenza likely results from impaired antiviral responses, which are mediated by increased PI3K-p110α activity. This pathway may be targeted therapeutically in COPD, or in healthy individuals, during seasonal or pandemic outbreaks to prevent and/or treat influenza.
Collapse
Affiliation(s)
- Alan Chen-Yu Hsu
- 1 Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhu JD, Meng W, Wang XJ, Wang HCR. Broad-spectrum antiviral agents. Front Microbiol 2015; 6:517. [PMID: 26052325 PMCID: PMC4440912 DOI: 10.3389/fmicb.2015.00517] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/09/2015] [Indexed: 12/24/2022] Open
Abstract
Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Jun-Da Zhu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Wen Meng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Hwa-Chain R Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville TN, USA
| |
Collapse
|
12
|
Meinig JM, Peterson BR. Anticancer/antiviral agent Akt inhibitor-IV massively accumulates in mitochondria and potently disrupts cellular bioenergetics. ACS Chem Biol 2015; 10:570-6. [PMID: 25415586 PMCID: PMC4340353 DOI: 10.1021/cb500856c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Inhibitors
of the PI3-kinase/Akt (protein kinase B) pathway are
under investigation as anticancer and antiviral agents. Akt inhibitor-IV
(ChemBridge 5233705, CAS 681281-88-9, AKTIV), a small molecule reported
to inhibit this pathway, exhibits potent anticancer and broad-spectrum
antiviral activity. However, depending on concentration, this cationic
benzimidazole derivative exhibits paradoxical positive or negative
effects on the phosphorylation of Akt that are not well understood.
To elucidate its mechanism of action, we investigated its spectroscopic
properties. This compound proved to be sufficiently fluorescent (excitation
λmax = 388 nm, emission λmax = 460
nm) to enable examination of its uptake and distribution in living
mammalian cells. Despite a low quantum yield of 0.0016, imaging of
HeLa cells treated with AKTIV (1 μM, 5 min) by confocal laser
scanning microscopy, with excitation at 405 nm, revealed extensive
accumulation in mitochondria. Treatment of Jurkat lymphocytes with
1 μM AKTIV for 15 min caused accumulation to over 250 μM
in these organelles, whereas treatment with 5 μM AKTIV yielded
concentrations of over 1 mM in mitochondria, as analyzed by flow cytometry.
This massive loading resulted in swelling of these organelles, followed
by their apparent disintegration. These effects were associated with
profound disruption of cellular bioenergetics including mitochondrial
depolarization, diminished mitochondrial respiration, and release
of reactive oxygen species. Because mitochondria play key roles in
both cancer proliferation and viral replication, we conclude that
the anticancer and antiviral activities of AKTIV predominantly result
from its direct and immediate effects on the structure and function
of mitochondria.
Collapse
Affiliation(s)
- J. Matthew Meinig
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Blake R. Peterson
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
13
|
Cheng CY, Huang WR, Chi PI, Chiu HC, Liu HJ. Cell entry of bovine ephemeral fever virus requires activation of Src-JNK-AP1 and PI3K-Akt-NF-κB pathways as well as Cox-2-mediated PGE2/EP receptor signalling to enhance clathrin-mediated virus endocytosis. Cell Microbiol 2015; 17:967-87. [DOI: 10.1111/cmi.12414] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/16/2014] [Accepted: 12/26/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Ching-Yuan Cheng
- Institute of Molecular Biology; National Chung Hsing University; Taichung 402 Taiwan
| | - Wei-Ru Huang
- Institute of Molecular Biology; National Chung Hsing University; Taichung 402 Taiwan
| | - Pei-I Chi
- Institute of Molecular Biology; National Chung Hsing University; Taichung 402 Taiwan
| | - Hung-Chuan Chiu
- Institute of Molecular Biology; National Chung Hsing University; Taichung 402 Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology; National Chung Hsing University; Taichung 402 Taiwan
- Agricultural Biotechnology Center; National Chung Hsing University; Taichung 402 Taiwan
- Rong Hsing Research Center for Translational Medicine; National Chung Hsing University; Taichung 402 Taiwan
| |
Collapse
|
14
|
Hindupur SK, Balaji SA, Saxena M, Pandey S, Sravan GS, Heda N, Kumar MV, Mukherjee G, Dey D, Rangarajan A. Identification of a novel AMPK-PEA15 axis in the anoikis-resistant growth of mammary cells. Breast Cancer Res 2014; 16:420. [PMID: 25096718 PMCID: PMC4303232 DOI: 10.1186/s13058-014-0420-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 07/25/2014] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Matrix detachment triggers anoikis, a form of apoptosis, in most normal epithelial cells, while acquisition of anoikis resistance is a prime requisite for solid tumor growth. Of note, recent studies have revealed that a small population of normal human mammary epithelial cells (HMECs) survive in suspension and generate multicellular spheroids termed 'mammospheres'. Therefore, understanding how normal HMECs overcome anoikis may provide insights into breast cancer initiation and progression. METHODS Primary breast tissue-derived normal HMECs were grown as adherent monolayers or mammospheres. The status of AMP-activated protein kinase (AMPK) and PEA15 signaling was investigated by immunoblotting. Pharmacological agents and an RNA interference (RNAi) approach were employed to gauge their roles in mammosphere formation. Immunoprecipitation and in vitro kinase assays were undertaken to evaluate interactions between AMPK and PEA15. In vitro sphere formation and tumor xenograft assays were performed to understand their roles in tumorigenicity. RESULTS In this study, we show that mammosphere formation by normal HMECs is accompanied with an increase in AMPK activity. Inhibition or knockdown of AMPK impaired mammosphere formation. Concomitant with AMPK activation, we detected increased Ser116 phosphorylation of PEA15, which promotes its anti-apoptotic functions. Inhibition or knockdown of AMPK impaired PEA15 Ser116 phosphorylation and increased apoptosis. Knockdown of PEA15, or overexpression of the nonphosphorylatable S116A mutant of PEA15, also abrogated mammosphere formation. We further demonstrate that AMPK directly interacts with and phosphorylates PEA15 at Ser116 residue, thus identifying PEA15 as a novel AMPK substrate. Together, these data revealed that AMPK activation facilitates mammosphere formation by inhibition of apoptosis, at least in part, through Ser116 phosphorylation of PEA15. Since anoikis resistance plays a critical role in solid tumor growth, we investigated the relevance of these findings in the context of breast cancer. Significantly, we show that the AMPK-PEA15 axis plays an important role in the anchorage-independent growth of breast cancer cells both in vitro and in vivo. CONCLUSIONS Our study identifies a novel AMPK-PEA15 signaling axis in the anchorage-independent growth of both normal and cancerous mammary epithelial cells, suggesting that breast cancer cells may employ mechanisms of anoikis resistance already inherent within a subset of normal HMECs. Thus, targeting the AMPK-PEA15 axis might prevent breast cancer dissemination and metastasis.
Collapse
|
15
|
Abstract
UNLABELLED Few drugs targeting picornaviruses are available, making the discovery of antivirals a high priority. Here, we identified and characterized three compounds from a library of kinase inhibitors that block replication of poliovirus, coxsackievirus B3, and encephalomyocarditis virus. Using an in vitro translation-replication system, we showed that these drugs inhibit different stages of the poliovirus life cycle. A4(1) inhibited both the formation and functioning of the replication complexes, while E5(1) and E7(2) were most effective during the formation but not the functioning step. Neither of the compounds significantly inhibited VPg uridylylation. Poliovirus resistant to E7(2) had a G5318A mutation in the 3A protein. This mutation was previously found to confer resistance to enviroxime-like compounds, which target a phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ)-dependent step in viral replication. Analysis of host protein recruitment showed that E7(2) reduced the amount of GBF1 on the replication complexes; however, the level of PI4KIIIβ remained intact. E7(2) as well as another enviroxime-like compound, GW5074, interfered with viral polyprotein processing affecting both 3C- and 2A-dependent cleavages, and the resistant G5318A mutation partially rescued this defect. Moreover, E7(2) induced abnormal recruitment to membranes of the viral proteins; thus, enviroxime-like compounds likely severely compromise the interaction of the viral polyprotein with membranes. A4(1) demonstrated partial protection from paralysis in a murine model of poliomyelitis. Multiple attempts to isolate resistant mutants in the presence of A4(1) or E5(1) were unsuccessful, showing that effective broad-spectrum antivirals could be developed on the basis of these compounds. IMPORTANCE Diverse picornaviruses can trigger multiple human maladies, yet currently, only hepatitis A virus and poliovirus can be controlled with vaccination. The development of antipicornavirus therapeutics is also facing significant difficulties because these viruses readily generate resistance to compounds targeting either viral or cellular factors. Here, we describe three novel compounds that effectively block replication of distantly related picornaviruses with minimal toxicity to cells. The compounds prevent viral RNA replication after the synthesis of the uridylylated VPg primer. Importantly, two of the inhibitors are strongly refractory to the emergence of resistant mutants, making them promising candidates for further broad-spectrum therapeutic development. Evaluation of one of the compounds in an in vivo model of poliomyelitis demonstrated partial protection from the onset of paralysis.
Collapse
|
16
|
Andersen MN, Krzystanek K, Petersen F, Bomholtz SH, Olesen SP, Abriel H, Jespersen T, Rasmussen HB. A phosphoinositide 3-kinase (PI3K)-serum- and glucocorticoid-inducible kinase 1 (SGK1) pathway promotes Kv7.1 channel surface expression by inhibiting Nedd4-2 protein. J Biol Chem 2013; 288:36841-54. [PMID: 24214981 DOI: 10.1074/jbc.m113.525931] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant was resistant to both PI3K and SGK1 inhibition. Altogether, these data suggest that a PI3K-SGK1 pathway stabilizes Kv7.1 surface expression by inhibiting Nedd4-2-dependent endocytosis and thereby demonstrates that Nedd4-2 is a key regulator of Kv7.1 localization and turnover in epithelial cells.
Collapse
Affiliation(s)
- Martin Nybo Andersen
- From The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark and
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Blaustein M, Pérez-Munizaga D, Sánchez MA, Urrutia C, Grande A, Risso G, Srebrow A, Alfaro J, Colman-Lerner A. Modulation of the Akt pathway reveals a novel link with PERK/eIF2α, which is relevant during hypoxia. PLoS One 2013; 8:e69668. [PMID: 23922774 PMCID: PMC3726764 DOI: 10.1371/journal.pone.0069668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/11/2013] [Indexed: 12/31/2022] Open
Abstract
The unfolded protein response (UPR) and the Akt signaling pathway share several regulatory functions and have the capacity to determine cell outcome under specific conditions. However, both pathways have largely been studied independently. Here, we asked whether the Akt pathway regulates the UPR. To this end, we used a series of chemical compounds that modulate PI3K/Akt pathway and monitored the activity of the three UPR branches: PERK, IRE1 and ATF6. The antiproliferative and antiviral drug Akt-IV strongly and persistently activated all three branches of the UPR. We present evidence that activation of PERK/eIF2α requires Akt and that PERK is a direct Akt target. Chemical activation of this novel Akt/PERK pathway by Akt-IV leads to cell death, which was largely dependent on the presence of PERK and IRE1. Finally, we show that hypoxia-induced activation of eIF2α requires Akt, providing a physiologically relevant condition for the interaction between Akt and the PERK branch of the UPR. These data suggest the UPR and the Akt pathway signal to one another as a means of controlling cell fate.
Collapse
Affiliation(s)
- Matías Blaustein
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas y Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Pérez-Munizaga
- Fundación Ciencia y Vida, Santiago de Chile, Chile
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Manuel Alejandro Sánchez
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas y Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Alicia Grande
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas y Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Risso
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas y Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anabella Srebrow
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas y Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Alejandro Colman-Lerner
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas y Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
18
|
Abstract
Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever (HF) disease in humans and pose a significant public health concern in regions where they are endemic. On the other hand, evidence indicates that the globally distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway participates in many cellular processes, including cell survival and differentiation, and also has been shown to play important roles in different steps of the life cycles of a variety of viruses. Here we report that the inhibition of the PI3K/Akt pathway inhibited budding and to a lesser extent RNA synthesis, but not cell entry, of LCMV. Accordingly, BEZ-235, a PI3K inhibitor currently in cancer clinical trials, inhibited LCMV multiplication in cultured cells. These findings, together with those previously reported for Junin virus (JUNV), indicate that targeting the PI3K/Akt pathway could represent a novel antiviral strategy to combat human-pathogenic arenaviruses.
Collapse
|
19
|
K. Snyder J, C. Benson S, Lee L, Wei W, Ni F, David Janna Olmos J, R. Strom K, B. Beeler A, Chih-Chien Cheng K, Inglese J, Kota S, Takahashi V, Donny Strosberg A, H. Connor J, Guy Bushkin G. Truncated Aspidosperma Alkaloid-Like Scaffolds: Unique Structures for the Discovery of New, Bioactive Compounds. HETEROCYCLES 2012. [DOI: 10.3987/rev-11-sr(p)4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Dunn EF, Connor JH. HijAkt: The PI3K/Akt pathway in virus replication and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:223-50. [PMID: 22340720 PMCID: PMC7149925 DOI: 10.1016/b978-0-12-396456-4.00002-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As obligate parasites of cellular processes, viruses must take over cellular macromolecular machinery. It is also becoming clear that viruses routinely control intracellular signaling pathways through the direct or indirect control of kinases and phosphatases. This control of cellular phosphoproteins is important to promote a variety of viral processes, from control of entry to nuclear function to the stimulation of viral protein synthesis. This review focuses on the takeover of the cellular phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway by a variety of retroviruses, DNA viruses, and RNA viruses, highlighting the functions ascribed to virus activation of PI3K and Akt activity. This review also describes the role that the PI3K/Akt pathway plays in the host response, noting that it that can trigger anti- as well as proviral functions.
Collapse
Affiliation(s)
- Ewan F Dunn
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
21
|
Tsuji F, Oh-hashi K, Kiuchi K. Differential effects of Akt pathway inhibitors on IL-1β-induced protein phosphorylation in human fibroblast-like synoviocytes. J Recept Signal Transduct Res 2011; 32:22-8. [DOI: 10.3109/10799893.2011.641976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Mohankumar V, Dhanushkodi NR, Raju R. Sindbis virus replication, is insensitive to rapamycin and torin1, and suppresses Akt/mTOR pathway late during infection in HEK cells. Biochem Biophys Res Commun 2011; 406:262-7. [PMID: 21316343 DOI: 10.1016/j.bbrc.2011.02.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/05/2011] [Indexed: 12/24/2022]
Abstract
Genetically engineered Sindbis viruses (SIN) are excellent oncolytic agents in preclinical models. Several human cancers have aberrant Akt signaling, and kinase inhibitors including rapamycin are currently tested in combination therapies with oncolytic viruses. Therefore, it was of interest to delineate possible cross-regulation between SIN replication and PI3K/Akt/mTOR signaling. Here, using HEK293T cells as host, we report the following key findings: (a) robust SIN replication occurs in the presence of mTOR specific inhibitors, rapamycin and torin1 or Ly294002--a PI3K inhibitor, suggesting a lack of requirement for PI3K/Akt/mTOR signaling; (b) suppression of phosphorylation of Akt, mTOR and its effectors S6, and 4E-BP1 occurs late during SIN infection: a viral function that may be beneficial in counteracting cellular drug resistance to kinase inhibitors; (c) Ly294002 and SIN act additively to suppress PI3K/Akt/mTOR pathway with little effect on virus release; and (d) SIN replication induces host translational shut off, phosphorylation of eIF2α and apoptosis. This first report on the potent inhibition of Akt/mTOR signaling by SIN replication, bolsters further studies on the development and evaluation of engineered SIN genotypes in vitro and in vivo for unique cytolytic functions.
Collapse
Affiliation(s)
- Vidyarani Mohankumar
- Department of Microbiology and Immunology, Meharry Medical College, School of Medicine, Nashville, TN 37208, USA
| | | | | |
Collapse
|
23
|
Sun Q, Wu R, Cai S, Lin Y, Sellers L, Sakamoto K, He B, Peterson BR. Synthesis and biological evaluation of analogues of AKT (protein kinase B) inhibitor-IV. J Med Chem 2011; 54:1126-39. [PMID: 21319800 DOI: 10.1021/jm100912b] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inhibitors of the PI3-kinase/AKT (protein kinase B) pathway are under investigation as anticancer and antiviral agents. The benzimidazole derivative AKT inhibitor-IV (ChemBridge 5233705) affects this pathway and exhibits potent anticancer and antiviral activity. To probe its biological activity, we synthesized AKT inhibitor-IV and 21 analogues using a novel six-step route based on ZrCl(4)-catalyzed cyclization of 1,2-arylenediamines with α,β-unsaturated aldehydes. We examined effects on viability of HeLa carcinoma cells, viability of normal human cells (NHBE), replication of recombinant parainfluenza virus 5 (PIV5) in HeLa cells, and replication of the intracellular bacterium Mycobacterium fortuitum in HeLa cells. Replacement of the benzimidazole N-ethyl substitutent of AKT inhibitor-IV with N-hexyl and N-dodecyl groups enhanced antiviral activity and cytotoxicity against the cancer cell line, but these compounds showed substantially lower toxicity (from 6-fold to >20-fold) against NHBE cells and no effect on M. fortuitum, suggesting inhibition of one or more host protein(s) required for proliferation of cancer cells and PIV5. The key structural elements identified here may facilitate identification of targets of this highly biologically active scaffold.
Collapse
Affiliation(s)
- Qi Sun
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Perry BC, Wang S, Basson MD. Extracellular pressure stimulates adhesion of sarcoma cells via activation of focal adhesion kinase and Akt. Am J Surg 2011; 200:610-4. [PMID: 21056138 DOI: 10.1016/j.amjsurg.2010.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/07/2010] [Accepted: 07/07/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND The effect of extracellular pressure on adhesion and adhesiogenic focal adhesion kinase (FAK) and Akt signaling in sarcomas was investigated. METHODS Human sarcoma cells (HT-1080 fibrosarcoma, KHOS-240S osteosarcoma, and A-673 rhabdomyosarcoma) were subjected to increased pressure followed by adhesion assay. Two cell lines were pretreated with the FAK inhibitor 1,2,4,5-benzenetetraamine tetrahydrochloride (Y15) or Akt IV inhibitor, followed by Western analysis for activated FAK and Akt. Parallel studies were conducted in cells from a resected human fibrous histiosarcoma. RESULTS Pressure increased adhesion in all 3 sarcoma lines and primary histosarcoma cells by 7% to 18% (n = 6; P < .01 each). Pressure activated FAK and Akt (n = 5; P < .01). Inhibiting FAK or Akt inhibited FAK or Akt phosphorylation and the stimulation of adhesion by increased pressure (n = 5 each; P < .01 each). CONCLUSIONS Pressure increases sarcoma cell adhesiveness via Akt and FAK. Perioperative manipulation or forces in lymphatic or circulatory systems may potentiate local recurrence or distant metastasis.
Collapse
Affiliation(s)
- Brandon C Perry
- Department of Surgery, Michigan State University, Lansing, 48912, USA
| | | | | |
Collapse
|
25
|
Dunn EF, Connor JH. Dominant inhibition of Akt/protein kinase B signaling by the matrix protein of a negative-strand RNA virus. J Virol 2011; 85:422-31. [PMID: 20980511 PMCID: PMC3014155 DOI: 10.1128/jvi.01671-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/14/2010] [Indexed: 12/24/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is a rhabdovirus that alters host nuclear and cytoplasmic function upon infection. We have investigated the effect of VSV infection on cellular signaling through the phosphatidylinositol-3 kinase (PI3k)/Akt signaling pathway. Akt phosphorylation at both threonine 308 (Thr308) and serine 473 (Ser473) was inhibited in cells infected with VSV. This inhibition was rapid (beginning within the first 2 to 3 h postinfection) and correlated with the dephosphorylation of downstream effectors of Akt, such as glycogen synthase kinase 3β (GSK3β) and mammalian target of rapamycin (mTOR). The dephosphorylation of Akt occurred in the presence of growth factor stimulation and was not overcome through constitutive membrane targeting of Akt or high levels of phosphatidylinositol-3,4,5-triphosphate (PIP3) accumulation in the membrane. Akt dephosphorylation was not a result of alterations in PDK1 phosphorylation or activity, changes in phosphatase and tensin homologue deleted on chromosome 10 (PTEN) levels, or the downregulation of PI3k signaling. Inactivation of Akt was caused by the expression of the viral M protein in the absence of other viral components, and an M protein mutant that does not inhibit RNA polymerase II (Pol II) transcription and nuclear/cytoplasmic transport was also defective in inhibiting Akt phosphorylation. These data illustrate that VSV utilizes a novel mechanism to alter this central player in cell signaling and oncogenesis. It also suggests an inside-out model of signal transduction where VSV interruption of nuclear events has a rapid and significant effect on membrane signaling events.
Collapse
Affiliation(s)
- Ewan F Dunn
- Department of Microbiology, Boston University School of Medicine, 72 East Concord Street, Boston MA 02118, USA
| | | |
Collapse
|
26
|
Marozin S, De Toni EN, Rizzani A, Altomonte J, Junger A, Schneider G, Thasler WE, Kato N, Schmid RM, Ebert O. Cell cycle progression or translation control is not essential for vesicular stomatitis virus oncolysis of hepatocellular carcinoma. PLoS One 2010; 5:e10988. [PMID: 20539760 PMCID: PMC2881869 DOI: 10.1371/journal.pone.0010988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 05/10/2010] [Indexed: 12/24/2022] Open
Abstract
The intrinsic oncolytic specificity of vesicular stomatitis virus (VSV) is currently being exploited to develop alternative therapeutic strategies for hepatocellular carcinoma (HCC). Identifying key regulators in diverse transduction pathways that define VSV oncolysis in cancer cells represents a fundamental prerequisite to engineering more effective oncolytic viral vectors and adjusting combination therapies. After having identified defects in the signalling cascade of type I interferon induction, responsible for attenuated antiviral responses in human HCC cell lines, we have now investigated the role of cell proliferation and translation initiation. Cell cycle progression and translation initiation factors eIF4E and eIF2Bε have been recently identified as key regulators of VSV permissiveness in T-lymphocytes and immortalized mouse embryonic fibroblasts, respectively. Here, we show that in HCC, decrease of cell proliferation by cell cycle inhibitors or siRNA-mediated reduction of G(1) cyclin-dependent kinase activities (CDK4) or cyclin D1 protein expression, do not significantly alter viral growth. Additionally, we demonstrate that translation initiation factors eIF4E and eIF2Bε are negligible in sustaining VSV replication in HCC. Taken together, these results indicate that cellular proliferation and the initiation phase of cellular protein synthesis are not essential for successful VSV oncolysis of HCC. Moreover, our observations indicate the importance of cell-type specificity for VSV oncolysis, an important aspect to be considered in virotherapy applications in the future.
Collapse
Affiliation(s)
- Sabrina Marozin
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Enrico N. De Toni
- Medizinische Klinik und Poliklinik II, Klinikum Großhadern, University of Munich, Munich, Germany
| | - Antonia Rizzani
- Medizinische Klinik und Poliklinik II, Klinikum Großhadern, University of Munich, Munich, Germany
| | - Jennifer Altomonte
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexandra Junger
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Günter Schneider
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang E. Thasler
- Chirurgische Klinik und Poliklinik, Klinikum Großhadern, University of Munich, Munich, Germany
| | - Nobuyuki Kato
- Department of Molecular Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Roland M. Schmid
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Oliver Ebert
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|