1
|
Jost S, Lucar O, Lee E, Yoder T, Kroll K, Sugawara S, Smith S, Jones R, Tweet G, Werner A, Tomezsko PJ, Dugan HL, Ghofrani J, Rascle P, Altfeld M, Müller-Trutwin M, Goepfert P, Reeves RK. Antigen-specific memory NK cell responses against HIV and influenza use the NKG2/HLA-E axis. Sci Immunol 2023; 8:eadi3974. [PMID: 38064568 PMCID: PMC11104516 DOI: 10.1126/sciimmunol.adi3974] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Multiple studies have broadened the roles of natural killer (NK) cells functioning as purely innate lymphocytes by demonstrating that they are capable of putative antigen-specific immunological memory against multiple infectious agents including HIV-1 and influenza. However, the mechanisms underlying antigen specificity remain unknown. Here, we demonstrate that antigen-specific human NK cell memory develops upon exposure to both HIV and influenza, unified by a conserved and epitope-specific targetable mechanism largely dependent on the activating CD94/NKG2C receptor and its ligand HLA-E. We validated the permanent acquisition of antigen specificity by individual memory NK cells by single-cell cloning. We identified elevated expression of KLRG1, α4β7, and NKG2C as biomarkers of antigen-specific NK cell memory through complex immunophenotyping. Last, we uncovered individual HLA-E-restricted peptides that may constitute the dominant NK cell response in HIV-1- and influenza-infected persons in vivo. Our findings clarify the mechanisms contributing to antigen-specific memory NK cell responses and suggest that they could be potentially targeted therapeutically for vaccines or other therapeutic interventions.
Collapse
Affiliation(s)
- Stephanie Jost
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
| | - Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Esther Lee
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
| | - Taylor Yoder
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kyle Kroll
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
| | - Sho Sugawara
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
| | - Scott Smith
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Rhianna Jones
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
| | - George Tweet
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Werner
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Phillip J. Tomezsko
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Haley L. Dugan
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Joshua Ghofrani
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Philippe Rascle
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
| | | | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, 75015 Paris, France
| | - Paul Goepfert
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Creegan M, Degler J, Paquin-Proulx D, Eller MA, Machmach K. OMIP-098: A 26 parameter, 24 color flow cytometry panel for human memory NK cell phenotyping. Cytometry A 2023; 103:941-946. [PMID: 37807668 PMCID: PMC10872854 DOI: 10.1002/cyto.a.24802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
This 26-parameter flow cytometry panel has been developed and optimized to analyze NK cell phenotype, using cryopreserved peripheral blood mononuclear cells (PBMCs) from people living with and without human immunodeficiency virus (PLWH, PWOH). Our panel is designed for the analysis of several parameters of total NK cells and memory NK cell subsets including markers of maturation, activation, and proliferation, as well as activating and inhibitory receptors. Other tissues have not been tested (Table 1 ).
Collapse
Affiliation(s)
- Matthew Creegan
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Justin Degler
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Dominic Paquin-Proulx
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Michael A. Eller
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
- Present address: Vaccine Research Program, Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), MD, USA
| | - Kawthar Machmach
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| |
Collapse
|
3
|
Diedrich CR, Rutledge T, Baranowski TM, Maiello P, Lin PL. Characterization of natural killer cells in the blood and airways of cynomolgus macaques during Mycobacterium tuberculosis infection. J Med Primatol 2023; 52:24-33. [PMID: 36056684 PMCID: PMC9825635 DOI: 10.1111/jmp.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and kills more than 1.5 million people each year. METHODS We examine the frequency and function of NK cells in the blood and airways over the course of Mtb infection in a TB macaque model and demonstrate differences in NK marker expression between the two compartments. Flow cytometry and intracellular cytokine staining were utilized to identify NK cell subsets (expressing NKG2A, CD56, or CD16) and function (IL-10, TNF, IL-2, IFN-g, IL-17, and CD107a). RESULTS Blood and airway NK cell frequencies were similar during infection though there were differences in subset populations between blood and airway. Increased functional (cytokine/CD107a) parameters were observed in airway NK cells during the course of infection while none were seen in the blood. CONCLUSIONS This study suggests that NK cells in the airway may play an important role in TB host response.
Collapse
Affiliation(s)
- Collin R Diedrich
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tara Rutledge
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tonilynn M. Baranowski
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Pauline Maiello
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
| | - Philana Ling Lin
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
4
|
Natural Killer Cells Regulate Acute SIV Replication, Dissemination, and Inflammation, but Do Not Impact Independent Transmission Events. J Virol 2023; 97:e0151922. [PMID: 36511699 PMCID: PMC9888193 DOI: 10.1128/jvi.01519-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are potent effector cells of the innate immune system possessing both cytotoxic and immunoregulatory capabilities, which contribute to their crucial role in controlling human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. However, despite significant evidence for NK cell modulation of HIV disease, their specific contribution to transmission and control of acute infection remains less clear. To elucidate the contribution of NK cells during acute SIV infection, we performed an acute necropsy study, where rhesus macaques (RM) were subjected to preinfection depletion of systemic NK cells using established methods of IL-15 neutralization, followed by subsequent challenge with barcoded SIVmac239X. Our study showed that depletion was highly effective, resulting in near total ablation of all NK cell subsets in blood, liver, oral, and rectal mucosae, and lymph nodes (LN) that persisted through the duration of the study. Meanwhile, frequencies and phenotypes of T cells remained virtually unchanged, indicating that our method of NK cell depletion had minimal off-target effects. Importantly, NK cell-depleted RM demonstrated an early and sustained 1 to 2 log increase in viremia over controls, but sequence analysis suggested no difference in the number of independent transmission events. Acute bulk, central memory (CM), and CCR5+ CD4+ T cell depletion was similar between experimental and control groups, while CD8+ T cell activation was higher in NK cell-depleted RM as measured by Ki67 and PD-1 expression. Using 27-plex Luminex analyses, we also found modestly increased inflammatory cytokines in NK cell-depleted RM compared to control animals. In the effort to determine the impact of NK cells on HIV/SIV transmission and acute viremia, future studies will be necessary to better harness these cells for future viral therapies. Collectively, these data suggest NK cells are important modulators of lentivirus dissemination and disease but may not have the capacity to independently eliminate individual transmission events. IMPORTANCE Natural killer (NK) cells as major effector cells of the innate immune system can contribute significantly to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) control. However, a specific role for NK cells in blocking lentivirus transmission remains incompletely clear. In this study, we depleted NK cells prior to challenge with a barcoded SIV. Importantly, our studied showed systemic NK cell depletion was associated with a significant increase in acute viremia, but did not impact the number of independent transmission events. Collectively, these data suggest NK cells are critical modulators of early lentivirus replication but may not regulate individual transmission events at mucosal portals of entry.
Collapse
|
5
|
Dendritic Cell-Triggered Immune Activation Goes along with Provision of (Leukemia-Specific) Integrin Beta 7-Expressing Immune Cells and Improved Antileukemic Processes. Int J Mol Sci 2022; 24:ijms24010463. [PMID: 36613907 PMCID: PMC9820538 DOI: 10.3390/ijms24010463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Integrin beta 7 (β7), a subunit of the integrin receptor, is expressed on the surface of immune cells and mediates cell-cell adhesions and interactions, e.g., antitumor or autoimmune reactions. Here, we analyzed, whether the stimulation of immune cells by dendritic cells (of leukemic derivation in AML patients or of monocyte derivation in healthy donors) leads to increased/leukemia-specific β7 expression in immune cells after T-cell-enriched mixed lymphocyte culture-finally leading to improved antileukemic cytotoxicity. Healthy, as well as AML and MDS patients' whole blood (WB) was treated with Kit-M (granulocyte-macrophage colony-stimulating factor (GM-CSF) + prostaglandin E1 (PGE1)) or Kit-I (GM-CSF + Picibanil) in order to generate DCs (DCleu or monocyte-derived DC), which were then used as stimulator cells in MLC. To quantify antigen/leukemia-specific/antileukemic functionality, a degranulation assay (DEG), an intracellular cytokine assay (INTCYT) and a cytotoxicity fluorolysis assay (CTX) were used. (Leukemia-specific) cell subtypes were quantified via flow cytometry. The Kit treatment of WB (compared to the control) resulted in the generation of DC/DCleu, which induced increased activation of innate and adaptive cells after MLC. Kit-pretreated WB (vs. the control) led to significantly increased frequencies of β7-expressing T-cells, degranulating and intracellular cytokine-producing β7-expressing immune cells and, in patients' samples, increased blast lysis. Positive correlations were found between the Kit-M-mediated improvement of blast lysis (vs. the control) and frequencies of β7-expressing T-cells. Our findings indicate that DC-based immune therapies might be able to specifically activate the immune system against blasts going along with increased frequencies of (leukemia-specific) β7-expressing immune cells. Furthermore, β7 might qualify as a predictor for the efficiency and the success of AML and/or MDS therapies.
Collapse
|
6
|
Alrubayyi A, Rowland-Jones S, Peppa D. Natural killer cells during acute HIV-1 infection: clues for HIV-1 prevention and therapy. AIDS 2022; 36:1903-1915. [PMID: 35851334 PMCID: PMC9612724 DOI: 10.1097/qad.0000000000003319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022]
Abstract
Despite progress in preexposure prophylaxis, the number of newly diagnosed cases with HIV-1 remains high, highlighting the urgent need for preventive and therapeutic strategies to reduce HIV-1 acquisition and limit disease progression. Early immunological events, occurring during acute infection, are key determinants of the outcome and course of disease. Understanding early immune responses occurring before viral set-point is established, is critical to identify potential targets for prophylactic and therapeutic approaches. Natural killer (NK) cells represent a key cellular component of innate immunity and contribute to the early host defence against HIV-1 infection, modulating the pathogenesis of acute HIV-1 infection (AHI). Emerging studies have identified tools for harnessing NK cell responses and expanding specialized NK subpopulations with adaptive/memory features, paving the way for development of novel HIV-1 therapeutics. This review highlights the knowns and unknowns regarding the role of NK cell subsets in the containment of acute HIV-1 infection, and summarizes recent advances in selectively augmenting NK cell functions through prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford
- Division of Infection and Immunity, University College London
| | | | - Dimitra Peppa
- Division of Infection and Immunity, University College London
- Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, UK
| |
Collapse
|
7
|
Wu C, Liang JA, Brenchley JM, Shin T, Fan X, Mortlock RD, Abraham D, Allan DS, Thomas ML, Hong S, Dunbar CE. Barcode clonal tracking of tissue-resident immune cells in rhesus macaque highlights distinct clonal distribution pattern of tissue NK cells. Front Immunol 2022; 13:994498. [PMID: 36605190 PMCID: PMC9808525 DOI: 10.3389/fimmu.2022.994498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue resident (TR) immune cells play important roles in facilitating tissue homeostasis, coordinating immune responses against infections and tumors, and maintaining immunological memory. While studies have shown these cells are distinct phenotypically and functionally from cells found in the peripheral blood (PB), the clonal relationship between these populations across tissues has not been comprehensively studied in primates or humans. We utilized autologous transplantation of rhesus macaque hematopoietic stem and progenitor cells containing high diversity barcodes to track the clonal distribution of T, B, myeloid and natural killer (NK) cell populations across tissues, including liver, spleen, lung, and gastrointestinal (GI) tract, in comparison with PB longitudinally post-transplantation, in particular we focused on NK cells which do not contain endogenous clonal markers and have not been previously studied in this context. T cells demonstrated tissue-specific clonal expansions as expected, both overlapping and distinct from blood T cells. In contrast, B and myeloid cells showed a much more homogeneous clonal pattern across various tissues and the blood. The clonal distribution of TR NK was more heterogenous between individual animals. In some animals, as we have previously reported, we observed large PB clonal expansions in mature CD56-CD16+ NK cells. Notably, we found a separate set of highly expanded PB clones in CD16-CD56- (DN) NK subset that were also contributing to TR NK cells in all tissues examined, both in TR CD56-CD16+ and DN populations but absent in CD56+16- TR NK across all tissues analyzed. Additionally, we observed sets of TR NK clones specific to individual tissues such as lung or GI tract and sets of TR NK clones shared across liver and spleen, distinct from other tissues. Combined with prior functional data that suggests NK memory is restricted to liver or other TR NK cells, these clonally expanded TR NK cells may be of interest for future investigation into NK cell tissue immunological memory, with implications for development of NK based immunotherapies and an understanding of NK memory.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jialiu A. Liang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Taehoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ryland D. Mortlock
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Diana M. Abraham
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - David S.J. Allan
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Marvin L. Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, United States
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
8
|
Kroll KW, Shah SV, Lucar OA, Premeaux TA, Shikuma CM, Corley MJ, Mosher M, Woolley G, Bowler S, Ndhlovu LC, Reeves RK. Mucosal-homing natural killer cells are associated with aging in persons living with HIV. Cell Rep Med 2022; 3:100773. [PMID: 36208628 PMCID: PMC9589002 DOI: 10.1016/j.xcrm.2022.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/29/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022]
Abstract
Natural killer (NK) cells are critical modulators of HIV transmission and disease. Recent evidence suggests a loss of NK cell cytotoxicity during aging, yet analysis of NK cell biology and aging in people with HIV (PWH) is lacking. Herein, we perform comprehensive analyses of people aging with and without HIV to determine age-related NK phenotypic changes. Utilizing high-dimensional flow cytometry, we analyze 30 immune-related proteins on peripheral NK cells from healthy donors, PWH with viral suppression, and viremic PWH. NK cell phenotypes are dynamic across aging but change significantly in HIV and on antiretroviral drug therapy (ART). NK cells in healthy aging show increasing ⍺4β7 and decreasing CCR7 expression and a reverse phenomenon in PWH. These HIV-associated trafficking patterns could be due to NK cell recruitment to HIV reservoir formation in lymphoid tissue or failed mucosal signaling in the HIV-infected gut but appear to be tight delineators of age-related NK cell changes.
Collapse
Affiliation(s)
- Kyle W Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA
| | - Spandan V Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Olivier A Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Thomas A Premeaux
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, NY, USA
| | | | - Michael J Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, NY, USA
| | - Matthew Mosher
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA
| | - Scott Bowler
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, NY, USA
| | - Lishomwa C Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, NY, USA
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
9
|
Le T, Reeves RK, McKinnon LR. The Functional Diversity of Tissue-Resident Natural Killer Cells Against Infection. Immunology 2022; 167:28-39. [PMID: 35751452 DOI: 10.1111/imm.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
For decades, studies of natural killer (NK) cells have focused on those found in peripheral blood (PBNK cells) as the prototype for NK cell biology. Only recently have researchers begun to explore the diversity of tissue-resident NK (tr-NK) cells. While tr-NK cells were initially identified from mice parabiosis and intravascular staining experiments, they can also be identified by tissue retention markers such as CD69, CD103, and others. More importantly, tr-NK cells have distinct functions compared to PBNK cells. Within the liver, there are diverse subsets of tr-NK cells expressing different combinations of tissue-retention markers and transcription factors, the clinical relevance of which are still unclear. Functionally, liver tr-NK are primed with immediate responsiveness to infection and equipped with regulatory mechanisms to prevent liver damage. When decidual NK (dNK) cells were first discovered, they were mainly characterized by their reduced cytotoxicity and functions related to placental development. Recent studies, however, revealed different mechanisms by which dNK cells prevent uterine infections. The lungs are one of the most highly exposed sites for infection due to their role in oxygen exchange. Upon influenza infection, lung tr-NK cells can degranulate and produce more inflammatory cytokines than PBNK cells. Less understood are gut tr-NK cells which were recently characterized in infants and adults for their functional differences. In this mini-review, we aim to provide a brief overview of the most recent discoveries on how several tr-NK cells are implicated in the immune response against infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Toby Le
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA.,Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
10
|
Interests of the Non-Human Primate Models for HIV Cure Research. Vaccines (Basel) 2021; 9:vaccines9090958. [PMID: 34579195 PMCID: PMC8472852 DOI: 10.3390/vaccines9090958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Non-human primate (NHP) models are important for vaccine development and also contribute to HIV cure research. Although none of the animal models are perfect, NHPs enable the exploration of important questions about tissue viral reservoirs and the development of intervention strategies. In this review, we describe recent advances in the use of these models for HIV cure research and highlight the progress that has been made as well as limitations using these models. The main NHP models used are (i) the macaque, in which simian immunodeficiency virus (SIVmac) infection displays similar replication profiles as to HIV in humans, and (ii) the macaque infected by a recombinant virus (SHIV) consisting of SIVmac expressing the HIV envelope gene serving for studies analyzing the impact of anti-HIV Env broadly neutralizing antibodies. Lessons for HIV cure that can be learned from studying the natural host of SIV are also presented here. An overview of the most promising and less well explored HIV cure strategies tested in NHP models will be given.
Collapse
|
11
|
Huot N, Rascle P, Petitdemange C, Contreras V, Palgen JL, Stahl-Hennig C, Le Grand R, Beignon AS, Jacquelin B, Müller-Trutwin M. Non-human Primate Determinants of Natural Killer Cells in Tissues at Steady-State and During Simian Immunodeficiency Virus Infection. Front Immunol 2020; 11:2134. [PMID: 33013901 PMCID: PMC7511519 DOI: 10.3389/fimmu.2020.02134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells play essential roles in immunity to viruses and tumors. Their function is genetically determined but also modulated by environmental factors. The distribution and functional regulation of these cells vary depending on the tissue. NK cell behavior in lymphoid tissues is so far understudied. Non-human primate (NHP) models are essential for the development of therapies and vaccines against human diseases, and access to NHP tissues allows insights into spatial regulations of NK cells. Here, we investigated tissue-specific parameters of NK cells from NHP species, i.e., cynomolgus macaque (Macaca fascicularis), African green monkey (Chlorocebus sabaeus), rhesus macaque (Macaca mulatta), and baboon (Papio anubis). By comprehensive multi-dimensional analysis of NK cells from secondary lymphoid organs, intestinal mucosa, liver, and blood, we identified tissue- and species-specific patterns of NK cell frequencies, phenotypes, and potential activity. Also, we defined the tissue-specific characteristics of NK cells during infection by the simian immunodeficiency virus. Altogether, our results provide a comprehensive anatomic analysis of NK cells in different tissues of primates at steady-state and during a viral infection.
Collapse
Affiliation(s)
- Nicolas Huot
- Unité HIV, Inflammation et Persistance, Institut Pasteur, Paris, France
| | - Philippe Rascle
- Unité HIV, Inflammation et Persistance, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Vanessa Contreras
- CEA-Université Paris Saclay-Inserm, U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases, IMVA-HB/IDMIT, Fontenay-aux-Roses, France
| | - Jean-Louis Palgen
- CEA-Université Paris Saclay-Inserm, U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases, IMVA-HB/IDMIT, Fontenay-aux-Roses, France
| | | | - Roger Le Grand
- CEA-Université Paris Saclay-Inserm, U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases, IMVA-HB/IDMIT, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Saclay-Inserm, U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases, IMVA-HB/IDMIT, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
12
|
Gorini G, Fourati S, Vaccari M, Rahman MA, Gordon SN, Brown DR, Law L, Chang J, Green R, Barrenäs F, Liyanage NPM, Doster MN, Schifanella L, Bissa M, Silva de Castro I, Washington-Parks R, Galli V, Fuller DH, Santra S, Agy M, Pal R, Palermo RE, Tomaras GD, Shen X, LaBranche CC, Montefiori DC, Venzon DJ, Trinh HV, Rao M, Gale M, Sekaly RP, Franchini G. Engagement of monocytes, NK cells, and CD4+ Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition. PLoS Pathog 2020; 16:e1008377. [PMID: 32163525 PMCID: PMC7093029 DOI: 10.1371/journal.ppat.1008377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/24/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The recombinant Canarypox ALVAC-HIV/gp120/alum vaccine regimen was the first to significantly decrease the risk of HIV acquisition in humans, with equal effectiveness in both males and females. Similarly, an equivalent SIV-based ALVAC vaccine regimen decreased the risk of virus acquisition in Indian rhesus macaques of both sexes following intrarectal exposure to low doses of SIVmac251. Here, we demonstrate that the ALVAC-SIV/gp120/alum vaccine is also efficacious in female Chinese rhesus macaques following intravaginal exposure to low doses of SIVmac251 and we confirm that CD14+ classical monocytes are a strong correlate of decreased risk of virus acquisition. Furthermore, we demonstrate that the frequency of CD14+ cells and/or their gene expression correlates with blood Type 1 CD4+ T helper cells, α4β7+ plasmablasts, and vaginal cytocidal NKG2A+ cells. To better understand the correlate of protection, we contrasted the ALVAC-SIV vaccine with a NYVAC-based SIV/gp120 regimen that used the identical immunogen. We found that NYVAC-SIV induced higher immune activation via CD4+Ki67+CD38+ and CD4+Ki67+α4β7+ T cells, higher SIV envelope-specific IFN-γ producing cells, equivalent ADCC, and did not decrease the risk of SIVmac251 acquisition. Using the systems biology approach, we demonstrate that specific expression profiles of plasmablasts, NKG2A+ cells, and monocytes elicited by the ALVAC-based regimen correlated with decreased risk of virus acquisition.
Collapse
Affiliation(s)
- Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Shari N. Gordon
- Department of Infectious Diseases, GlaxoSmithKline R&D, Research Triangle Park, North Carolina, United States of America
| | - Dallas R. Brown
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Lynn Law
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Jean Chang
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Richard Green
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Fredrik Barrenäs
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Namal P. M. Liyanage
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Deborah H. Fuller
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Michael Agy
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ranajit Pal
- Advanced Bioscience Laboratories, Rockville, Maryland, United States of America
| | - Robert E. Palermo
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Georgia D. Tomaras
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Celia C. LaBranche
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David J. Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hung V. Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Rafick P. Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
13
|
Shah SV, Manickam C, Ram DR, Kroll K, Itell H, Permar SR, Barouch DH, Klatt NR, Reeves RK. CMV Primes Functional Alternative Signaling in Adaptive Δg NK Cells but Is Subverted by Lentivirus Infection in Rhesus Macaques. Cell Rep 2019; 25:2766-2774.e3. [PMID: 30517864 PMCID: PMC6372106 DOI: 10.1016/j.celrep.2018.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/01/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022] Open
Abstract
Despite burgeoning evidence demonstrating the adaptive properties of natural killer (NK) cells, mechanistic data explaining these phenomena are lacking. Following antibody sensitization, NK cells lacking the Fc receptor (FcR) signaling chain (Δg) acquire adaptive features, including robust proliferation, multi-functionality, rapid killing, and mobilization to sites of virus exposure. Using the rhesus macaque model, we demonstrate the systemic distribution of Δg NK cells expressing memory features, including downregulated Helios and Eomes. Furthermore, we find that Δg NK cells abandon typical γ-chain/Syk in lieu of CD3ζ-Zap70 signaling. FCγRIIIa (CD16) density, mucosal homing, and function are all coupled to this alternate signaling, which in itself requires priming by rhesus cytomegalovirus (rhCMV). Simian immunodeficiency virus (SIV) infections further expand gut-homing adaptive NK cells but result in pathogenic suppression of CD3ζ-Zap70 signaling and function. Herein, we provide a mechanism of virus-dependent alternative signaling that may explain the acquisition of adaptive features by primate NK cells and could be targeted for future vaccine or curative therapies. Gamma-chain-deficient adaptive NK cells are robust mediators of antiviral immunity via ADCC. Shah et al. demonstrate using macaque models that acquisition of these features requires previous priming with CMV infection and involves alternative signaling via CD3zeta but is actively suppressed by lentivirus infection.
Collapse
Affiliation(s)
- Spandan V Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kyle Kroll
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Itell
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Nichole R Klatt
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Miami, Miami, FL 33136, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Abstract
As our understanding of mucosal immunity increases, it is becoming clear that the host response to HIV-1 is more complex and nuanced than originally believed. The mucosal landscape is populated with a variety of specialized cell types whose functions include combating infectious agents while preserving commensal microbiota, maintaining barrier integrity, and ensuring immune homeostasis. Advances in multiparameter flow cytometry, gene expression analysis and bioinformatics have allowed more detailed characterization of these cell types and their roles in host defense than was previously possible. This review provides an overview of existing literature on immunity to HIV-1 and SIVmac in mucosal tissues of the female reproductive tract and the gastrointestinal tract, focusing on major effector cell populations and briefly summarizing new information on tissue resident memory T cells, Treg, Th17, Th22 and innate lymphocytes (ILC), subsets that have been studied primarily in the gastrointestinal mucosa.
Collapse
Affiliation(s)
- Barbara L Shacklett
- Department of Medical Microbiology and Immunology.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
15
|
Palgen JL, Tchitchek N, Huot N, Elhmouzi-Younes J, Lefebvre C, Rosenbaum P, Dereuddre-Bosquet N, Martinon F, Hocini H, Cosma A, Müller-Trutwin M, Lévy Y, Le Grand R, Beignon AS. NK cell immune responses differ after prime and boost vaccination. J Leukoc Biol 2019; 105:1055-1073. [PMID: 30794328 DOI: 10.1002/jlb.4a1018-391rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
A better understanding of innate responses induced by vaccination is critical for designing optimal vaccines. Here, we studied the diversity and dynamics of the NK cell compartment after prime-boost immunization with the modified vaccinia virus Ankara using cynomolgus macaques as a model. Mass cytometry was used to deeply characterize blood NK cells. The NK cell subphenotype composition was modified by the prime. Certain phenotypic changes induced by the prime were maintained over time and, as a result, the NK cell composition prior to boost differed from that before prime. The key phenotypic signature that distinguished NK cells responding to the boost from those responding to the prime included stronger expression of several cytotoxic, homing, and adhesion molecules, suggesting that NK cells at recall were functionally distinct. Our data reveal potential priming or imprinting of NK cells after the first vaccine injection. This study provides novel insights into prime-boost vaccination protocols that could be used to optimize future vaccines.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Nicolas Tchitchek
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Nicolas Huot
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France.,Institut Pasteur, Unit on HIV, Inflammation and Persistence, Paris, France
| | - Jamila Elhmouzi-Younes
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Cécile Lefebvre
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France.,Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Pierre Rosenbaum
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Nathalie Dereuddre-Bosquet
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Frédéric Martinon
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Hakim Hocini
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France.,Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Antonio Cosma
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Michaela Müller-Trutwin
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France.,Institut Pasteur, Unit on HIV, Inflammation and Persistence, Paris, France
| | - Yves Lévy
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France.,Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Roger Le Grand
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Anne-Sophie Beignon
- CEA, Université Paris Sud 11, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| |
Collapse
|
16
|
Vargas-Inchaustegui DA, Ying O, Demberg T, Robert-Guroff M. Evaluation of Functional NK Cell Responses in Vaccinated and SIV-Infected Rhesus Macaques. Front Immunol 2016; 7:340. [PMID: 27630641 PMCID: PMC5005425 DOI: 10.3389/fimmu.2016.00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/22/2016] [Indexed: 01/04/2023] Open
Abstract
NK cells are crucial components of the innate immune system due to their capacity to exert rapid cytotoxic and immunomodulatory function in the absence of prior sensitization. NK cells can become activated by exposure to target cells and/or by cytokines produced by antigen-presenting cells. In this study, we examined the effects of a simian immunodeficiency virus (SIV) vaccine regimen and subsequent SIV infection on the cytotoxic and immunomodulatory functions of circulatory NK cells. While vaccination did not significantly impact the capacity of NK cells to kill MHC-devoid 721.221 target cells, SIV-infection led to a significant decrease in target cell killing. NK cells from uninfected macaques were responsive to a low dose (5 ng/ml) of IL-15 pre-activation, leading to significant increases in their cytotoxic potential, however, NK cells from SIV-infected macaques required a higher dose (50 ng/ml) of IL-15 pre-activation in order to significantly increase their cytotoxic potential. By contrast, no differences were observed in the capacity of NK cells from vaccinated and SIV-infected macaques to respond to IL-12 and IL-18. Similarly, NK cells both before and after infection exhibited equivalent responses to Fc-mediated activation. Collectively, our results show that early SIV-infection impairs the natural cytotoxic capacity of circulatory NK cells without affecting Fc-mediated or cytokine-producing function.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Olivia Ying
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Thorsten Demberg
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
17
|
Weisgrau KL, Ries M, Pomplun N, Evans DT, Rakasz EG. OMIP-035: Functional analysis of natural killer cell subsets in macaques. Cytometry A 2016; 89:799-802. [PMID: 27532346 DOI: 10.1002/cyto.a.22932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 01/25/2023]
Abstract
This panel was developed to measure the functional capability of natural killer (NK) cell subsets in rhesus macaques (Macaca mulatta). It includes markers to determine the frequency of cytokine secreting and cytotoxic NK cell subpopulations in peripheral blood mononuclear cell (PBMC) samples stimulated in vitro with human 721.221 cells. NK cell subsets were defined by the expression of killer cell immunoglobulin-like receptors (KIRs) Mamu-KIR3DL01 and Mamu-KIR3DL05, and differentiation antigens CD16 and CD56. The panel can be used to assess the functional capability of NK cells in a range of normal and pathologic conditions of captive bred rhesus macaques of Indian origin. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53711, Wisconsin
| | - Moritz Ries
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 53711, Wisconsin
| | - Nicholas Pomplun
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53711, Wisconsin
| | - David T Evans
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53711, Wisconsin.,Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 53711, Wisconsin
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53711, Wisconsin.
| |
Collapse
|
18
|
Garcia-Tellez T, Huot N, Ploquin MJ, Rascle P, Jacquelin B, Müller-Trutwin M. Non-human primates in HIV research: Achievements, limits and alternatives. INFECTION GENETICS AND EVOLUTION 2016; 46:324-332. [PMID: 27469027 DOI: 10.1016/j.meegid.2016.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022]
Abstract
An ideal model for HIV-1 research is still unavailable. However, infection of non-human primates (NHP), such as macaques, with Simian Immunodeficiency Virus (SIV) recapitulates most virological, immunological and clinical hallmarks of HIV infection in humans. It has become the most suitable model to study the mechanisms of transmission and physiopathology of HIV/AIDS. On the other hand, natural hosts of SIV, such as African green monkeys and sooty mangabeys that when infected do not progress to AIDS, represent an excellent model to elucidate the mechanisms involved in the capacity of controlling inflammation and disease progression. The use of NHP-SIV models has indeed enriched our knowledge in the fields of: i) viral transmission and viral reservoirs, ii) early immune responses, iii) host cell-virus interactions in tissues, iv) AIDS pathogenesis, v) virulence factors, vi) prevention and vii) drug development. The possibility to control many variables during experimental SIV infection, together with the resemblance between SIV and HIV infections, make the NHP model the most appropriate, so far, for HIV/AIDS research. Nonetheless, some limitations in using these models have to be considered. Alternative models for HIV/AIDS research, such as humanized mice and recombinant forms of HIV-SIV viruses (SHIV) for NHP infection, have been developed. The improvement of SHIV viruses that mimic even better the natural history of HIV infection and of humanized mice that develop a greater variety of human immune cell lineages, is ongoing. None of these models is perfect, but they allow contributing to the progress in managing or preventing HIV infection.
Collapse
Affiliation(s)
- Thalía Garcia-Tellez
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| | - Mickaël J Ploquin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
19
|
ANSARI AFTABA, BYRAREDDY SIDDAPPAN. The Role of Integrin Expressing Cells in Modulating Disease Susceptibility and Progression (January 2016). INTERNATIONAL TRENDS IN IMMUNITY 2016; 4:11-27. [PMID: 28770236 PMCID: PMC5536173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this review we have summarized the role of gut homing molecules with a focus on the heterodimeric integrin α4β7 since the α4β7 has been shown to be important in modulating SIV transmission, disease susceptibility and progression. This review provides an overview of integrins, their structure and function to provide a general background upon which the role of the α4β7 integrin can best be understood. We also describe integrins and their cognate receptors and their potential role in modulating disease that we hope provides some food for thought on how such knowledge can be utilized for vaccine formulation.
Collapse
Affiliation(s)
- AFTAB A. ANSARI
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - SIDDAPPA N. BYRAREDDY
- Department of Pharmacology and Experimental Neurosciences, University of Nebraska Medical Center, Omaha NE 68312
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE 68312
| |
Collapse
|
20
|
Nabatov AA, Raginov IS. The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells. Infect Agent Cancer 2015; 10:49. [PMID: 26692894 PMCID: PMC4676137 DOI: 10.1186/s13027-015-0043-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022] Open
Abstract
Background This study aimed to clarify interactions of the pattern-recognition receptor DC-SIGN with cells from the HIV-infected peripheral blood lymphocyte cultures. Methods Cells from control and HIV-infected peripheral blood lymphocyte cultures were tested for the surface expression of DC-SIGN ligands. The DC-SIGN ligand expressing cells were analyzed for the role of DC-SIGN-ligand interaction in their functionality. Results In the vast majority of experiments HIV-infected lymphocytes did not express detectable DC-SIGN ligands on their cell surfaces. In contrast, non-infected cells, carrying NK-specific marker CD56, expressed cell surface DC-SIGN ligands. The weakly polysialylated CD56 was identified as a novel DC-SIGN ligand. The treatment of DC-SIGN expressing dendritic cells with anti-DC-SIGN antibodies increased the anti-dendritic cell cytotoxicity of CD56pos cells. The treatment of CD56pos cells with a peptide, blocking the weakly polysialylated CD56-specifc trans-homophilic interactions, inhibited their anti-dendritic cells cytotoxicity. Conclusions The interaction between DC-SIGN and CD56 inhibits homotypic intercellular interactions of CD56pos cells and protects DC-SIGN expressing dendritic cells against CD56pos cell-mediated cytotoxicity. This finding can have an impact on the development of approaches to HIV infection and cancer therapy as well as in transplantation medicine.
Collapse
Affiliation(s)
- Alexey A Nabatov
- Science Center, Volga Region State Academy of Physical Culture, Sport and Tourism, 33, Universiade Village, Kazan, 420138 Russia ; Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ivan S Raginov
- Republican Clinical Hospital, 138 Orenburgsky tract, Kazan, 420064 RUSSIA ; Scientific and Educational Center of Pharmaceutics, 18 Kremlyovskaya ul., Kazan, 423000 RUSSIA
| |
Collapse
|
21
|
Girard A, Rochereau N, Roblin X, Genin C, Paul S. [Targeting and role of α4β7 integrin in the pathophysiology of IBD and HIV infection]. Med Sci (Paris) 2015; 31:895-903. [PMID: 26481029 DOI: 10.1051/medsci/20153110016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Integrins are a large family of heterodimeric cell adhesion molecules that are key regulators in multiple biological functions. They orchestrate cell-cell and cell-extracellular matrix (ECM) adhesive interactions from embryonic development to mature tissue function, and are thus involved in cell migration, proliferation, differentiation, and survival. As such, they are also involved in human diseases, such as thrombotic diseases, inflammation, cancer, fibrosis and infectious diseases. Integrins are exciting pharmacological targets because they are exposed on the cell surface. Indeed, several compounds have been developed that block integrins function, and five have been approved as therapeutic drugs for use in clinic. This review will detail the role of α4β7, an integrin of particular relevance for mucosal diseases such as IBD (inflammatory bowel disease) and also, as reported more recently, HIV infection.
Collapse
Affiliation(s)
- Alexandre Girard
- Groupe immunité des muqueuses et agents pathogènes - GIMAP EA 3064, CIC 1408, Université de Saint-Étienne, Université de Lyon, Faculté de médecine Jacques Lisfranc, 15, rue Ambroise Paré, 42023 Saint-Étienne Cedex 2, France
| | - Nicolas Rochereau
- Groupe immunité des muqueuses et agents pathogènes - GIMAP EA 3064, CIC 1408, Université de Saint-Étienne, Université de Lyon, Faculté de médecine Jacques Lisfranc, 15, rue Ambroise Paré, 42023 Saint-Étienne Cedex 2, France
| | - Xavier Roblin
- Groupe immunité des muqueuses et agents pathogènes - GIMAP EA 3064, CIC 1408, Université de Saint-Étienne, Université de Lyon, Faculté de médecine Jacques Lisfranc, 15, rue Ambroise Paré, 42023 Saint-Étienne Cedex 2, France
| | - Christian Genin
- Groupe immunité des muqueuses et agents pathogènes - GIMAP EA 3064, CIC 1408, Université de Saint-Étienne, Université de Lyon, Faculté de médecine Jacques Lisfranc, 15, rue Ambroise Paré, 42023 Saint-Étienne Cedex 2, France
| | - Stéphane Paul
- Groupe immunité des muqueuses et agents pathogènes - GIMAP EA 3064, CIC 1408, Université de Saint-Étienne, Université de Lyon, Faculté de médecine Jacques Lisfranc, 15, rue Ambroise Paré, 42023 Saint-Étienne Cedex 2, France
| |
Collapse
|
22
|
Reeves RK, Burgener A, Klatt NR. Targeting the gastrointestinal tract to develop novel therapies for HIV. Clin Pharmacol Ther 2015; 98:381-6. [PMID: 26179624 DOI: 10.1002/cpt.186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/10/2015] [Indexed: 01/10/2023]
Abstract
Despite the use of antiretroviral therapy (ART), which delays and/or prevents AIDS pathogenesis, human immunodeficiency virus (HIV)-infected individuals continue to face increased morbidities and mortality rates compared with uninfected individuals. Gastrointestinal (GI) mucosal dysfunction is a key feature of HIV infection, and is associated with mortality. In this study, we review current knowledge about mucosal dysfunction in HIV infection, and describe potential avenues for therapeutic targets to enhance mucosal function and decrease morbidities and mortalities in HIV-infected individuals.
Collapse
Affiliation(s)
- R K Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - A Burgener
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Sweden
| | - N R Klatt
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA.,Washington National Primate Research Center, Seattle, Washington, USA
| |
Collapse
|
23
|
Vargas-Inchaustegui DA, Xiao P, Demberg T, Pal R, Robert-Guroff M. Therapeutic envelope vaccination in combination with antiretroviral therapy temporarily rescues SIV-specific CD4⁺ T-cell-dependent natural killer cell effector responses in chronically infected rhesus macaques. Immunology 2015; 145:288-99. [PMID: 25626488 DOI: 10.1111/imm.12447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/13/2015] [Accepted: 01/22/2015] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are essential components of the immune system, and due to their rapid response potential, can have a great impact during early anti-viral immune responses. We have previously shown that interleukin-2-dependent NK and CD4(+) T-cell co-operative immune responses exist in long-term simian immunodeficiency virus (SIV) -infected controlling macaques and can be rescued in SIV-infected non-controlling macaques by a short course of antiretroviral therapy (ART). Given that co-operative responses may play an important role in disease prevention and therapeutic treatment, in the present study we sought to determine if these responses can be enhanced in chronically SIV-infected macaques by vaccination with a single-dose of envelope protein given during ART. To this end, we treated 14 chronically SIV-infected macaques with ART for 11 weeks and gave 10 of these macaques a single intramuscular dose of SIV gp120 at week 9 of treatment. ART significantly decreased plasma and mucosal viral loads, increased the numbers of circulating CD4(+) T cells in all macaques, and increased T-cell-dependent envelope- and gag-specific interferon-γ and tumour necrosis factor-α production by circulatory CD56(+) NK cells. The therapeutic envelope immunization resulted in higher envelope-specific responses compared with those in macaques that received ART only. Functional T-cell responses restored by ART and therapeutic Env immunization were correlated with transiently reduced plasma viraemia levels following ART release. Collectively our results indicate that SIV-specific T-cell-dependent NK cell responses can be efficiently rescued by ART in chronically SIV-infected macaques and that therapeutic immunization may be beneficial in previously vaccinated individuals.
Collapse
|
24
|
Schafer JL, Li H, Evans TI, Estes JD, Reeves RK. Accumulation of Cytotoxic CD16+ NK Cells in Simian Immunodeficiency Virus-Infected Lymph Nodes Associated with In Situ Differentiation and Functional Anergy. J Virol 2015; 89:6887-94. [PMID: 25903330 PMCID: PMC4468491 DOI: 10.1128/jvi.00660-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recent evidence suggests that even in treated infections, human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication may continue in lymph nodes (LN), serving as a potential virus reservoir. Here we investigated the effects of lentivirus infection on natural killer (NK) cell frequencies, phenotypes, and functions in naive and acutely or chronically SIVmac239-infected rhesus macaques. Compared to that in naive animals, we observed a 3-fold-greater frequency of cytotoxic CD16(+) CD56(-) NK cells in LN of chronically infected macaques. However, NK cells did not appear to be trafficking to LN, as homing markers CD62L and CCR7 did not increase on circulating NK cells during infection. LN NK cells demonstrated enhanced cytotoxicity in acute infection, with 2-fold increases in perforin expression and 3-fold increases in CD107a expression following mitogen stimulation. Lysis of K562 cells by LN NK cells from acutely infected animals was greater than lysis by preinfection samples from the same animals. LN NK cells from chronically infected animals lysed K562 cells more efficiently than LN NK cells from uninfected animals, but importantly, surrogate markers of cytotoxicity in infected macaques were disproportionately greater than ex vivo killing. Furthermore, Tim-3, an indicator of activation and/or exhaustion, was upregulated 3-fold on LN NK cells in chronically infected animals. Collectively, these data suggest that LN NK cells are skewed toward a cytotoxic phenotype during SIV infection but may become dysfunctional and exhausted in chronic disease. IMPORTANCE The accumulation of CD16(+) CD56(-) NK cells in the SIV-infected lymph node without changes in NK homing to the LN could suggest that these cells are differentiating in situ. Surprisingly, this increase in frequency of the cytotoxic subset of NK cells is not accompanied by an increase of similar magnitude in the cytolytic function of LN lymphocytes. This functional modulation, together with the higher Tim-3 expression observed on LN NK cells isolated from chronically infected animals than on those from naive macaques, is indicative of an exhausted phenotype. This exhaustion could contribute to the robust replication of HIV and SIV in the LN during acute and chronic stages of infection, allowing the survival of infected cells and maintenance of a viral reservoir.
Collapse
Affiliation(s)
- Jamie L Schafer
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Haiying Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tristan I Evans
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, USA
| |
Collapse
|
25
|
Wang W, Wu F, Cong Z, Liu K, Qin C, Wei Q. The secretion of IL-22 from mucosal NKp44⁺ NK cells is associated with microbial translocation and virus infection in SIV/SHIV-infected Chinese macaques. J Immunol Res 2014; 2014:387950. [PMID: 25759828 PMCID: PMC4352435 DOI: 10.1155/2014/387950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 02/08/2023] Open
Abstract
Microbial translocation (MT) causes systemic immune activation in chronic human immunodeficiency virus (HIV) infection. The role of a novel subtype of innate lymphoid cells, the NKp44(+) NK cells, in HIV/simian immunodeficiency virus- (SIV-) induced MT remains unknown. In this study, 12 simian-human immunodeficiency virus- (SHIV-) infected macaques were chosen and split into two groups based on the MT level. Blood and Peripheral lymphoid tissue were sampled for flow cytometric analysis, viral load detection, and interleukin testing. Then, six naive Chinese macaques were used to determine the dynamics of cytokine secretion from mucosal NKp44(+) NK cells in different phases of SIV infection. As a result, the degranulation capacity and IL-22 production of mucosal NKp44(+) NK cells were associated with the MT level in the SHIV-infected macaques. And the number of mucosal NKp44(+) NK cells and IL-22 secretion by these cells were lower in the chronic phase than in the early acute phase of SIV infection. The number of mucosal NKp44(+) NK cells and interleukin-22 (IL-22) secretion by these cells increased before MT occurred. Therefore, we conclude that a decline in IL-22 production from mucosal NKp44(+) NK cells induced by virus infection may be one of the causes of microbial translocation in HIV/SIV infection.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Fangxin Wu
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Zhe Cong
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Kejian Liu
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Chuan Qin
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Qiang Wei
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| |
Collapse
|
26
|
Li H, Richert-Spuhler LE, Evans TI, Gillis J, Connole M, Estes JD, Keele BF, Klatt NR, Reeves RK. Hypercytotoxicity and rapid loss of NKp44+ innate lymphoid cells during acute SIV infection. PLoS Pathog 2014; 10:e1004551. [PMID: 25503264 PMCID: PMC4263758 DOI: 10.1371/journal.ppat.1004551] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/03/2014] [Indexed: 12/29/2022] Open
Abstract
HIV/SIV infections break down the integrity of the gastrointestinal mucosa and lead to chronic immune activation and associated disease progression. Innate lymphoid cells (ILCs), distinguishable by high expression of NKp44 and RORγt, play key roles in mucosal defense and homeostasis, but are depleted from gastrointestinal (GI) tract large bowel during chronic SIV infection. However, less is known about the kinetics of ILC loss, or if it occurs systemically. In acute SIV infection, we found a massive, up to 8-fold, loss of NKp44+ILCs in all mucosae as early as day 6 post-infection, which was sustained through chronic disease. Interestingly, no loss of ILCs was observed in mucosa-draining lymph nodes. In contrast, classical NK cells were not depleted either from gut or draining lymph nodes. Both ILCs and NK cells exhibited significantly increased levels of apoptosis as measured by increased Annexin-V expression, but while classical NK cells also showed increased proliferation, ILCs did not. Interestingly, ILCs, which are normally noncytolytic, dramatically upregulated cytotoxic functions in acute and chronic infection and acquired a polyfunctional phenotype secreting IFN-γ, MIP1-β, and TNF-α, but decreased production of the prototypical cytokine, IL-17. Classical NK cells had less dramatic functional change, but upregulated perforin expression and increased cytotoxic potential. Finally, we show that numerical and functional loss of ILCs was due to increased apoptosis and ROR γt suppression induced by inflammatory cytokines in the gut milieu. Herein we demonstrate the first evidence for acute, systemic, and permanent loss of mucosal ILCs during SIV infection associated with reduction of IL-17. The massive reduction of ILCs involves apoptosis without compensatory de novo development/proliferation, but the full mechanism of depletion and the impact of functional change so early in infection remain unclear.
Collapse
Affiliation(s)
- Haiying Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Laura E. Richert-Spuhler
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Tristan I. Evans
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
| | - Jacqueline Gillis
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
| | - Michelle Connole
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Nichole R. Klatt
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
| |
Collapse
|
27
|
Shang L, Smith AJ, Duan L, Perkey KE, Qu L, Wietgrefe S, Zupancic M, Southern PJ, Masek-Hammerman K, Reeves RK, Johnson RP, Haase AT. NK cell responses to simian immunodeficiency virus vaginal exposure in naive and vaccinated rhesus macaques. THE JOURNAL OF IMMUNOLOGY 2014; 193:277-84. [PMID: 24899503 DOI: 10.4049/jimmunol.1400417] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NK cell responses to HIV/SIV infection have been well studied in acute and chronic infected patients/monkeys, but little is known about NK cells during viral transmission, particularly in mucosal tissues. In this article, we report a systematic study of NK cell responses to high-dose vaginal exposure to SIVmac251 in the rhesus macaque female reproductive tract (FRT). Small numbers of NK cells were recruited into the FRT mucosa following vaginal inoculation. The influx of mucosal NK cells preceded local virus replication and peaked at 1 wk and, thus, was in an appropriate time frame to control an expanding population of infected cells at the portal of entry. However, NK cells were greatly outnumbered by recruited target cells that fuel local virus expansion and were spatially dissociated from SIV RNA+ cells at the major site of expansion of infected founder populations in the transition zone and adjoining endocervix. The number of NK cells in the FRT mucosa decreased rapidly in the second week, while the number of SIV RNA+ cells in the FRT reached its peak. Mucosal NK cells produced IFN-γ and MIP-1α/CCL3 but lacked several markers of activation and cytotoxicity, and this was correlated with inoculum-induced upregulation of the inhibitory ligand HLA-E and downregulation of the activating receptor CD122/IL-2Rβ. Examination of SIVΔnef-vaccinated monkeys suggested that recruitment of NK cells to the genital mucosa was not involved in vaccine-induced protection from vaginal challenge. In summary, our results suggest that NK cells play, at most, a limited role in defenses in the FRT against vaginal challenge.
Collapse
Affiliation(s)
- Liang Shang
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Anthony J Smith
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Lijie Duan
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Katherine E Perkey
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Lucy Qu
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Stephen Wietgrefe
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Mary Zupancic
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | - Peter J Southern
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| | | | - R Keith Reeves
- New England Primate Research Center, Harvard Medical School, Southborough, MA 01772
| | - R Paul Johnson
- New England Primate Research Center, Harvard Medical School, Southborough, MA 01772
| | - Ashley T Haase
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455; and
| |
Collapse
|
28
|
Saez-Cirion A, Jacquelin B, Barré-Sinoussi F, Müller-Trutwin M. Immune responses during spontaneous control of HIV and AIDS: what is the hope for a cure? Philos Trans R Soc Lond B Biol Sci 2014; 369:20130436. [PMID: 24821922 PMCID: PMC4024229 DOI: 10.1098/rstb.2013.0436] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
HIV research has made rapid progress and led to remarkable achievements in recent decades, the most important of which are combination antiretroviral therapies (cART). However, in the absence of a vaccine, the pandemic continues, and additional strategies are needed. The 'towards an HIV cure' initiative aims to eradicate HIV or at least bring about a lasting remission of infection during which the host can control viral replication in the absence of cART. Cases of spontaneous and treatment-induced control of infection offer substantial hope. Here, we describe the scientific knowledge that is lacking, and the priorities that have been established for research into a cure. We discuss in detail the immunological lessons that can be learned by studying natural human and animal models of protection and spontaneous control of viraemia or of disease progression. In particular, we describe the insights we have gained into the immune mechanisms of virus control, the impact of early virus-host interactions and why chronic inflammation, a hallmark of HIV infection, is an obstacle to a cure. Finally, we enumerate current interventions aimed towards improving the host immune response.
Collapse
Affiliation(s)
| | | | | | - M. Müller-Trutwin
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| |
Collapse
|
29
|
Liyanage NPM, Gordon SN, Doster MN, Pegu P, Vaccari M, Shukur N, Schifanella L, Pise-Masison CA, Lipinska D, Grubczak K, Moniuszko M, Franchini G. Antiretroviral therapy partly reverses the systemic and mucosal distribution of NK cell subsets that is altered by SIVmac₂₅₁ infection of macaques. Virology 2014; 450-451:359-68. [PMID: 24503100 DOI: 10.1016/j.virol.2013.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 01/06/2023]
Abstract
We characterized three subsets of NK cells in blood, and two subsets in mucosal tissues. SIVmac251 infection increased total and CD16(+) NK cells in the blood. In the rectum, we observed a significant increase in total and NKG2A(+) NK cells during SIV infection. In contrast, the NKp44(+) subset significantly depleted in acute infection and continued to decline in frequency during chronic phase. During SIV infection, blood CD16 and mucosal NKG2A(+) subsets had increased cytotoxic potential. Intriguingly, the NKp44(+) NK cell subtype that likely mediates mucosal homeostasis via the production of cytokines, acquired cytotoxicity. Antiretroviral therapy significantly increased the frequency of mucosal NKG2A(+) NK cells and peripheral CD16(+) NK cells. However, it failed to restore the normal frequency of NKp44(+) NK cells in the rectum. Thus, SIVmac251 infection causes changes in the distribution and function of NK cells and antiretroviral therapy during chronic infection only partially restores NK homeostasis and function.
Collapse
Affiliation(s)
- Namal P M Liyanage
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Shari N Gordon
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Melvin N Doster
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Poonam Pegu
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Monica Vaccari
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Nebiyu Shukur
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Luca Schifanella
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Danuta Lipinska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Kamil Grubczak
- Department of Immunology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland; Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Genoveffa Franchini
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Reeves RK, Bosinger SE. Innate Immunity in Simian Immunodeficiency Virus Infection. NATURAL HOSTS OF SIV 2014. [PMCID: PMC7149674 DOI: 10.1016/b978-0-12-404734-1.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The past decade has seen the emergence of innate immunity as a mature field. The study of innate immunity has had a significant impact on the concepts of HIV immunity, pathogenesis, and vaccines. In this chapter, basic concepts of innate immunity at the anatomical, cellular, and molecular levels will be introduced from the perspective of their interplay with HIV and simian immunodeficiency virus (SIV). An emphasis will be placed on studies using SIV/non-human primate (NHP) models that shape current models of HIV pathogenesis. Finally, studies modulating the innate system in vivo in NHPs will be discussed.
Collapse
|
31
|
Carville A, Evans TI, Reeves RK. Characterization of circulating natural killer cells in neotropical primates. PLoS One 2013; 8:e78793. [PMID: 24244365 PMCID: PMC3823947 DOI: 10.1371/journal.pone.0078793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/21/2013] [Indexed: 12/11/2022] Open
Abstract
Despite extensive use of nonhuman primates as models for infectious diseases and reproductive biology, imprecise phenotypic and functional definitions exist for natural killer (NK) cells. This deficit is particularly significant in the burgeoning use of small, less expensive New World primate species. Using polychromatic flow cytometry, we identified peripheral blood NK cells as CD3-negative and expressing a cluster of cell surface molecules characteristic of NK cells (i.e., NKG2A, NKp46, NKp30) in three New World primate species – common marmosets, cotton-top tamarins, and squirrel monkeys. We then assessed subset distribution using the classical NK markers, CD56 and CD16. In all species, similar to Old World primates, only a minor subset of NK cells was CD56+, and the dominant subset was CD56–CD16+. Interestingly, CD56+ NK cells were primarily cytokine-secreting cells, whereas CD56–CD16+ NK cells expressed significantly greater levels of intracellular perforin, suggesting these cells might have greater potential for cytotoxicity. New World primate species, like Old World primates, also had a minor CD56–CD16– NK cell subset that has no obvious counterpart in humans. Herein we present phenotypic profiles of New World primate NK cell subpopulations that are generally analogous to those found in humans. This conservation among species should support the further use of these species for biomedical research.
Collapse
Affiliation(s)
- Angela Carville
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
| | - Tristan I. Evans
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Allers K, Fehr M, Conrad K, Epple HJ, Schürmann D, Geelhaar-Karsch A, Schinnerling K, Moos V, Schneider T. Macrophages accumulate in the gut mucosa of untreated HIV-infected patients. J Infect Dis 2013; 209:739-48. [PMID: 24133185 DOI: 10.1093/infdis/jit547] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mucosal macrophages are involved in the maintenance of epithelial barrier integrity and the elimination of invading pathogens. Although an intestinal barrier defect and microbial translocation are hallmarks of human immunodeficiency virus (HIV) infection, recent data on gut mucosal macrophages in HIV infection are sparse. METHODS Treatment-naive and treated HIV-infected patients and healthy controls were studied for frequencies and functional parameters of blood monocytes and macrophages in duodenal mucosa. RESULTS We found mucosal enrichment of macrophages in untreated HIV infection associated with reduced monocyte counts in blood and increased monocyte expression of the gut-homing molecule integrin β7. Increased CCR2 density on integrin β7-expressing monocytes and mucosal secretion of CCL2 suggest that CCR2/CCL2-chemotaxis is involved in enhanced trafficking of blood monocytes to the gut. Secretion of macrophage-related proinflammatory molecules interleukin 1β, CCL5, CXCL9, and CXCL10 was increased in the gut mucosa of untreated patients. Moreover, mucosal macrophages of untreated patients showed reduced phagocytic activity. CONCLUSIONS These data suggest a role for gut mucosal macrophages in HIV immune pathogenesis: infiltrated macrophages in the intestinal mucosa may promote local inflammation and tissue injury, whereas their low phagocytic activity prevents the efficient elimination of luminal antigens that cross the damaged intestinal barrier.
Collapse
Affiliation(s)
- Kristina Allers
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Medical Clinic I, Campus Benjamin Franklin
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
All-trans-retinoic acid imprints expression of the gut-homing marker α4β7 while suppressing lymph node homing of dendritic cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1642-6. [PMID: 23966557 DOI: 10.1128/cvi.00419-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tissue-directed trafficking of dendritic cells (DCs) as natural adjuvants and/or direct vaccine carriers is highly attractive for the next generation of vaccines and immunotherapeutics. Since these types of studies would undoubtedly be first conducted using nonhuman primate models, we evaluated the ability of all-trans-retinoic acid (ATRA) to induce gut-homing α4β7 expression on rhesus macaque plasmacytoid and myeloid DCs (pDCs and mDCs, respectively). Induction of α4β7 occurred in both a time-dependent and a dose-dependent manner with up to 8-fold increases for mDCs and 2-fold increases for pDCs compared to medium controls. ATRA treatment was also specific in inducing α4β7 expression, but not expression of another mucosal trafficking receptor, CCR9. Unexpectedly, upregulation of α4β7 was associated with a concomitant downregulation of CD62L, a marker of lymph node homing, indicating an overall shift in the trafficking repertoire. These same phenomena occurred with ATRA treatment of human and chimpanzee DCs, suggesting a conserved mechanism among primates. Collectively, these data serve as a first evaluation for ex vivo modification of primate DC homing patterns that could later be used in reinfusion studies for the purposes of immunotherapeutics or mucosa-directed vaccines.
Collapse
|
34
|
Li H, Evans TI, Reeves RK. Loss of bone marrow NK cells during SIV infection is associated with increased turnover rates and cytotoxicity but not changes in trafficking. J Med Primatol 2013; 42:230-6. [PMID: 23898936 DOI: 10.1111/jmp.12063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND HIV and SIV infections induce NK cell dysfunction and hematopoietic defects in the bone marrow, but the effects of infection on bone marrow NK cell development and function are unknown. METHODS Bone marrow NK cells were analyzed from both naïve and chronically SIV-infected rhesus macaques using polychromatic flow cytometry. RESULTS NK cell frequencies were reduced in infected compared with naïve animals, associated with increased apoptosis. Bone marrow NK cells from SIV-infected macaques upregulated perforin expression, suggesting increased cytotoxicity, and shifted toward a more mature CD16(+) NK cell subpopulation phenotype. Unexpectedly, expression of the trafficking markers α4β7, CCR7, and CD62L was unchanged on bone marrow NK cells during SIV infection. CONCLUSION These data demonstrate that during SIV infection, bone marrow NK cells are reduced in number, but upregulate cytotoxic functions. Furthermore, our data suggest acquired cytotoxicity and loss may be due to in situ NK cell differentiation and not emigration.
Collapse
Affiliation(s)
- Haiying Li
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | | | | |
Collapse
|
35
|
Zhu W, Shi G, Tang H, Lewis DE, Song XT. An effective vaccination approach augments anti-HIV systemic and vaginal immunity in mice with decreased HIV-1 susceptible α4β7high CD4+ T cells. Curr HIV Res 2013; 11:56-66. [PMID: 23157585 PMCID: PMC3717605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/18/2012] [Accepted: 10/24/2012] [Indexed: 06/01/2023]
Abstract
HIV-1 preferentially infects activated CD4(+) T cells expressing α4β7 integrin and conventional vaccination approaches non-selectively induce immune responses including α4β7(high) CD4(+) T cells, suggesting that current candidate AIDS vaccines may produce more target cells for HIV-1 and paradoxically enhance HIV-1 infection. Thus it remains a challenge to selectively induce robust anti-HIV immunity without the unwanted HIV-1 susceptible α4β77(high) CD4(+)+ T cells. Here we describe a vaccination strategy that targets ALDH1a2, a retinoic acid producing enzyme in dendritic cells (DCs). Silencing ALDH1a2 in DCs enhanced the maturation and production of proinflammatory cytokines of DCs and promoted Th1/Th2 differentiation while suppressing Treg. ALDH1a2-silenced DCs effectively downregulated the expression of guthoming receptors α4β77 and CCR9 on activated T and B lymphocytes. Consequently, intranasal immunization of a lentiviral vaccine encoding ALDH1a2 shRNA and HIV-1 gp140 redirected gp140-specific mucosal T cell and antibody responses from the gut to the vaginal tract, while dramatically enhancing systemic gp140-specific immune responses. We further demonstrated that silencing ALDH1a2 in human DCs resulted in downregulation of β7 expression on activated autologous CD4(+) T cells. Hence this study provides a unique and effective strategy to induce α4β7(low) anti-HIV immune responses.
Collapse
Affiliation(s)
- Wei Zhu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, The Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery and Rehabilitation, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Guoping Shi
- Department of Cardiology, The People’s Hospital of Rugao, Jiangsu, PR China
| | - Haijun Tang
- Department of Pediatrics, Rugao Boai Hospital, Rugao, Jiangsu, PR China
| | - Dorothy E Lewis
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Internal Medicine, Section of Infectious Diseases, University of Texas, Houston Medical School, Houston, TX, USA
| | - Xiao-Tong Song
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, The Methodist Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
36
|
Hong HS, Ahmad F, Eberhard JM, Bhatnagar N, Bollmann BA, Keudel P, Ballmaier M, Zielinska-Skowronek M, Schmidt RE, Meyer-Olson D. Loss of CCR7 expression on CD56(bright) NK cells is associated with a CD56(dim)CD16⁺ NK cell-like phenotype and correlates with HIV viral load. PLoS One 2012; 7:e44820. [PMID: 23028633 PMCID: PMC3447005 DOI: 10.1371/journal.pone.0044820] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 08/14/2012] [Indexed: 11/20/2022] Open
Abstract
NK cells are pivotal sentinels of the innate immune system and distinct subpopulations in peripheral blood have been described. A number of studies addressed HIV-induced alterations of NK cell phenotype and functionality mainly focusing on CD56dimCD16+ and CD56−CD16+ NK cells. However, the impact of HIV-infection on CD56bright NK cells is less well understood. Here we report a rise of CD56bright NK cells in HIV-infected individuals, which lack CCR7-expression and strongly correlate with HIV viral load. CCR7−CD56bright NK cells were characterized by increased cytolytic potential, higher activation states and a more differentiated phenotype. These cells thus acquired a number of features of CD56dimCD16+ NK cells. Furthermore, CD56bright NK cells from HIV patients exhibited higher degranulation levels compared to uninfected individuals. Thus, chronic HIV-infection is associated with a phenotypic and functional shift of CD56bright NK cells, which provides a novel aspect of HIV-associated pathogenesis within the NK cell compartment.
Collapse
Affiliation(s)
- Henoch S. Hong
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover, Hannover, Germany
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Fareed Ahmad
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Johanna M. Eberhard
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Nupur Bhatnagar
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Benjamin A. Bollmann
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Phillip Keudel
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Matthias Ballmaier
- Pädiatrische Hämatologie und Onkologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Reinhold E. Schmidt
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Dirk Meyer-Olson
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
37
|
A genetic polymorphism of FREM1 is associated with resistance against HIV infection in the Pumwani sex worker cohort. J Virol 2012; 86:11899-905. [PMID: 22915813 DOI: 10.1128/jvi.01499-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A subgroup of women enrolled in the Pumwani sex worker cohort remain seronegative and PCR negative for human immunodeficiency virus type 1 despite repeated exposure through high-risk sex work. Studies have shown that polymorphisms of genes involved in antigen presentation and viral restriction factors are associated with resistance to HIV infection. To discover other possible genetic factors underlying this HIV-resistant phenotype, we conducted an exploratory nonbiased, low-resolution, genome-wide single-nucleotide polymorphism (SNP) analysis comparing 60 HIV-resistant women to 48 HIV-infected controls. The SNP minor allele rs1552896, in an intron of FREM1, was significantly associated with the resistant phenotype (P = 1.68 × 10(-5); adjusted P = 2.37 × 10(-4); odds ratio [OR], 9.51; 95% confidence interval [CI], 2.82 to 32.05). We expanded the sample size by genotyping rs1552896 in the Pumwani cohort and comparing 114 HIV-resistant women to 609 HIV-infected controls and confirmed the association (P = 1.7 × 10(-4); OR, 2.67; 95% CI, 1.47 to 4.84). To validate the association in a second cohort, we genotyped 783 women enrolled in a mother-child health study and observed the minor allele of rs1552896 enriched in HIV-uninfected women (n = 488) compared to HIV-infected enrollees (n = 295) (P = 0.036; OR, 1.69; 95% CI, 0.98 to 2.93). Quantitative reverse transcription-PCR showed that FREM1 mRNA was highly expressed in tissues relevant for HIV-1 infection, and immunohistochemical analysis revealed that FREM1 protein is expressed in the ectocervical mucosa of HIV-resistant women. The significant association of rs1552896 with an HIV-resistant phenotype, together with the expression profile of FREM1 in tissues relevant to HIV infection, suggests that FREM1 is a potentially novel candidate gene for resistance to HIV infection.
Collapse
|
38
|
Reeves RK, Evans TI, Gillis J, Wong FE, Kang G, Li Q, Johnson RP. SIV infection induces accumulation of plasmacytoid dendritic cells in the gut mucosa. J Infect Dis 2012; 206:1462-8. [PMID: 22711907 DOI: 10.1093/infdis/jis408] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multiple studies suggest that plasmacytoid dendritic cells (pDCs) are depleted and dysfunctional during human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) infection, but little is known about pDCs in the gut-the primary site of virus replication. Here, we show that during SIV infection, pDCs were reduced 3--fold in the circulation and significantly upregulated the gut-homing marker α4β7, but were increased 4-fold in rectal biopsies of infected compared to naive macaques. These data revise the understanding of pDC immunobiology during SIV infection, indicating that pDCs are not necessarily depleted, but instead may traffic to and accumulate in the gut mucosa.
Collapse
Affiliation(s)
- R Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Characterisation of simian immunodeficiency virus-infected cells in pigtail macaques. Virology 2012; 428:11-20. [DOI: 10.1016/j.virol.2012.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/12/2012] [Accepted: 03/24/2012] [Indexed: 11/23/2022]
|
40
|
Lifson JD, Haigwood NL. Lessons in nonhuman primate models for AIDS vaccine research: from minefields to milestones. Cold Spring Harb Perspect Med 2012; 2:a007310. [PMID: 22675663 PMCID: PMC3367532 DOI: 10.1101/cshperspect.a007310] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonhuman primate (NHP) disease models for AIDS have made important contributions to the search for effective vaccines for AIDS. Viral diversity, persistence, capacity for immune evasion, and safety considerations have limited development of conventional approaches using killed or attenuated vaccines, necessitating the development of novel approaches. Here we highlight the knowledge gained and lessons learned in testing vaccine concepts in different virus/NHP host combinations.
Collapse
Affiliation(s)
- Jeffrey D Lifson
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland, USA
| | | |
Collapse
|
41
|
Simões RD, Howard KE, Dean GA. In vivo assessment of natural killer cell responses during chronic feline immunodeficiency virus infection. PLoS One 2012; 7:e37606. [PMID: 22701523 PMCID: PMC3365115 DOI: 10.1371/journal.pone.0037606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/26/2012] [Indexed: 01/03/2023] Open
Abstract
Accumulating evidence suggests that natural killer (NK) cells may have an important role in HIV-1 disease pathogenesis; however, in vivo studies are lacking. Feline immunodeficiency virus (FIV) infection of cats provides a valuable model to study NK cell function in vivo. The immune response against Listeria monocytogenes (Lm) is well characterized, allowing its use as an innate immune probe. We have previously shown that locally delivered IL-15 can improve Lm clearance in FIV-infected animals, and this correlated with an increase in NK cell number. In the present study, chronically FIV-infected and SPF-control cats were challenged with Lm by unilateral subcutaneous injection next to the footpad and then treated with 5-bromo-2′-deoxyuridine (BrdU). The Lm draining and contralateral control lymph nodes were evaluated for NK, NKT, CD4+ and CD8+ T cell number, proliferation, apoptosis, and NK cell function. Listeria monocytogenes burden was also assessed in both control and Lm draining lymph nodes. NK, NKT, CD4+ T and CD8+ T cells in the Lm-challenged lymph node of FIV-infected cats did not increase in number. In addition, after Lm challenge, NK cells from FIV-infected cats did not increase their proliferation rate, apoptosis was elevated, and perforin expression was not upregulated when compared to SPF-control cats. The failure of the NK cell response against Lm challenge in the draining lymph node of FIV-infected cats correlates with the delayed control and clearance of this opportunistic bacterial pathogen.
Collapse
Affiliation(s)
- Rita D. Simões
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kristina E. Howard
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gregg A. Dean
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
42
|
Eller MA, Currier JR. OMIP-007: Phenotypic analysis of human natural killer cells. Cytometry A 2012; 81:447-9. [DOI: 10.1002/cyto.a.22033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 12/28/2011] [Accepted: 02/13/2012] [Indexed: 12/24/2022]
|
43
|
Vargas-Inchaustegui DA, Demberg T, Robert-Guroff M. A CD8α(-) subpopulation of macaque circulatory natural killer cells can mediate both antibody-dependent and antibody-independent cytotoxic activities. Immunology 2011; 134:326-40. [PMID: 21978002 DOI: 10.1111/j.1365-2567.2011.03493.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Natural killer (NK) cells are important components of the innate immune system that mediate effector and regulatory functions. As effector cells, NK cells help control virus-infected cells through cell-mediated antibody-dependent mechanisms such as antibody-dependent cellular cytotoxicity (ADCC). Although macaques are an important and reliable animal model for the study of retrovirus-induced human diseases, and despite the crucial role played by NK cells in innate and adaptive immune responses against simian immunodeficiency virus (SIV), only a few studies have attempted to characterize different macaque NK cell subpopulations. In the present study, we identified a subpopulation of circulatory CD8α(-) macaque NK cells that express NK lineage markers and exhibit cytotoxic potential. CD8α(-) NK cells were phenotypically characterized as CD3(-) CD14(-) CD20(-) CD8α(-) cells that express NK cell markers including CD16, CD56, granzyme B, perforin, NKG2D and KIR2D. Based on their CD56/CD16 expression patterns, cells within the CD8α(-) gate can be divided into four subpopulations: CD56(dim) CD16(bright) , CD56(dim) CD16(-) , CD56(bright) CD16(-) , and CD56(-) CD16(-) cells. In contrast, CD8α(+) NK cells are 95% CD56(dim) CD16(bright) , which correlates with their high cytotoxic potential. Upon interleukin-15 activation, CD8α(-) cells up-regulated CD69 expression and produced low levels of interferon-γ and tumour necrosis factor-α. Sorted CD8α(-) NK cells were capable of killing MHC-I-devoid target cells and mediated ADCC responses against SIV gp120-coated target cells in the presence of macaque anti-gp120 antibodies. Taking into account CD8α(-) myeloid dendritic cells, we show that about 35% of macaque CD8α(-) cells represent a novel, functional population of circulatory NK cells that possesses cytotoxic potential and is capable of mediating anti-viral immune responses.
Collapse
|
44
|
Darc M, Hait SH, Soares EA, Cicala C, Seuanez HN, Machado ES, Arthos JA, Soares MA. Polymorphisms in the α4 integrin of neotropical primates: insights for binding of natural ligands and HIV-1 gp120 to the human α4β7. PLoS One 2011; 6:e24461. [PMID: 21912696 PMCID: PMC3166318 DOI: 10.1371/journal.pone.0024461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/10/2011] [Indexed: 11/30/2022] Open
Abstract
The α4 integrin subunit associates with β7 and β1 and plays important roles in immune function and cell trafficking. The gut-homing receptor α4β7 has been recently described as a new receptor for HIV. Here, we describe polymorphisms of ITGA4 gene in New World primates (NWP), and tested their impact on the binding to monoclonal antibodies, natural ligands (MAdCAM and VCAM), and several gp120 HIV-1 envelope proteins. Genomic DNA of NWP specimens comprising all genera of the group had their exons 5 and 6 (encoding the region of binding to the ligands studied) analyzed. The polymorphisms found were introduced into an ITGA4 cDNA clone encoding the human α4 subunit. Mutant α4 proteins were co-expressed with β7 and were tested for binding of mAbs, MAdCAM, VCAM and gp120 of HIV-1, which was compared to the wild-type (human) α4. Mutant α4 proteins harboring the K201E/I/N substitution had reduced binding of all ligands tested, including HIV-1 gp120 envelopes. The mAbs found with reduced biding included one from which a clinically-approved drug for the treatment of neurological disorders has been derived. α4 polymorphisms in other primate species may influence outcomes in the development and treatment of infectious and autoimmune diseases in humans and in non-human primates.
Collapse
Affiliation(s)
- Mirela Darc
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Sabrina H. Hait
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Claudia Cicala
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hector N. Seuanez
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Elizabeth S. Machado
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - James A. Arthos
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcelo A. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
45
|
Ansari AA, Reimann KA, Mayne AE, Takahashi Y, Stephenson ST, Wang R, Wang X, Li J, Price AA, Little DM, Zaidi M, Lyles R, Villinger F. Blocking of α4β7 gut-homing integrin during acute infection leads to decreased plasma and gastrointestinal tissue viral loads in simian immunodeficiency virus-infected rhesus macaques. THE JOURNAL OF IMMUNOLOGY 2010; 186:1044-59. [PMID: 21149598 DOI: 10.4049/jimmunol.1003052] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intravenous administration of a novel recombinant rhesus mAb against the α4β7 gut-homing integrin (mAb) into rhesus macaques just prior to and during acute SIV infection resulted in significant decrease in plasma and gastrointestinal (GI) tissue viral load and a marked reduction in GI tissue proviral DNA load as compared with control SIV-infected rhesus macaques. This mAb administration was associated with increases in peripheral blood naive and central memory CD4(+) T cells and maintenance of a high frequency of CCR5(+)CD4(+) T cells. Additionally, such mAb administration inhibited the mobilization of NK cells and plasmacytoid dendritic cells characteristically seen in the control animals during acute infection accompanied by the inhibition of the synthesis of MIP-3α by the gut tissues. These data in concert suggest that blocking of GI trafficking CD4(+) T cells and inhibiting the mobilization of cell lineages of the innate immune system may be a powerful new tool to protect GI tissues and modulate acute lentiviral infection.
Collapse
Affiliation(s)
- Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mir KD, Gasper MA, Sundaravaradan V, Sodora DL. SIV infection in natural hosts: resolution of immune activation during the acute-to-chronic transition phase. Microbes Infect 2010; 13:14-24. [PMID: 20951225 DOI: 10.1016/j.micinf.2010.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/09/2010] [Indexed: 10/18/2022]
Abstract
SIV-infected natural hosts do not progress to clinical AIDS yet display high viral replication and an acute immunologic response similar to pathogenic SIV/HIV infections. During chronic SIV infection, natural hosts suppress their immune activation, whereas pathogenic hosts display a highly activated immune state. Here, we review natural host SIV infections with an emphasis on specific immune cells and their contribution to the transition from the acute-to-chronic phases of infection.
Collapse
Affiliation(s)
- Kiran D Mir
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | | | | | |
Collapse
|